The main research objective of this analysis is to determine if race is a significant predictor of outcomes of interest above and beyond other potential confounding variables such as partisanship. The racial categories of most interest based on crosstab analysis are: Black, Hispanic and white.
The secondary research objective is to review if any of the control variables have predictive power over the outcomes of interest as a means of informing potential future analyses.
This report will use multivariate regression techniques on 22 survey questions of interest; the specific regression technique will vary depending on outcome of interest. Different models employed here include:
Regardles of the type of regression model used, this analysis used the same set of predictor variables, including:
The file requires some recoding and data cleaning. This code deals with these issues. One key step is the coding of the ‘-98’ labels as missing
##
## REPUBLICAN DEMOCRAT INDEPENDENT
## 3858 5143 769
##
## White Other Black Asian Hispanic
## 7687 236 1126 166 983
##
## 0 1
## 5256 4900
Logistic regression will be the primary tool for this analysis, including on the following survey questions:
For ease of analysis, we first create a function to run the logistic regression.
##
## Note more likely More likely
## 5124 3311
We have seen apparent differences by race on this question, as the below bar chart shows. The regression analysis further confirms this relationship, with Black being a significant predictor. The regression table and coefficient plot shows the results in terms of odd-ratios, with a value over 1 indicating a particular group was more likely to agree with the statement than individuals not in that group. Here, we see Blacks are 1.66 times more likely to agree than non-blacks, and this is statistically significant; only the odds-ratio associated with being a Democrat is higher.
## MODEL INFO:
## Observations: 9295
## Dependent Variable: ind.var
## Type: Analysis of complex survey design
## Family: quasibinomial
## Link function: logit
##
## MODEL FIT:
## Pseudo-R² (Cragg-Uhler) = 0.05
## Pseudo-R² (McFadden) = 0.04
## AIC = NA
##
## -------------------------------------------------------------------
## exp(Est.) S.E. t val. p
## -------------------------------- ----------- ------ -------- ------
## (Intercept) 0.09 0.19 -13.07 0.00
## race.varBlack 1.66 0.10 5.17 0.00
## race.varHispanic 1.25 0.11 2.10 0.04
## race.varOther 1.03 0.17 0.15 0.88
## POL_PARTYDEMOCRAT 2.04 0.09 8.32 0.00
## POL_PARTYINDEPENDENT 1.05 0.15 0.31 0.76
## genderFemale 0.95 0.07 -0.77 0.44
## AGE_CAT35 TO 54 1.01 0.10 0.13 0.89
## AGE_CAT55+ 1.38 0.10 3.23 0.00
## college.grad1 1.12 0.08 1.43 0.15
## high_internet_use_1high 0.98 0.13 -0.16 0.88
## high_news_1high 1.08 0.08 0.93 0.35
## Q32A small town or village 1.18 0.12 1.43 0.15
## Q32A large city 1.01 0.13 0.07 0.95
## Q32A suburb of a large 1.22 0.11 1.74 0.08
## city
## -------------------------------------------------------------------
##
## Estimated dispersion parameter = 1
## Loading required namespace: broom.mixed
In this analysis, we shift gears somewhat and instead turn our focus to predicting who DISAGREE (strongly or somewhat) with the statement. Why? Recall, the main overarching objective of this review is to better understand on which matters Blacks offer different opinions from other respondents, after controlling for all other potentially relevant characteristics, such as political party.
The bar charts below compare the results of this question if we first focus on the “agree” response (shown in the first bar chart) and then the “disagree” response (shown in the second bar chart). As can be seen, Blacks are more likely to “disagree” than the other groups, and so the regression analysis will focus on this outcome.
## # A tibble: 6 x 6
## ind_var dep_var Wording dep_category pct unweighted_n
## <fct> <chr> <chr> <fct> <dbl> <int>
## 1 White q4d.agree <NA> Not agree 49.4 7644
## 2 White q4d.agree <NA> Agree 50.6 7644
## 3 Black q4d.agree <NA> Not agree 72.8 1106
## 4 Black q4d.agree <NA> Agree 27.2 1106
## 5 Hispanic q4d.agree <NA> Not agree 58.8 978
## 6 Hispanic q4d.agree <NA> Agree 41.2 978
The cross-tabs suggest that Blacks are more likely than any other race or ethnicity to disagree with the statement. However, the regression results – which test this relationship against other salient predictors – do not exactly confirm this apparent relationship. While Black is a significant predictor, the odds-ratio is below 1, suggesting that Blacks are somewhat less likely to disagree with this statement, when considering all other factors.
Notably, the effect associated with being a Democrat is titanic – people of this political stripe are about 20 times as likely as others to disagree with this statement. Given the primary role of political affiliation, this may help explain the puzzling results.
## MODEL INFO:
## Observations: 9293
## Dependent Variable: ind.var
## Type: Analysis of complex survey design
## Family: quasibinomial
## Link function: logit
##
## MODEL FIT:
## Pseudo-R² (Cragg-Uhler) = 0.35
## Pseudo-R² (McFadden) = 0.24
## AIC = NA
##
## -------------------------------------------------------------------
## exp(Est.) S.E. t val. p
## -------------------------------- ----------- ------ -------- ------
## (Intercept) 0.02 0.22 -18.56 0.00
## race.varBlack 0.65 0.10 -4.54 0.00
## race.varHispanic 0.67 0.11 -3.83 0.00
## race.varOther 0.65 0.17 -2.51 0.01
## POL_PARTYDEMOCRAT 20.18 0.12 25.99 0.00
## POL_PARTYINDEPENDENT 4.17 0.17 8.55 0.00
## genderFemale 0.87 0.07 -2.09 0.04
## AGE_CAT35 TO 54 0.96 0.09 -0.46 0.65
## AGE_CAT55+ 1.02 0.09 0.23 0.82
## college.grad1 1.46 0.07 5.13 0.00
## high_internet_use_1high 1.12 0.15 0.79 0.43
## high_news_1high 2.18 0.08 9.56 0.00
## Q32A small town or village 1.11 0.12 0.86 0.39
## Q32A large city 1.45 0.12 3.02 0.00
## Q32A suburb of a large 1.44 0.12 3.17 0.00
## city
## -------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.02
As a robustness check, this analyst also ran the logistic regression in the alternative direction – focusing on predicting agree/strongly agree (which means people are indicating DISTRUST). Here, Black was not a significant predictor. Again, the clear divide was with respect to political affiliation (though this is harder to see here because Republican is the reference category, but if you rescale the OR below to make GOP the non-reference caegory, you see they would be approximatley 20 times more likely to AGREE with this statement).
