R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com. Note: this analysis was performed using the open source software R and Rstudio. ## Objective Your explanation here ## Descriptive statistics Your explanation here

data <- read.csv("Avocado Hackathon 2018.csv")
head(data)
##       date average_price total_volume         type year            geography
## 1 1/1/2018          1.47       113514 conventional 2018               Albany
## 2 1/1/2018          1.46         3464      organic 2018               Albany
## 3 1/1/2018          0.95       649353 conventional 2018              Atlanta
## 4 1/1/2018          1.28        17218      organic 2018              Atlanta
## 5 1/1/2018          1.15       849488 conventional 2018 Baltimore/Washington
## 6 1/1/2018          1.53        40942      organic 2018 Baltimore/Washington
##   Mileage Total.sales.volume
## 1    2832          166865.58
## 2    2832            5057.44
## 3    2199          616885.35
## 4    2199           22039.04
## 5    2679          976911.20
## 6    2679           62641.26
install.packages('plyr')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.1'
## (as 'lib' is unspecified)
## also installing the dependency 'Rcpp'
library(plyr)
count(data, 'geography')
##               geography freq
## 1                Albany   98
## 2               Atlanta   98
## 3  Baltimore/Washington   98
## 4                 Boise   98
## 5                Boston   98
## 6     Buffalo/Rochester   98
## 7             Charlotte   98
## 8               Chicago   98
## 9     Cincinnati/Dayton   98
## 10             Columbus   98
## 11     Dallas/Ft. Worth   98
## 12               Denver   98
## 13              Detroit   98
## 14         Grand Rapids   98
## 15  Harrisburg/Scranton   98
## 16 Hartford/Springfield   98
## 17              Houston   98
## 18         Indianapolis   98
## 19         Jacksonville   98
## 20            Las Vegas   98
## 21          Los Angeles   98
## 22           Louisville   98
## 23 Miami/Ft. Lauderdale   98
## 24            Nashville   98
## 25   New Orleans/Mobile   98
## 26             New York   98
## 27              Orlando   98
## 28         Philadelphia   98
## 29       Phoenix/Tucson   98
## 30           Pittsburgh   98
## 31             Portland   98
## 32   Raleigh/Greensboro   98
## 33     Richmond/Norfolk   98
## 34           Sacramento   98
## 35            San Diego   98
## 36        San Francisco   98
## 37              Seattle   98
## 38              Spokane   98
## 39            St. Louis   98
## 40             Syracuse   98
## 41                Tampa   98
count(data, 'average_price')
##     average_price freq
## 1            0.50    1
## 2            0.51    1
## 3            0.53    1
## 4            0.54    1
## 5            0.56    3
## 6            0.57    1
## 7            0.58    2
## 8            0.59    3
## 9            0.61    2
## 10           0.62    1
## 11           0.64    3
## 12           0.66    3
## 13           0.67    6
## 14           0.68    4
## 15           0.69    3
## 16           0.71    7
## 17           0.72    6
## 18           0.73   11
## 19           0.74   10
## 20           0.75    7
## 21           0.76    8
## 22           0.77   10
## 23           0.78   10
## 24           0.79    7
## 25           0.80    7
## 26           0.81   11
## 27           0.82    4
## 28           0.83    8
## 29           0.84   13
## 30           0.85   11
## 31           0.86    6
## 32           0.87   15
## 33           0.88   15
## 34           0.89   14
## 35           0.90    6
## 36           0.91   15
## 37           0.92   22
## 38           0.93   18
## 39           0.94   16
## 40           0.95   25
## 41           0.96   30
## 42           0.97   24
## 43           0.98   29
## 44           0.99   38
## 45           1.00   28
## 46           1.01   37
## 47           1.02   26
## 48           1.03   36
## 49           1.04   40
## 50           1.05   30
## 51           1.06   29
## 52           1.07   32
## 53           1.08   37
## 54           1.09   50
## 55           1.10   41
## 56           1.11   29
## 57           1.12   41
## 58           1.13   44
## 59           1.14   55
## 60           1.15   54
## 61           1.16   73
## 62           1.17   50
## 63           1.18   46
## 64           1.19   51
## 65           1.20   55
## 66           1.21   44
## 67           1.22   45
## 68           1.23   53
## 69           1.24   47
## 70           1.25   57
## 71           1.26   44
## 72           1.27   58
## 73           1.28   54
## 74           1.29   54
## 75           1.30   45
## 76           1.31   49
## 77           1.32   59
## 78           1.33   33
## 79           1.34   50
## 80           1.35   53
## 81           1.36   59
## 82           1.37   48
## 83           1.38   62
## 84           1.39   48
## 85           1.40   47
## 86           1.41   56
## 87           1.42   53
## 88           1.43   56
## 89           1.44   43
## 90           1.45   51
## 91           1.46   44
## 92           1.47   36
## 93           1.48   41
## 94           1.49   30
## 95           1.50   41
## 96           1.51   35
## 97           1.52   36
## 98           1.53   43
## 99           1.54   30
## 100          1.55   42
## 101          1.56   40
## 102          1.57   37
## 103          1.58   23
## 104          1.59   37
## 105          1.60   37
## 106          1.61   24
## 107          1.62   29
## 108          1.63   31
## 109          1.64   39
## 110          1.65   37
## 111          1.66   37
## 112          1.67   29
## 113          1.68   24
## 114          1.69   31
## 115          1.70   24
## 116          1.71   17
## 117          1.72   21
## 118          1.73   20
## 119          1.74   19
## 120          1.75   20
## 121          1.76   21
## 122          1.77   19
## 123          1.78   19
## 124          1.79   19
## 125          1.80   20
## 126          1.81   16
## 127          1.82   16
## 128          1.83   22
## 129          1.84   14
## 130          1.85   17
## 131          1.86   12
## 132          1.87    8
## 133          1.88   13
## 134          1.89    5
## 135          1.90   10
## 136          1.91   11
## 137          1.92   16
## 138          1.93   10
## 139          1.94   11
## 140          1.95   13
## 141          1.96    5
## 142          1.97    5
## 143          1.98    4
## 144          1.99    6
## 145          2.00    5
## 146          2.01    5
## 147          2.02   11
## 148          2.03    6
## 149          2.04    9
## 150          2.05    8
## 151          2.06    6
## 152          2.07    8
## 153          2.08    7
## 154          2.09    7
## 155          2.10    3
## 156          2.11    7
## 157          2.12    1
## 158          2.13    4
## 159          2.14    6
## 160          2.15    5
## 161          2.16    8
## 162          2.17    1
## 163          2.18    4
## 164          2.19    2
## 165          2.20    3
## 166          2.21    4
## 167          2.22    3
## 168          2.23    2
## 169          2.24    4
## 170          2.25    6
## 171          2.26    3
## 172          2.27    3
## 173          2.28    1
## 174          2.30    3
## 175          2.31    2
## 176          2.32    1
## 177          2.33    1
## 178          2.35    1
## 179          2.39    1
## 180          2.40    1
## 181          2.41    1
## 182          2.43    1
## 183          2.48    1
## 184          2.49    1
## 185          2.50    1
## 186          2.52    1
## 187          2.56    1
## 188          2.60    1
## 189          2.66    1
## 190          2.71    1
mean(data$average_price)
## [1] 1.367302
median(data$average_price)
## [1] 1.34
cor(data$total_volume,data$average_price)
## [1] -0.4794885

