Consumer Sentiment as general trends.
- UMCSENT: University of Michigan Consumer Sentiment. Index 1966:Q1=100,Not Seasonally Adjusted
senti <-
"UMCSENT" %>%
tq_get(get = "economic.data", from = "2015-01-01") %>%
rename(count = price)
## Registered S3 method overwritten by 'tune':
## method from
## required_pkgs.model_spec parsnip
senti %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "firebrick2",size=.8) +
labs(
x = "",
y = "",
title = "Consumer Sentiment Index per University of Michigan",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("Monthly from {min(senti$date)} through {max(senti$date)}")
) +
theme_economist()

- Personal Consumption Expenditures (PCE)
- Billions of Dollars, Not Seasonally Adjusted
indicator <-fredr_series_observations(series_id = "PCE",
observation_start = as.Date("2017-01-01"))
tail(indicator,n=24) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(1:3, T, color = "blue" )
date
|
series_id
|
value
|
realtime_start
|
realtime_end
|
2019-10-01
|
PCE
|
14608
|
2021-10-31
|
2021-10-31
|
2019-11-01
|
PCE
|
14668
|
2021-10-31
|
2021-10-31
|
2019-12-01
|
PCE
|
14686
|
2021-10-31
|
2021-10-31
|
2020-01-01
|
PCE
|
14770
|
2021-10-31
|
2021-10-31
|
2020-02-01
|
PCE
|
14785
|
2021-10-31
|
2021-10-31
|
2020-03-01
|
PCE
|
13762
|
2021-10-31
|
2021-10-31
|
2020-04-01
|
PCE
|
12022
|
2021-10-31
|
2021-10-31
|
2020-05-01
|
PCE
|
13058
|
2021-10-31
|
2021-10-31
|
2020-06-01
|
PCE
|
13889
|
2021-10-31
|
2021-10-31
|
2020-07-01
|
PCE
|
14129
|
2021-10-31
|
2021-10-31
|
2020-08-01
|
PCE
|
14270
|
2021-10-31
|
2021-10-31
|
2020-09-01
|
PCE
|
14482
|
2021-10-31
|
2021-10-31
|
2020-10-01
|
PCE
|
14546
|
2021-10-31
|
2021-10-31
|
2020-11-01
|
PCE
|
14467
|
2021-10-31
|
2021-10-31
|
2020-12-01
|
PCE
|
14390
|
2021-10-31
|
2021-10-31
|
2021-01-01
|
PCE
|
14858
|
2021-10-31
|
2021-10-31
|
2021-02-01
|
PCE
|
14700
|
2021-10-31
|
2021-10-31
|
2021-03-01
|
PCE
|
15459
|
2021-10-31
|
2021-10-31
|
2021-04-01
|
PCE
|
15619
|
2021-10-31
|
2021-10-31
|
2021-05-01
|
PCE
|
15624
|
2021-10-31
|
2021-10-31
|
2021-06-01
|
PCE
|
15802
|
2021-10-31
|
2021-10-31
|
2021-07-01
|
PCE
|
15812
|
2021-10-31
|
2021-10-31
|
2021-08-01
|
PCE
|
15967
|
2021-10-31
|
2021-10-31
|
2021-09-01
|
PCE
|
16060
|
2021-10-31
|
2021-10-31
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(color = "red4",size=.8) +
labs(
y = "Billions of Dollars",
x = "Monthly",
title = "Personal Consumption Expenditures (PCE)",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")) +
theme_economist()