## MODEL INFO:
## Observations: 9293
## Dependent Variable: ind.var
## Type: Analysis of complex survey design
## Family: quasibinomial
## Link function: logit
##
## MODEL FIT:
## Pseudo-R² (Cragg-Uhler) = 0.46
## Pseudo-R² (McFadden) = 0.30
## AIC = NA
##
## -------------------------------------------------------------------
## exp(Est.) S.E. t val. p
## -------------------------------- ----------- ------ -------- ------
## (Intercept) 8.86 0.20 11.18 0.00
## race.varBlack 1.06 0.11 0.53 0.60
## race.varHispanic 1.10 0.11 0.84 0.40
## race.varOther 1.20 0.17 1.07 0.28
## POL_PARTYDEMOCRAT 0.06 0.08 -37.15 0.00
## POL_PARTYINDEPENDENT 0.28 0.11 -11.47 0.00
## genderFemale 0.94 0.07 -0.90 0.37
## AGE_CAT35 TO 54 1.08 0.10 0.80 0.42
## AGE_CAT55+ 1.18 0.10 1.64 0.10
## college.grad1 0.72 0.07 -4.51 0.00
## high_internet_use_1high 1.00 0.14 -0.03 0.98
## high_news_1high 0.58 0.08 -6.95 0.00
## Q32A small town or village 0.82 0.11 -1.87 0.06
## Q32A large city 0.60 0.12 -4.27 0.00
## Q32A suburb of a large 0.71 0.11 -3.29 0.00
## city
## -------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.99
All in all, we should not consider race/ethnicity a significant predictor for this question.
This is another question where we flip the script in the analysis, now focusing on the disagree/strongly disagree category. Again, this is driven by the fact that the cross-tabs suggest Blacks are more likely than others to disagree with this statement – about 58% disagree to some extent, compared to 38% of whites, 43% of Hispanics and 46% of other individuals.
However the logistic regression results do not find a statistically significant relationship, after considering all other factors. Like Q4D above, we see political affiliation playing a dominant role here.
## # A tibble: 4 x 6
## ind_var dep_var Wording dep_category pct unweighted_n
## <fct> <chr> <chr> <fct> <dbl> <int>
## 1 White q4f.disagree All adult citizens have~ Disagree 38.4 7649
## 2 Black q4f.disagree All adult citizens have~ Disagree 57.5 1109
## 3 Hispanic q4f.disagree All adult citizens have~ Disagree 43.4 975
## 4 Other q4f.disagree All adult citizens have~ Disagree 46.1 400
## MODEL INFO:
## Observations: 9299
## Dependent Variable: ind.var
## Type: Analysis of complex survey design
## Family: quasibinomial
## Link function: logit
##
## MODEL FIT:
## Pseudo-R² (Cragg-Uhler) = 0.39
## Pseudo-R² (McFadden) = 0.25
## AIC = NA
##
## -------------------------------------------------------------------
## exp(Est.) S.E. t val. p
## -------------------------------- ----------- ------ -------- ------
## (Intercept) 0.08 0.19 -13.58 0.00
## race.varBlack 1.09 0.10 0.85 0.40
## race.varHispanic 0.84 0.10 -1.73 0.08
## race.varOther 0.96 0.17 -0.28 0.78
## POL_PARTYDEMOCRAT 14.48 0.08 32.40 0.00
## POL_PARTYINDEPENDENT 3.70 0.12 10.56 0.00
## genderFemale 1.16 0.06 2.31 0.02
## AGE_CAT35 TO 54 0.73 0.08 -3.65 0.00
## AGE_CAT55+ 0.55 0.09 -6.74 0.00
## college.grad1 1.39 0.07 4.89 0.00
## high_internet_use_1high 1.64 0.14 3.45 0.00
## high_news_1high 1.00 0.08 0.03 0.98
## Q32A small town or village 1.13 0.11 1.14 0.25
## Q32A large city 1.20 0.12 1.55 0.12
## Q32A suburb of a large 1.18 0.11 1.54 0.12
## city
## -------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.02
Here, we focus on the percent who were “very concerned.” In all, 37% of respondents said they were very concerned; another 45% said they were somewhat concerned about the size and power of major technology companies.
If we focus on the “very concerned” category, though, we see notable differences by race/ethnicity – with Blacks less likely than all other groups to give this response.
Turning to logistic regression, we do find this observation holds, even when controlling for other factors. The odds-ratio associated with Black respondents is well below 1, indicating lower likelihood to say this.
