library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
method from
print.tbl_lazy
print.tbl_sql
-- Attaching packages --------------------------------------------------------------------------------------------------------------- tidyverse 1.3.1 --
v ggplot2 3.3.5 v purrr 0.3.4
v tibble 3.1.4 v dplyr 1.0.7
v tidyr 1.1.3 v stringr 1.4.0
v readr 2.0.1 v forcats 0.5.1
-- Conflicts ------------------------------------------------------------------------------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
table1
table2
table3
table4a
table4b
table5
table4a %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "population")
NA
table4b %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "population")
tidy4a <- table4a %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
tidy4b <- table4b %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "population")
left_join(tidy4a, tidy4b)
Joining, by = c("country", "year")
table2 %>%
pivot_wider(names_from = type, values_from = count)
table3 %>%
separate(rate, into = c("cases", "population"))
table5 %>%
unite(new, century, year)
table1 %>%
mutate(rate = cases / population * 10000)
table1 %>%
count(year, wt=cases)
library(ggplot2)
ggplot(table1, aes(year, cases)) +
geom_line(aes(group = country), colour = "grey50") +
geom_point(aes(colour = country))

LS0tDQp0aXRsZTogInRpZHlyIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpgYGANCg0KYGBge3J9DQp0YWJsZTENCmBgYA0KYGBge3J9DQp0YWJsZTINCmBgYA0KYGBge3J9DQp0YWJsZTMNCmBgYA0KYGBge3J9DQp0YWJsZTRhDQpgYGANCmBgYHtyfQ0KdGFibGU0Yg0KYGBgDQpgYGB7cn0NCnRhYmxlNQ0KYGBgDQoNCg0KYGBge3J9DQp0YWJsZTRhICU+JQ0KcGl2b3RfbG9uZ2VyKGMoYDE5OTlgLCBgMjAwMGApLCBuYW1lc190byA9ICJ5ZWFyIiwgdmFsdWVzX3RvID0gInBvcHVsYXRpb24iKQ0KDQpgYGANCg0KYGBge3J9DQp0YWJsZTRiICU+JSANCiAgcGl2b3RfbG9uZ2VyKGMoYDE5OTlgLCBgMjAwMGApLCBuYW1lc190byA9ICJ5ZWFyIiwgdmFsdWVzX3RvID0gInBvcHVsYXRpb24iKQ0KYGBgDQoNCmBgYHtyfQ0KdGlkeTRhIDwtIHRhYmxlNGEgJT4lIA0KICBwaXZvdF9sb25nZXIoYyhgMTk5OWAsIGAyMDAwYCksIG5hbWVzX3RvID0gInllYXIiLCB2YWx1ZXNfdG8gPSAiY2FzZXMiKQ0KdGlkeTRiIDwtIHRhYmxlNGIgJT4lIA0KICBwaXZvdF9sb25nZXIoYyhgMTk5OWAsIGAyMDAwYCksIG5hbWVzX3RvID0gInllYXIiLCB2YWx1ZXNfdG8gPSAicG9wdWxhdGlvbiIpDQpsZWZ0X2pvaW4odGlkeTRhLCB0aWR5NGIpDQpgYGANCmBgYHtyfQ0KdGFibGUyICU+JQ0KICAgIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSB0eXBlLCB2YWx1ZXNfZnJvbSA9IGNvdW50KQ0KYGBgDQoNCmBgYHtyfQ0KdGFibGUzICU+JSANCiAgc2VwYXJhdGUocmF0ZSwgaW50byA9IGMoImNhc2VzIiwgInBvcHVsYXRpb24iKSkNCmBgYA0KDQpgYGB7cn0NCnRhYmxlNSAlPiUgDQogIHVuaXRlKG5ldywgY2VudHVyeSwgeWVhcikNCmBgYA0KDQpgYGB7cn0NCnRhYmxlMSAlPiUNCm11dGF0ZShyYXRlID0gY2FzZXMgLyBwb3B1bGF0aW9uICogMTAwMDApDQpgYGANCg0KYGBge3J9DQp0YWJsZTEgJT4lIA0KICBjb3VudCh5ZWFyLCB3dD1jYXNlcykNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmdncGxvdCh0YWJsZTEsIGFlcyh5ZWFyLCBjYXNlcykpICsgDQogIGdlb21fbGluZShhZXMoZ3JvdXAgPSBjb3VudHJ5KSwgY29sb3VyID0gImdyZXk1MCIpICsgDQogIGdlb21fcG9pbnQoYWVzKGNvbG91ciA9IGNvdW50cnkpKQ0KYGBgDQoNCg==