Real Personal Consumption Expenditures: Services (PCESC96)
indicator <-fredr_series_observations(series_id = "PCESC96",
observation_start = as.Date("2017-01-01"))
tail(indicator,n=24) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(3, T, color = "red" )
date
|
series_id
|
value
|
realtime_start
|
realtime_end
|
2019-10-01
|
PCESC96
|
8492
|
2021-10-31
|
2021-10-31
|
2019-11-01
|
PCESC96
|
8518
|
2021-10-31
|
2021-10-31
|
2019-12-01
|
PCESC96
|
8508
|
2021-10-31
|
2021-10-31
|
2020-01-01
|
PCESC96
|
8544
|
2021-10-31
|
2021-10-31
|
2020-02-01
|
PCESC96
|
8550
|
2021-10-31
|
2021-10-31
|
2020-03-01
|
PCESC96
|
7759
|
2021-10-31
|
2021-10-31
|
2020-04-01
|
PCESC96
|
6814
|
2021-10-31
|
2021-10-31
|
2020-05-01
|
PCESC96
|
7206
|
2021-10-31
|
2021-10-31
|
2020-06-01
|
PCESC96
|
7632
|
2021-10-31
|
2021-10-31
|
2020-07-01
|
PCESC96
|
7733
|
2021-10-31
|
2021-10-31
|
2020-08-01
|
PCESC96
|
7817
|
2021-10-31
|
2021-10-31
|
2020-09-01
|
PCESC96
|
7895
|
2021-10-31
|
2021-10-31
|
2020-10-01
|
PCESC96
|
7935
|
2021-10-31
|
2021-10-31
|
2020-11-01
|
PCESC96
|
7917
|
2021-10-31
|
2021-10-31
|
2020-12-01
|
PCESC96
|
7899
|
2021-10-31
|
2021-10-31
|
2021-01-01
|
PCESC96
|
7962
|
2021-10-31
|
2021-10-31
|
2021-02-01
|
PCESC96
|
7939
|
2021-10-31
|
2021-10-31
|
2021-03-01
|
PCESC96
|
8080
|
2021-10-31
|
2021-10-31
|
2021-04-01
|
PCESC96
|
8157
|
2021-10-31
|
2021-10-31
|
2021-05-01
|
PCESC96
|
8214
|
2021-10-31
|
2021-10-31
|
2021-06-01
|
PCESC96
|
8272
|
2021-10-31
|
2021-10-31
|
2021-07-01
|
PCESC96
|
8336
|
2021-10-31
|
2021-10-31
|
2021-08-01
|
PCESC96
|
8373
|
2021-10-31
|
2021-10-31
|
2021-09-01
|
PCESC96
|
8404
|
2021-10-31
|
2021-10-31
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(color = "red4",size=.8) +
labs(
y = "Billions of Dollars",
x = "Monthly",
title = "Real Personal Consumption Expenditures: Services (PCESC96)",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")) +
theme_economist()

Real personal consumption expenditures: Food (DFXARX1M020SBEA)
indicator <-fredr_series_observations(series_id = "DFXARX1M020SBEA",
observation_start = as.Date("2017-01-01"))
tail(indicator,n=24) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(3, T, color = "red" )
date
|
series_id
|
value
|
realtime_start
|
realtime_end
|
2019-10-01
|
DFXARX1M020SBEA
|
993
|
2021-10-31
|
2021-10-31
|
2019-11-01
|
DFXARX1M020SBEA
|
994
|
2021-10-31
|
2021-10-31
|
2019-12-01
|
DFXARX1M020SBEA
|
998
|
2021-10-31
|
2021-10-31
|
2020-01-01
|
DFXARX1M020SBEA
|
995
|
2021-10-31
|
2021-10-31
|
2020-02-01
|
DFXARX1M020SBEA
|
992
|
2021-10-31
|
2021-10-31
|
2020-03-01
|
DFXARX1M020SBEA
|
1213
|
2021-10-31
|
2021-10-31
|
2020-04-01
|
DFXARX1M020SBEA
|
1042
|
2021-10-31
|
2021-10-31
|
2020-05-01
|
DFXARX1M020SBEA
|
1067
|
2021-10-31
|
2021-10-31
|
2020-06-01
|
DFXARX1M020SBEA
|
1060
|
2021-10-31
|
2021-10-31
|
2020-07-01
|
DFXARX1M020SBEA
|
1074
|
2021-10-31
|
2021-10-31
|
2020-08-01
|
DFXARX1M020SBEA
|
1059
|
2021-10-31
|
2021-10-31
|
2020-09-01
|
DFXARX1M020SBEA
|
1068
|
2021-10-31
|
2021-10-31
|
2020-10-01
|
DFXARX1M020SBEA
|
1060
|
2021-10-31
|
2021-10-31
|
2020-11-01
|
DFXARX1M020SBEA
|
1067
|
2021-10-31
|
2021-10-31
|
2020-12-01
|
DFXARX1M020SBEA
|
1047
|
2021-10-31
|
2021-10-31
|
2021-01-01
|
DFXARX1M020SBEA
|
1104
|
2021-10-31
|
2021-10-31
|
2021-02-01
|
DFXARX1M020SBEA
|
1078
|
2021-10-31
|
2021-10-31
|
2021-03-01
|
DFXARX1M020SBEA
|
1127
|
2021-10-31
|
2021-10-31
|
2021-04-01
|
DFXARX1M020SBEA
|
1117
|
2021-10-31
|
2021-10-31
|
2021-05-01
|
DFXARX1M020SBEA
|
1106
|
2021-10-31
|
2021-10-31
|
2021-06-01
|
DFXARX1M020SBEA
|
1113
|
2021-10-31
|
2021-10-31
|
2021-07-01
|
DFXARX1M020SBEA
|
1095
|
2021-10-31
|
2021-10-31
|
2021-08-01
|
DFXARX1M020SBEA
|
1121
|
2021-10-31
|
2021-10-31
|
2021-09-01
|
DFXARX1M020SBEA
|
1120
|
2021-10-31
|
2021-10-31
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(color = "red4",size=.8) +
labs(
y = "Billions of Chained 2012 Dollars",
x = "Monthly",
title = "Real personal consumption expenditures: Food (DFXARX1M020SBEA)",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")) +
theme_economist()