## MODEL INFO:
## Observations: 9308
## Dependent Variable: ind.var
## Type: Analysis of complex survey design
## Family: quasibinomial
## Link function: logit
##
## MODEL FIT:
## Pseudo-R² (Cragg-Uhler) = 0.11
## Pseudo-R² (McFadden) = 0.06
## AIC = NA
##
## -------------------------------------------------------------------
## exp(Est.) S.E. t val. p
## -------------------------------- ----------- ------ -------- ------
## (Intercept) 1.08 0.14 0.54 0.59
## race.varBlack 0.68 0.10 -3.93 0.00
## race.varHispanic 0.97 0.09 -0.36 0.72
## race.varOther 1.28 0.13 1.85 0.06
## POL_PARTYDEMOCRAT 0.35 0.06 -16.96 0.00
## POL_PARTYINDEPENDENT 0.60 0.11 -4.85 0.00
## genderFemale 0.73 0.05 -5.73 0.00
## AGE_CAT35 TO 54 0.81 0.08 -2.73 0.01
## AGE_CAT55+ 0.95 0.08 -0.59 0.56
## college.grad1 1.00 0.06 0.04 0.97
## high_internet_use_1high 0.98 0.10 -0.17 0.86
## high_news_1high 1.33 0.07 4.39 0.00
## Q32A small town or village 0.97 0.09 -0.34 0.73
## Q32A large city 1.14 0.10 1.39 0.16
## Q32A suburb of a large 1.09 0.09 1.06 0.29
## city
## -------------------------------------------------------------------
##
## Estimated dispersion parameter = 1
For this question, we again focus on the “very concerned” category. At the crosstab level, we find that 70% of Blacks are ‘very concerned’ about this issue, compared to 52% of whites, 59% of Hispanics and 48% of other individuals.
Despite these clear differences, the results were not signigicant within the logistic regression. Political affiliation was significant and the dominant effect tested.
## MODEL INFO:
## Observations: 9303
## Dependent Variable: ind.var
## Type: Analysis of complex survey design
## Family: quasibinomial
## Link function: logit
##
## MODEL FIT:
## Pseudo-R² (Cragg-Uhler) = 0.24
## Pseudo-R² (McFadden) = 0.14
## AIC = NA
##
## -------------------------------------------------------------------
## exp(Est.) S.E. t val. p
## -------------------------------- ----------- ------ -------- ------
## (Intercept) 0.16 0.17 -10.92 0.00
## race.varBlack 1.15 0.10 1.32 0.19
## race.varHispanic 1.21 0.09 2.07 0.04
## race.varOther 0.89 0.14 -0.83 0.41
## POL_PARTYDEMOCRAT 5.28 0.07 24.44 0.00
## POL_PARTYINDEPENDENT 1.84 0.10 5.86 0.00
## genderFemale 1.92 0.06 11.41 0.00
## AGE_CAT35 TO 54 1.54 0.08 5.46 0.00
## AGE_CAT55+ 3.19 0.09 13.29 0.00
## college.grad1 0.96 0.06 -0.56 0.58
## high_internet_use_1high 0.86 0.13 -1.20 0.23
## high_news_1high 1.28 0.07 3.71 0.00
## Q32A small town or village 1.27 0.09 2.58 0.01
## Q32A large city 1.21 0.10 1.83 0.07
## Q32A suburb of a large 1.20 0.09 1.94 0.05
## city
## -------------------------------------------------------------------
##
## Estimated dispersion parameter = 1
The remaining survey items – all of which come from the Q25 series of questions, which asks “In the last 12 months how often have you done each of the dollowing – Daily, weekly, a few times a month, rarely, never or not applicable.”
For this analysis, the “Never” and “Not applicable” categories were combined.
Given this 5-point scale, it was decided we pursue a linear regression model – though certainly this is a choice that would have its critics. As we will see, though, it isn’t clear we’ll want to report on these results anyway, as we face issues related to model fit (and in general) a lack of significant terms.
First we recode the variables and write a function to run the linear rgeressions.
This analysis will first show the descriptive statistics by race/ethnicity for each question and then the model output.
q25a.data.race<-two_tab_func(survey.df, "race.var", "q25a.recode", "WEIGHT")%>%
mutate(Wording = label_df$Wording[label_df$QTAG == "Q25A"])
ggplot(q25a.data.race, aes(x=dep_category, y=pct))+geom_bar(stat="identity", fill="green")+
labs(title="Q25 Sent an email or social media post to govt official", x="Frequency") +
ylim(0,100)+
geom_text(aes(label=pct), vjust=-0.1, colour="black")+
facet_wrap(~ind_var, ncol=1)+
theme_classic()
linear.regression.function.data("q25a.recode", survey.df)
## MODEL INFO:
## Observations: 9309
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.010
## Adj. R² = 0.008
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.447 0.309 0.585 6.366 0.000
## race.varBlack 0.026 -0.055 0.108 0.628 0.530
## race.varHispanic 0.067 -0.016 0.151 1.578 0.115
## race.varOther 0.018 -0.080 0.117 0.365 0.715
## POL_PARTYDEMOCRAT -0.028 -0.083 0.027 -1.005 0.315
## POL_PARTYINDEPENDENT -0.114 -0.201 -0.026 -2.549 0.011
## genderFemale -0.025 -0.072 0.023 -1.027 0.304
## AGE_CAT35 TO 54 0.067 0.000 0.134 1.963 0.050
## AGE_CAT55+ 0.043 -0.028 0.114 1.190 0.234
## college.grad1 0.102 0.047 0.157 3.666 0.000
## high_internet_use_1high 0.142 0.030 0.254 2.485 0.013
## high_news_1high 0.097 0.042 0.152 3.456 0.001
## Q32A small town or village -0.003 -0.079 0.073 -0.086 0.932
## Q32A large city -0.007 -0.090 0.077 -0.159 0.874
## Q32A suburb of a large -0.035 -0.110 0.039 -0.931 0.352
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.84
