From Ch9.2:
\[ \frac{dU}{dt} = -\lambda (U-u_s), \,\, \lambda= \frac{hS}{cm} \]
Parameters:
Use separation of variables with \( U(0)=u_{0} \) and \( U > u_{s} \):
\[ \small{ \begin{aligned} \frac{dU}{dt} &=-\lambda(U-u_{s}) \\ \int \frac{dU}{U-u_{s}} & =-\lambda \int dt \\ \ln(U-u_{s}) &=-\lambda t +K \\ U-u_{s} &= e^{-\lambda t + K} \\ U &= e^{-\lambda t}e^{K} + u_{s} \end{aligned}} \]
Applying the initial condition \( U(0)=u_{0} \) we have
\[ U(t) = (u_{0}-u_{s})e^{-\lambda t}+u_{s} \]
If it takes 10 minutes for a cup of coffee to cool from \( 60^\circ \) C to \( 50 ^\circ \) C in a room at temperature \( 20^\circ \) C, how long does it take to cool from \( 60^\circ \) C to \( 40 ^\circ \) C?
First, find \( \lambda \): \[ \small{ \begin{aligned} U(t) & = (u_{0}-u_{s})e^{-\lambda t}+u_{s} \\ U - u_s & = (u_{0}-u_{s})e^{-\lambda t} \\ e^{-\lambda t} & = \frac{U - u_s}{u_{0}-u_{s}} \\ -\lambda t & = \ln \left(\frac{U - u_s}{u_{0}-u_{s}} \right) \\ \lambda &= -\frac{1}{t} \ln \left(\frac{U - u_s}{u_{0}-u_{s}} \right) \\ \end{aligned}} \]
Recall that it takes 10 minutes for a cup of coffee to cool from \( 60^\circ \) C to \( 50 ^\circ \) C in a room at temperature \( 20^\circ \) C.
Thus we substitute \( U=50, u_0 = 60, u_s = 20, t = 10 \) into our equation and to find \( \lambda \):
\[ \small{ \lambda = \frac{1}{t} \ln \left(\frac{U - u_s}{u_0 - u_s} \right) = -\frac{1}{10} \ln \left(\frac{50 - 20}{60-20} \right) \cong 0.0288 } \]
-1/10*log(30/40)
[1] 0.02876821
Now that we know what \( \lambda \) is, we adapt above formula to solve for time \( T \) required for coffee to cool from \( 60^\circ \) C to \( 40 ^\circ \) C:
\[ \small{ \begin{aligned} T &= \frac{1}{\lambda} \ln \left(\frac{U - u_s}{u_0 - u_s} \right) \\ &= -\frac{1}{0.0288} \ln \left(\frac{40 - 20}{60-20} \right) \\ & \cong 24.1 \end{aligned}} \]
-1/0.0288*log(20/40)
[1] 24.06761
Ch10.1Examples(50)
\[ \frac{dU}{dt}=-\lambda(U-u_s)^{5/4} \]
Apply the law of natural cooling to obtain
\[ \frac{dU}{dt} = -\lambda (U-u_s)^{\frac{5}{4}}, \,\, \lambda =\frac{h_1S}{cm} \]
This differential equation is separable and can be solved using the same technique as before (Exercise 10.1).
For specifications as in Example 2, it takes 25.3 minutes to reach \( 40° \) C, which is slower than the 24 minutes in Example 2.
Ch10.1Examples(50)
\[ \frac{dU}{dt} = -\lambda (U-u_s), \,\, \lambda= \frac{hS}{cm} \]
\[ \frac{dU}{dt} = -\lambda (U-u_s)^{\frac{5}{4}}, \,\, \lambda =\frac{h_1S}{cm} \]