Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Soal latihan 7.7

penyelesaian soal diatas menggunakan metode secant

root_secant <- function(f, x, tol=1e-7, N=100){
  iter <- 0
  
  xold <- x
  fxold <- f(x)
  x <- xold+10*tol
  
  while(abs(x-xold)>tol){
    iter <- iter+1
    if(iter>N)
      stop("No solutions found")
    
    fx <- f(x)
    xnew <- x - fx*((x-xold)/(fx-fxold))
    xold <- x
    fxold <- fx
    x <- xnew
  }
  
  root<-xnew
  return(list(`function`=f, root=root, iter=iter))
}
root_secant(function(x){x^3+2*x+2}, x=0)
## $`function`
## function(x){x^3+2*x+2}
## <bytecode: 0x0000000015280cd8>
## 
## $root
## [1] -0.770917
## 
## $iter
## [1] 7
root_secant(function(x){x^3+2*x+2}, x=1/2)
## $`function`
## function(x){x^3+2*x+2}
## <bytecode: 0x0000000015c71c88>
## 
## $root
## [1] -0.770917
## 
## $iter
## [1] 7
root_secant(function(x){sin(x)/x}, x=0.5)
## $`function`
## function(x){sin(x)/x}
## <bytecode: 0x0000000012ee27a8>
## 
## $root
## [1] 6.283185
## 
## $iter
## [1] 7
root_secant(function(x){sin(x)/x}, x=1)
## $`function`
## function(x){sin(x)/x}
## <bytecode: 0x0000000014e8d208>
## 
## $root
## [1] 3.141593
## 
## $iter
## [1] 8

Soal latihan 9.14

trapezoid <- function(ftn, a, b, n = 100) {
         h <- (b-a)/n
         x.vec <- seq(a, b, by = h)
         f.vec <- sapply(x.vec, ftn)     # ftn(x.vec)
         Trap <- h*(f.vec[1]/2 + sum(f.vec[2:n]) + f.vec[n+1]/2)
         return(Trap)
}
 f <- function(x){
      sin(x)^2
 }
trapezoid(f,0,pi,n = 6)
## [1] 1.570796

Daftar pustaka

https://bookdown.org/moh_rosidi2610/Metode_Numerik/rootfinding.html#latihan-1

https://bookdown.org/moh_rosidi2610/Metode_Numerik/diffinteg.html#latihan-3