q25b.data.race<-two_tab_func(survey.df, "race.var", "q25b.recode", "WEIGHT")%>%
mutate(Wording = label_df$Wording[label_df$QTAG == "Q25B"])
ggplot(q25b.data.race, aes(x=dep_category, y=pct))+geom_bar(stat="identity", fill="green")+
labs(title="Q25B Donated money online to political candidate or party", x="Frequency") +
ylim(0,100)+
geom_text(aes(label=pct), vjust=-0.1, colour="black")+
facet_wrap(~ind_var, ncol=1)+
theme_classic()
linear.regression.function.data("q25b.recode", survey.df)
## MODEL INFO:
## Observations: 9305
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.058
## Adj. R² = 0.056
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.090 -0.012 0.191 1.735 0.083
## race.varBlack 0.002 -0.055 0.058 0.060 0.952
## race.varHispanic 0.008 -0.052 0.067 0.257 0.797
## race.varOther 0.039 -0.045 0.123 0.912 0.362
## POL_PARTYDEMOCRAT 0.170 0.131 0.209 8.596 0.000
## POL_PARTYINDEPENDENT -0.097 -0.150 -0.044 -3.609 0.000
## genderFemale -0.039 -0.072 -0.005 -2.242 0.025
## AGE_CAT35 TO 54 0.024 -0.023 0.071 1.017 0.309
## AGE_CAT55+ 0.010 -0.038 0.059 0.413 0.679
## college.grad1 0.116 0.079 0.153 6.126 0.000
## high_internet_use_1high 0.060 -0.024 0.145 1.396 0.163
## high_news_1high 0.114 0.076 0.152 5.854 0.000
## Q32A small town or village 0.051 0.002 0.100 2.024 0.043
## Q32A large city 0.152 0.093 0.210 5.052 0.000
## Q32A suburb of a large 0.073 0.023 0.123 2.875 0.004
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.409
q25c.data.race<-two_tab_func(survey.df, "race.var", "q25c.recode", "WEIGHT")%>%
mutate(Wording = label_df$Wording[label_df$QTAG == "Q25C"])
ggplot(q25c.data.race, aes(x=dep_category, y=pct))+geom_bar(stat="identity", fill="green")+
labs(title="Q25C Created, signed or shared an online petition", x="Frequency") +
ylim(0,100)+
geom_text(aes(label=pct), vjust=-0.1, colour="black")+
facet_wrap(~ind_var, ncol=1)+
theme_classic()
linear.regression.function.data("q25c.recode", survey.df)
## MODEL INFO:
## Observations: 9299
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.036
## Adj. R² = 0.035
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.351 0.247 0.455 6.616 0.000
## race.varBlack 0.003 -0.059 0.065 0.102 0.918
## race.varHispanic 0.054 -0.010 0.117 1.658 0.097
## race.varOther 0.123 0.018 0.228 2.301 0.021
## POL_PARTYDEMOCRAT 0.064 0.019 0.108 2.800 0.005
## POL_PARTYINDEPENDENT -0.065 -0.138 0.007 -1.766 0.077
## genderFemale 0.136 0.097 0.174 6.902 0.000
## AGE_CAT35 TO 54 -0.029 -0.082 0.023 -1.089 0.276
## AGE_CAT55+ -0.116 -0.173 -0.059 -4.001 0.000
## college.grad1 0.033 -0.010 0.077 1.505 0.132
## high_internet_use_1high 0.315 0.235 0.395 7.724 0.000
## high_news_1high 0.035 -0.008 0.078 1.599 0.110
## Q32A small town or village -0.023 -0.084 0.038 -0.727 0.467
## Q32A large city 0.015 -0.054 0.084 0.420 0.675
## Q32A suburb of a large -0.013 -0.074 0.047 -0.428 0.669
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.547
q25d.data.race<-two_tab_func(survey.df, "race.var", "q25d.recode", "WEIGHT")%>%
mutate(Wording = label_df$Wording[label_df$QTAG == "Q25D"])
ggplot(q25d.data.race, aes(x=dep_category, y=pct))+geom_bar(stat="identity", fill="green")+
labs(title="Q25D Volunteered to help online with political candidate or cause ", x="Frequency") +
ylim(0,100)+
geom_text(aes(label=pct), vjust=-0.1, colour="black")+
facet_wrap(~ind_var, ncol=1)+
theme_classic()
linear.regression.function.data("q25e.recode", survey.df)
## MODEL INFO:
## Observations: 9292
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.010
## Adj. R² = 0.008
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.192 0.111 0.272 4.668 0.000
## race.varBlack 0.073 0.028 0.118 3.173 0.002
## race.varHispanic 0.027 -0.014 0.068 1.290 0.197
## race.varOther 0.084 0.012 0.156 2.294 0.022
## POL_PARTYDEMOCRAT 0.001 -0.026 0.029 0.078 0.937
## POL_PARTYINDEPENDENT -0.022 -0.062 0.019 -1.048 0.295
## genderFemale 0.009 -0.016 0.033 0.681 0.496
## AGE_CAT35 TO 54 -0.022 -0.057 0.013 -1.218 0.223
## AGE_CAT55+ -0.068 -0.105 -0.031 -3.569 0.000
## college.grad1 -0.002 -0.032 0.027 -0.165 0.869
## high_internet_use_1high -0.084 -0.155 -0.014 -2.348 0.019
## high_news_1high 0.023 -0.004 0.050 1.647 0.100
## Q32A small town or village 0.003 -0.033 0.039 0.173 0.863
## Q32A large city 0.011 -0.031 0.053 0.504 0.615
## Q32A suburb of a large -0.012 -0.046 0.023 -0.655 0.512
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.207