Price elasticity

To calculate Price Elasticity of Demand we use the formula: PE = (ΔQ/ΔP) * (P/Q) # (Iacobacci, 2015, p.134-135). (ΔQ/ΔP) is determined by the coefficient in our regression analysis below. Here Beta represents the change in the dependent variable y with respect to x (i.e. Δy/Δx = (ΔQ/ΔP)). To determine (P/Q) we will use the average price and average sales volume (Salem, 2014).

plot(total_volume ~ average_price, data)
regr <- lm(total_volume ~ average_price, data)
abline(regr, col='red')

summary(regr)
## 
## Call:
## lm(formula = total_volume ~ average_price, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -741002 -264115 -109322  118520 4282049 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    1339942      30637   43.74   <2e-16 ***
## average_price  -755356      21815  -34.63   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 443600 on 4016 degrees of freedom
## Multiple R-squared:  0.2299, Adjusted R-squared:  0.2297 
## F-statistic:  1199 on 1 and 4016 DF,  p-value: < 2.2e-16
coefficients(regr)
##   (Intercept) average_price 
##       1339942       -755356
Beta <- regr$coefficients[["average_price"]]
P <- mean(data$average_price)
Q <- mean(data$total_volume)
elasticity <-Beta*P/Q
elasticity
## [1] -3.362613

Elasticity

Your conclusions here:

Ref: Salem, 2014. Price Elasticity with R. http://www.salemmarafi.com/code/price-elasticity-with-r/ 365datascience. https://365datascience.com/trending/price-elasticity/