Real Personal Consumption Expenditures: Durable Goods (PCEDGC96)
indicator <-fredr_series_observations(series_id = "PCEDGC96",
observation_start = as.Date("2017-01-01"))
tail(indicator[,c(1,3)],n=24) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(1:2, T, color = "blue" )
date
|
value
|
2019-10-01
|
1776
|
2019-11-01
|
1802
|
2019-12-01
|
1806
|
2020-01-01
|
1816
|
2020-02-01
|
1811
|
2020-03-01
|
1588
|
2020-04-01
|
1420
|
2020-05-01
|
1810
|
2020-06-01
|
1965
|
2020-07-01
|
2016
|
2020-08-01
|
2026
|
2020-09-01
|
2050
|
2020-10-01
|
2075
|
2020-11-01
|
2044
|
2020-12-01
|
1990
|
2021-01-01
|
2210
|
2021-02-01
|
2117
|
2021-03-01
|
2434
|
2021-04-01
|
2421
|
2021-05-01
|
2279
|
2021-06-01
|
2248
|
2021-07-01
|
2158
|
2021-08-01
|
2147
|
2021-09-01
|
2137
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(color = "red4",size=.8) +
labs(
y = "Billions of Chained 2012 Dollars",
x = "Monthly",
title = "Real Personal Consumption Expenditures: Durable Goods (PCEDGC96)",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")) +
theme_economist()

Personal current transfer receipts: Government social benefits to persons (A063RC1)
indicator <-fredr_series_observations(series_id = "A063RC1",
observation_start = as.Date("2017-01-01"))
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
date
|
series_id
|
value
|
realtime_start
|
realtime_end
|
2021-04-01
|
A063RC1
|
4656
|
2021-10-31
|
2021-10-31
|
2021-05-01
|
A063RC1
|
4109
|
2021-10-31
|
2021-10-31
|
2021-06-01
|
A063RC1
|
4009
|
2021-10-31
|
2021-10-31
|
2021-07-01
|
A063RC1
|
4125
|
2021-10-31
|
2021-10-31
|
2021-08-01
|
A063RC1
|
4144
|
2021-10-31
|
2021-10-31
|
2021-09-01
|
A063RC1
|
3847
|
2021-10-31
|
2021-10-31
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(color = "red4",size=.8) +
labs(
y = "Billions of Dollars",
x = "Monthly",
title = "Government social benefits to persons ",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")) +
theme_economist()

Employment during COVID19 pandemic
- All Employees, Total Nonfarm (PAYEMS)
- excluding proprietors, private household employees, unpaid volunteers, farm employees, self-employed.
- This measure accounts for approximately 80 percent of the workers who contribute to Gross Domestic Product.
labor <-
"PAYEMS" %>%
tq_get(get = "economic.data", from = "2015-01-01") %>%
rename(count = price)
labor %>%
ggplot(aes(x = date, y = count)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(color = "firebrick4",size=.8) +
labs(
x = "",
y = "",
title = "Total Labor Force",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(labor$date)} through {max(labor$date)}")
) +
theme_economist()

Total Unemployed (U6RATE)
- Total Unemployed, Plus All Persons Marginally Attached to the Labor Force, Plus Total Employed Part Time for Economic Reasons, as a Percent of the Civilian Labor Force Plus All Persons Marginally Attached to the Labor Force (U6RATE)
u6 <-
"U6RATE" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(count = price)
u6 %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "blue",size=1.2) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
labs(
x = "",
y = "Percent",
title = "Total Unemployed Rate (U6Rate)",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(u6$date)} through {max(u6$date)}")
) +
theme_economist()