q25e.data.race<-two_tab_func(survey.df, "race.var", "q25e.recode", "WEIGHT")%>%
mutate(Wording = label_df$Wording[label_df$QTAG == "Q25E"])
ggplot(q25e.data.race, aes(x=dep_category, y=pct))+geom_bar(stat="identity", fill="green")+
labs(title="Q25E Started a political or cause-related group on social media ", x="Frequency") +
ylim(0,100)+
geom_text(aes(label=pct), vjust=-0.1, colour="black")+
facet_wrap(~ind_var, ncol=1)+
theme_classic()
linear.regression.function.data("q25e.recode", survey.df)
## MODEL INFO:
## Observations: 9292
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.010
## Adj. R² = 0.008
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.192 0.111 0.272 4.668 0.000
## race.varBlack 0.073 0.028 0.118 3.173 0.002
## race.varHispanic 0.027 -0.014 0.068 1.290 0.197
## race.varOther 0.084 0.012 0.156 2.294 0.022
## POL_PARTYDEMOCRAT 0.001 -0.026 0.029 0.078 0.937
## POL_PARTYINDEPENDENT -0.022 -0.062 0.019 -1.048 0.295
## genderFemale 0.009 -0.016 0.033 0.681 0.496
## AGE_CAT35 TO 54 -0.022 -0.057 0.013 -1.218 0.223
## AGE_CAT55+ -0.068 -0.105 -0.031 -3.569 0.000
## college.grad1 -0.002 -0.032 0.027 -0.165 0.869
## high_internet_use_1high -0.084 -0.155 -0.014 -2.348 0.019
## high_news_1high 0.023 -0.004 0.050 1.647 0.100
## Q32A small town or village 0.003 -0.033 0.039 0.173 0.863
## Q32A large city 0.011 -0.031 0.053 0.504 0.615
## Q32A suburb of a large -0.012 -0.046 0.023 -0.655 0.512
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.207
###Q25F FOLLOWED A POLITICAN ON SOCIAL MEDIA
linear.regression.function.data("q25f.recode", survey.df)
## MODEL INFO:
## Observations: 9295
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.038
## Adj. R² = 0.037
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.402 0.272 0.532 6.045 0.000
## race.varBlack -0.197 -0.280 -0.114 -4.656 0.000
## race.varHispanic -0.044 -0.130 0.041 -1.016 0.310
## race.varOther 0.012 -0.119 0.143 0.183 0.855
## POL_PARTYDEMOCRAT -0.068 -0.132 -0.004 -2.073 0.038
## POL_PARTYINDEPENDENT -0.352 -0.453 -0.251 -6.828 0.000
## genderFemale 0.130 0.075 0.186 4.626 0.000
## AGE_CAT35 TO 54 0.119 0.045 0.193 3.168 0.002
## AGE_CAT55+ -0.002 -0.081 0.076 -0.055 0.956
## college.grad1 0.083 0.024 0.142 2.759 0.006
## high_internet_use_1high 0.372 0.275 0.469 7.530 0.000
## high_news_1high 0.287 0.227 0.347 9.382 0.000
## Q32A small town or village 0.020 -0.071 0.112 0.438 0.661
## Q32A large city 0.081 -0.019 0.181 1.592 0.112
## Q32A suburb of a large 0.006 -0.084 0.095 0.124 0.902
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.246
##Q25G SHARED YOUR POLITICAL OPINION ON SOCIAL MEDIA
linear.regression.function.data("q25g.recode", survey.df)
## MODEL INFO:
## Observations: 9291
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.028
## Adj. R² = 0.026
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.431 0.299 0.564 6.377 0.000
## race.varBlack -0.154 -0.232 -0.075 -3.852 0.000
## race.varHispanic -0.051 -0.135 0.032 -1.204 0.228
## race.varOther 0.122 -0.010 0.254 1.812 0.070
## POL_PARTYDEMOCRAT 0.027 -0.035 0.089 0.845 0.398
## POL_PARTYINDEPENDENT -0.259 -0.352 -0.166 -5.486 0.000
## genderFemale 0.003 -0.049 0.056 0.124 0.901
## AGE_CAT35 TO 54 0.068 -0.004 0.140 1.845 0.065
## AGE_CAT55+ -0.069 -0.146 0.008 -1.765 0.078
## college.grad1 -0.040 -0.099 0.019 -1.335 0.182
## high_internet_use_1high 0.442 0.345 0.539 8.892 0.000
## high_news_1high 0.135 0.077 0.194 4.524 0.000
## Q32A small town or village -0.012 -0.101 0.077 -0.273 0.785
## Q32A large city 0.092 -0.007 0.190 1.830 0.067
## Q32A suburb of a large 0.018 -0.069 0.106 0.414 0.679
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.089
###Q25H Shared political information posted by others on social media
linear.regression.function.data("q25h.recode", survey.df)
## MODEL INFO:
## Observations: 9295
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.026
## Adj. R² = 0.024
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.477 0.343 0.612 6.957 0.000
## race.varBlack -0.091 -0.171 -0.011 -2.236 0.025
## race.varHispanic 0.003 -0.085 0.090 0.064 0.949
## race.varOther 0.080 -0.057 0.217 1.145 0.252
## POL_PARTYDEMOCRAT -0.092 -0.156 -0.027 -2.783 0.005
## POL_PARTYINDEPENDENT -0.301 -0.398 -0.204 -6.061 0.000
## genderFemale 0.080 0.026 0.133 2.913 0.004
## AGE_CAT35 TO 54 -0.046 -0.121 0.030 -1.179 0.238
## AGE_CAT55+ -0.149 -0.230 -0.068 -3.613 0.000
## college.grad1 -0.047 -0.107 0.014 -1.514 0.130
## high_internet_use_1high 0.404 0.304 0.503 7.956 0.000
## high_news_1high 0.133 0.073 0.194 4.344 0.000
## Q32A small town or village -0.006 -0.094 0.082 -0.143 0.887
## Q32A large city 0.134 0.036 0.233 2.675 0.007
## Q32A suburb of a large -0.002 -0.089 0.085 -0.047 0.963
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.101
