Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jurusan : Teknik Informatika
penyelesaian soal diatas menggunakan metode secant
root_secant <- function(f, x, tol=1e-7, N=100){
iter <- 0
xold <- x
fxold <- f(x)
x <- xold+10*tol
while(abs(x-xold)>tol){
iter <- iter+1
if(iter>N)
stop("No solutions found")
fx <- f(x)
xnew <- x - fx*((x-xold)/(fx-fxold))
xold <- x
fxold <- fx
x <- xnew
}
root<-xnew
return(list(`function`=f, root=root, iter=iter))
}
root_secant(function(x){x^3+2*x+2}, x=0)
## $`function`
## function(x){x^3+2*x+2}
## <bytecode: 0x0000000015280cd8>
##
## $root
## [1] -0.770917
##
## $iter
## [1] 7
root_secant(function(x){x^3+2*x+2}, x=1/2)
## $`function`
## function(x){x^3+2*x+2}
## <bytecode: 0x0000000015c71c88>
##
## $root
## [1] -0.770917
##
## $iter
## [1] 7
root_secant(function(x){sin(x)/x}, x=0.5)
## $`function`
## function(x){sin(x)/x}
## <bytecode: 0x0000000012ee27a8>
##
## $root
## [1] 6.283185
##
## $iter
## [1] 7
root_secant(function(x){sin(x)/x}, x=1)
## $`function`
## function(x){sin(x)/x}
## <bytecode: 0x0000000014e8d208>
##
## $root
## [1] 3.141593
##
## $iter
## [1] 8
trapezoid <- function(ftn, a, b, n = 100) {
h <- (b-a)/n
x.vec <- seq(a, b, by = h)
f.vec <- sapply(x.vec, ftn) # ftn(x.vec)
Trap <- h*(f.vec[1]/2 + sum(f.vec[2:n]) + f.vec[n+1]/2)
return(Trap)
}
f <- function(x){
sin(x)^2
}
trapezoid(f,0,pi,n = 6)
## [1] 1.570796