##q25i Used a political hashtag
linear.regression.function.data("q25i.recode", survey.df)
## MODEL INFO:
## Observations: 9285
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.033
## Adj. R² = 0.032
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.213 0.125 0.301 4.743 0.000
## race.varBlack 0.102 0.045 0.160 3.481 0.001
## race.varHispanic 0.052 -0.004 0.109 1.807 0.071
## race.varOther 0.040 -0.032 0.112 1.084 0.278
## POL_PARTYDEMOCRAT 0.032 -0.006 0.069 1.662 0.097
## POL_PARTYINDEPENDENT -0.090 -0.141 -0.039 -3.466 0.001
## genderFemale 0.026 -0.006 0.059 1.601 0.109
## AGE_CAT35 TO 54 -0.024 -0.072 0.024 -0.997 0.319
## AGE_CAT55+ -0.201 -0.249 -0.153 -8.136 0.000
## college.grad1 -0.022 -0.059 0.015 -1.161 0.246
## high_internet_use_1high 0.022 -0.047 0.091 0.621 0.535
## high_news_1high 0.076 0.039 0.113 4.070 0.000
## Q32A small town or village -0.014 -0.064 0.037 -0.539 0.590
## Q32A large city 0.038 -0.021 0.096 1.260 0.208
## Q32A suburb of a large 0.010 -0.042 0.061 0.372 0.710
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.365
###Q25J Liked a post about politics on social media
linear.regression.function.data("q25j.recode", survey.df)
## MODEL INFO:
## Observations: 9303
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.062
## Adj. R² = 0.061
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.735 0.584 0.886 9.556 0.000
## race.varBlack -0.222 -0.318 -0.126 -4.543 0.000
## race.varHispanic -0.106 -0.209 -0.002 -2.005 0.045
## race.varOther 0.134 -0.032 0.300 1.577 0.115
## POL_PARTYDEMOCRAT 0.006 -0.070 0.081 0.150 0.881
## POL_PARTYINDEPENDENT -0.334 -0.455 -0.213 -5.417 0.000
## genderFemale 0.192 0.128 0.256 5.902 0.000
## AGE_CAT35 TO 54 -0.175 -0.266 -0.084 -3.773 0.000
## AGE_CAT55+ -0.439 -0.534 -0.344 -9.084 0.000
## college.grad1 -0.007 -0.078 0.065 -0.182 0.856
## high_internet_use_1high 0.612 0.508 0.716 11.533 0.000
## high_news_1high 0.242 0.171 0.314 6.636 0.000
## Q32A small town or village -0.007 -0.108 0.094 -0.136 0.892
## Q32A large city 0.136 0.025 0.248 2.395 0.017
## Q32A suburb of a large 0.002 -0.098 0.101 0.032 0.974
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.545
Alternatively, one could argue that these regressions should be run ONLY on respondents who did not say the situation was “not applicable/never use it”. For many of these questions, this means losing around 10% of respondents. The regression results for those items are below, but not much has meaningfully changed.
We first recode the data. Results follow below.
Regression results on new variables.
#Q25A Sent an email or a social media post to a national, state, or local government official
linear.regression.function.data("q25a.recode2", survey.df)
## MODEL INFO:
## Observations: 8748
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.007
## Adj. R² = 0.006
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.572 0.416 0.728 7.182 0.000
## race.varBlack 0.042 -0.044 0.128 0.949 0.343
## race.varHispanic 0.090 0.002 0.178 2.000 0.046
## race.varOther 0.035 -0.068 0.138 0.668 0.504
## POL_PARTYDEMOCRAT -0.023 -0.080 0.034 -0.792 0.429
## POL_PARTYINDEPENDENT -0.107 -0.199 -0.014 -2.254 0.024
## genderFemale -0.028 -0.077 0.021 -1.107 0.268
## AGE_CAT35 TO 54 0.068 -0.002 0.137 1.916 0.055
## AGE_CAT55+ 0.051 -0.022 0.125 1.364 0.173
## college.grad1 0.081 0.024 0.137 2.781 0.005
## high_internet_use_1high 0.059 -0.073 0.190 0.870 0.384
## high_news_1high 0.093 0.035 0.150 3.163 0.002
## Q32A small town or village -0.007 -0.088 0.073 -0.182 0.856
## Q32A large city -0.011 -0.099 0.076 -0.255 0.799
## Q32A suburb of a large -0.041 -0.119 0.037 -1.027 0.304
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.865
#Q25B Donated money online or via text message to a political candidate, party, or issue
linear.regression.function.data("q25b.recode2", survey.df)
## MODEL INFO:
## Observations: 8667
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.056
## Adj. R² = 0.055
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.160 0.042 0.278 2.652 0.008
## race.varBlack 0.010 -0.050 0.070 0.338 0.735
## race.varHispanic 0.022 -0.042 0.086 0.683 0.495
## race.varOther 0.059 -0.030 0.147 1.296 0.195
## POL_PARTYDEMOCRAT 0.175 0.134 0.216 8.316 0.000
## POL_PARTYINDEPENDENT -0.104 -0.161 -0.047 -3.593 0.000
## genderFemale -0.033 -0.068 0.003 -1.804 0.071
## AGE_CAT35 TO 54 0.025 -0.024 0.074 0.986 0.324
## AGE_CAT55+ 0.012 -0.039 0.063 0.466 0.641
## college.grad1 0.111 0.072 0.150 5.607 0.000
## high_internet_use_1high 0.002 -0.101 0.105 0.045 0.964
## high_news_1high 0.114 0.074 0.155 5.542 0.000
## Q32A small town or village 0.055 0.002 0.107 2.045 0.041
## Q32A large city 0.157 0.095 0.220 4.929 0.000
## Q32A suburb of a large 0.076 0.023 0.129 2.830 0.005
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.427
#Q25C Created, shared, or signed an online petition
linear.regression.function.data("q25c.recode2", survey.df)
## MODEL INFO:
## Observations: 8869
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.031
## Adj. R² = 0.030
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.429 0.316 0.543 7.396 0.000
## race.varBlack 0.021 -0.043 0.085 0.642 0.521
## race.varHispanic 0.072 0.007 0.138 2.176 0.030
## race.varOther 0.128 0.022 0.235 2.365 0.018
## POL_PARTYDEMOCRAT 0.063 0.018 0.109 2.716 0.007
## POL_PARTYINDEPENDENT -0.059 -0.134 0.016 -1.532 0.126
## genderFemale 0.145 0.105 0.184 7.198 0.000
## AGE_CAT35 TO 54 -0.030 -0.084 0.023 -1.123 0.262
## AGE_CAT55+ -0.112 -0.170 -0.054 -3.803 0.000
## college.grad1 0.018 -0.026 0.063 0.806 0.420
## high_internet_use_1high 0.265 0.173 0.356 5.682 0.000
## high_news_1high 0.029 -0.015 0.073 1.301 0.193
## Q32A small town or village -0.023 -0.086 0.040 -0.709 0.479
## Q32A large city 0.012 -0.060 0.083 0.322 0.747
## Q32A suburb of a large -0.016 -0.078 0.046 -0.495 0.620
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.551
#Q25D Volunteered to help online with a political cause or a candidate’s campaign
linear.regression.function.data("q25d.recode2", survey.df)
## MODEL INFO:
## Observations: 8692
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.033
## Adj. R² = 0.031
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.241 0.122 0.360 3.973 0.000
## race.varBlack 0.053 -0.002 0.108 1.896 0.058
## race.varHispanic 0.024 -0.035 0.083 0.791 0.429
## race.varOther 0.055 -0.014 0.124 1.553 0.120
## POL_PARTYDEMOCRAT 0.109 0.073 0.145 5.883 0.000
## POL_PARTYINDEPENDENT -0.030 -0.077 0.016 -1.265 0.206
## genderFemale -0.008 -0.040 0.024 -0.503 0.615
## AGE_CAT35 TO 54 -0.019 -0.064 0.026 -0.844 0.399
## AGE_CAT55+ -0.067 -0.117 -0.017 -2.633 0.008
## college.grad1 0.054 0.016 0.092 2.777 0.006
## high_internet_use_1high -0.131 -0.234 -0.028 -2.491 0.013
## high_news_1high 0.065 0.030 0.101 3.605 0.000
## Q32A small town or village 0.024 -0.024 0.073 0.973 0.331
## Q32A large city 0.085 0.024 0.145 2.749 0.006
## Q32A suburb of a large 0.020 -0.030 0.070 0.797 0.425
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.323
#Q25E Started a political or cause-related group on social media
linear.regression.function.data("q25e.recode2", survey.df)
## MODEL INFO:
## Observations: 8453
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.012
## Adj. R² = 0.010
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.244 0.147 0.342 4.909 0.000
## race.varBlack 0.081 0.032 0.131 3.219 0.001
## race.varHispanic 0.032 -0.013 0.078 1.386 0.166
## race.varOther 0.093 0.015 0.172 2.344 0.019
## POL_PARTYDEMOCRAT 0.001 -0.030 0.031 0.048 0.962
## POL_PARTYINDEPENDENT -0.021 -0.066 0.024 -0.905 0.366
## genderFemale 0.011 -0.016 0.038 0.771 0.441
## AGE_CAT35 TO 54 -0.024 -0.062 0.015 -1.209 0.227
## AGE_CAT55+ -0.074 -0.114 -0.034 -3.591 0.000
## college.grad1 -0.007 -0.039 0.025 -0.407 0.684
## high_internet_use_1high -0.126 -0.214 -0.038 -2.800 0.005
## high_news_1high 0.023 -0.007 0.053 1.517 0.129
## Q32A small town or village 0.004 -0.036 0.044 0.192 0.847
## Q32A large city 0.011 -0.035 0.058 0.486 0.627
## Q32A suburb of a large -0.012 -0.050 0.026 -0.622 0.534
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.225
#Q25F Followed a politician on social media
linear.regression.function.data("q25f.recode2", survey.df)
## MODEL INFO:
## Observations: 8673
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.035
## Adj. R² = 0.033
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.556 0.413 0.700 7.605 0.000
## race.varBlack -0.201 -0.288 -0.114 -4.537 0.000
## race.varHispanic -0.034 -0.123 0.055 -0.745 0.457
## race.varOther 0.012 -0.122 0.147 0.180 0.857
## POL_PARTYDEMOCRAT -0.071 -0.137 -0.005 -2.097 0.036
## POL_PARTYINDEPENDENT -0.348 -0.456 -0.240 -6.294 0.000
## genderFemale 0.130 0.072 0.187 4.432 0.000
## AGE_CAT35 TO 54 0.117 0.041 0.193 3.027 0.002
## AGE_CAT55+ -0.012 -0.094 0.070 -0.287 0.774
## college.grad1 0.060 -0.001 0.121 1.929 0.054
## high_internet_use_1high 0.289 0.178 0.400 5.095 0.000
## high_news_1high 0.304 0.242 0.366 9.570 0.000
## Q32A small town or village 0.009 -0.087 0.105 0.178 0.859
## Q32A large city 0.071 -0.033 0.176 1.340 0.180
## Q32A suburb of a large 0.002 -0.092 0.096 0.038 0.970
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.265
#Q25G Shared your political opinion on social media
linear.regression.function.data("q25g.recode2", survey.df)
## MODEL INFO:
## Observations: 8619
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.024
## Adj. R² = 0.023
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.553 0.405 0.700 7.334 0.000
## race.varBlack -0.150 -0.232 -0.068 -3.589 0.000
## race.varHispanic -0.046 -0.134 0.041 -1.034 0.301
## race.varOther 0.124 -0.012 0.259 1.790 0.073
## POL_PARTYDEMOCRAT 0.022 -0.043 0.088 0.674 0.500
## POL_PARTYINDEPENDENT -0.256 -0.355 -0.158 -5.084 0.000
## genderFemale -0.006 -0.061 0.049 -0.208 0.835
## AGE_CAT35 TO 54 0.062 -0.012 0.137 1.644 0.100
## AGE_CAT55+ -0.078 -0.157 0.002 -1.907 0.057
## college.grad1 -0.063 -0.124 -0.002 -2.023 0.043
## high_internet_use_1high 0.395 0.280 0.509 6.781 0.000
## high_news_1high 0.150 0.089 0.211 4.827 0.000
## Q32A small town or village -0.027 -0.121 0.067 -0.566 0.571
## Q32A large city 0.087 -0.016 0.191 1.655 0.098
## Q32A suburb of a large 0.016 -0.076 0.108 0.349 0.727
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.116
#Q25H Shared political information posted by others on social media
linear.regression.function.data("q25h.recode2", survey.df)
## MODEL INFO:
## Observations: 8610
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.023
## Adj. R² = 0.022
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.607 0.455 0.758 7.840 0.000
## race.varBlack -0.091 -0.175 -0.007 -2.126 0.034
## race.varHispanic 0.016 -0.076 0.108 0.346 0.730
## race.varOther 0.082 -0.060 0.225 1.136 0.256
## POL_PARTYDEMOCRAT -0.103 -0.171 -0.035 -2.971 0.003
## POL_PARTYINDEPENDENT -0.306 -0.410 -0.202 -5.756 0.000
## genderFemale 0.078 0.022 0.134 2.735 0.006
## AGE_CAT35 TO 54 -0.058 -0.136 0.021 -1.441 0.150
## AGE_CAT55+ -0.165 -0.250 -0.081 -3.827 0.000
## college.grad1 -0.077 -0.140 -0.013 -2.368 0.018
## high_internet_use_1high 0.357 0.239 0.475 5.926 0.000
## high_news_1high 0.147 0.084 0.210 4.576 0.000
## Q32A small town or village -0.023 -0.117 0.070 -0.492 0.622
## Q32A large city 0.130 0.026 0.235 2.449 0.014
## Q32A suburb of a large -0.008 -0.101 0.084 -0.173 0.863
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.136
#Q25I Used a political hashtag
linear.regression.function.data("q25i.recode2", survey.df)
## MODEL INFO:
## Observations: 8119
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.033
## Adj. R² = 0.031
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.280 0.171 0.389 5.048 0.000
## race.varBlack 0.112 0.049 0.175 3.467 0.001
## race.varHispanic 0.057 -0.006 0.120 1.785 0.074
## race.varOther 0.050 -0.030 0.129 1.231 0.218
## POL_PARTYDEMOCRAT 0.032 -0.010 0.074 1.477 0.140
## POL_PARTYINDEPENDENT -0.096 -0.154 -0.037 -3.222 0.001
## genderFemale 0.031 -0.005 0.067 1.690 0.091
## AGE_CAT35 TO 54 -0.026 -0.078 0.026 -0.993 0.321
## AGE_CAT55+ -0.217 -0.270 -0.163 -7.899 0.000
## college.grad1 -0.038 -0.080 0.003 -1.815 0.070
## high_internet_use_1high -0.014 -0.106 0.077 -0.311 0.756
## high_news_1high 0.084 0.043 0.125 4.044 0.000
## Q32A small town or village -0.017 -0.075 0.040 -0.592 0.554
## Q32A large city 0.037 -0.029 0.103 1.097 0.272
## Q32A suburb of a large 0.010 -0.049 0.069 0.328 0.743
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 0.409
#Q25J Liked a post about politics on social media
linear.regression.function.data("q25j.recode2", survey.df)
## MODEL INFO:
## Observations: 8595
## Dependent Variable: ind.var
## Type: Survey-weighted linear regression
##
## MODEL FIT:
## R² = 0.057
## Adj. R² = 0.055
##
## Standard errors: Robust
## ----------------------------------------------------------------------------
## Est. 2.5% 97.5% t val. p
## -------------------------------- -------- -------- -------- -------- -------
## (Intercept) 0.926 0.760 1.091 10.958 0.000
## race.varBlack -0.220 -0.320 -0.120 -4.312 0.000
## race.varHispanic -0.108 -0.215 -0.001 -1.976 0.048
## race.varOther 0.112 -0.056 0.280 1.301 0.193
## POL_PARTYDEMOCRAT -0.007 -0.085 0.071 -0.175 0.861
## POL_PARTYINDEPENDENT -0.324 -0.452 -0.196 -4.964 0.000
## genderFemale 0.185 0.119 0.251 5.496 0.000
## AGE_CAT35 TO 54 -0.198 -0.291 -0.106 -4.205 0.000
## AGE_CAT55+ -0.475 -0.572 -0.378 -9.606 0.000
## college.grad1 -0.049 -0.122 0.024 -1.307 0.191
## high_internet_use_1high 0.543 0.422 0.665 8.759 0.000
## high_news_1high 0.271 0.198 0.345 7.227 0.000
## Q32A small town or village -0.019 -0.124 0.086 -0.357 0.721
## Q32A large city 0.128 0.012 0.244 2.161 0.031
## Q32A suburb of a large 0.001 -0.102 0.105 0.024 0.981
## city
## ----------------------------------------------------------------------------
##
## Estimated dispersion parameter = 1.548
END