Personal consumption expenditures: Food (DFXARC1M027SBEA)
indicator <-fredr_series_observations(series_id = "DFXARC1M027SBEA",
observation_start = as.Date("2017-01-01"))
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
date
|
series_id
|
value
|
realtime_start
|
realtime_end
|
2021-04-01
|
DFXARC1M027SBEA
|
1223
|
2021-10-31
|
2021-10-31
|
2021-05-01
|
DFXARC1M027SBEA
|
1215
|
2021-10-31
|
2021-10-31
|
2021-06-01
|
DFXARC1M027SBEA
|
1232
|
2021-10-31
|
2021-10-31
|
2021-07-01
|
DFXARC1M027SBEA
|
1220
|
2021-10-31
|
2021-10-31
|
2021-08-01
|
DFXARC1M027SBEA
|
1254
|
2021-10-31
|
2021-10-31
|
2021-09-01
|
DFXARC1M027SBEA
|
1265
|
2021-10-31
|
2021-10-31
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(color = "red4",size=.8) +
labs(
y = "Billions of Dollars",
x = "Monthly",
title = "Personal consumption expenditures: Food",
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")) +
theme_economist()

Consumer Price Index for All Urban Consumers: Meats, Poultry, Fish, and Eggs in U.S. City Average (CUSR0000SAF112)
mpfe <-
"CUSR0000SAF112" %>%
tq_get(get = "economic.data", from = "2019-01-01")
mpfe %>%
ggplot(aes(x = date, y = price)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-02-2021'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(color = "gold4",size=.8) +
labs(
x = "",
y = "Index 1982-1984=100",
caption = "Index 1982-1984=100,Seasonally Adjusted\n
Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
title = "CPI : Meats, Poultry, Fish, and Eggs (CUSR0000SAF112)",
subtitle = str_glue("From {min(mpfe$date)} through {max(mpfe$date)}")
) +
theme_economist()

- Consumer Price Index for All Urban Consumers: All Items in U.S. City Average (CPIAUCSL)
- Consumer Price Index for All Urban Consumers: Food at Home in U.S. City Average (CUSR0000SAF11)
- Consumer Price Index for All Urban Consumers: Alcoholic Beverages at Home in U.S. City Average (CUSR0000SEFW)
cpi <-
"CPIAUCSL" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(count = price)
cpi %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "goldenrod4",size=.8) +
labs(
x = "",
y = "", caption = "Index 1982-1984=100,Seasonally Adjusted",
title = "Consumer Price Index: All Items in U.S. City Average (CPIAUCSL)",
subtitle = str_glue("Monthly from {min(cpi$date)} through {max(cpi$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))

Consumer Price Index for All Urban Consumers: Food at Home in U.S. City Average (CUSR0000SAF11)
food <-
"CUSR0000SAF11" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(count = price)
food %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "goldenrod4",size=.8) +
labs(
x = "",
y = "", caption = "Index 1982-1984=100,Seasonally Adjusted",
title = "CPI: Food at Home in U.S. City Average (CUSR0000SAF11)",
subtitle = str_glue("Monthly from {min(food$date)} through {max(food$date)}")
) +
theme_economist()+
theme(plot.title = element_text(color="blue", size=15, face="bold"))

CPI Average Price Data, U.S. city average (AP) (Select from list below) Bacon, sliced, per lb. - APU0000704111 Bananas, per lb. - APU0000711211 Bread, white, pan, per lb. - APU0000702111 Chicken, fresh, whole, per lb. - APU0000706111 Coffee, 100%, ground roast, all sizes, per lb. - APU0000717311 Eggs, grade A, large, per doz. - APU0000708111 Flour, white, all purpose, per lb. - APU0000701111 Milk, fresh, whole, fortified, per gal. - APU0000709112 Oranges, navel, per lb. - APU0000711311 Rice, white, long grain, uncooked, per lb. - APU0000701312 Tomatoes, field grown, per lb. - APU0000712311 Electricity per KWH - APU000072610 Fuel oil #2 per gallon - APU000072511 Gasoline, all types, per gallon - APU00007471A Gasoline, unleaded regular, per gallon - APU000074714
library(blscrapeR)
library(tidyverse)
df <- bls_api(c("APU0000704111", "APU0000706111","APU0000708111","APU0000709112"),
startyear = 2019, endyear = 2020) %>%
spread(seriesID, value) %>% dateCast() %>%
rename(chicken=APU0000706111,egg=APU0000708111,beacon=APU0000704111,milk=APU0000709112)
## REQUEST_SUCCEEDED
ggplot(data = df, aes(x = date)) +
geom_line(aes(y = chicken, color = "chicken"),size=.8) +
geom_line(aes(y = egg, color = "egg"),size=.8) +
geom_line(aes(y = beacon, color = "beacon"),size=.8) +
geom_line(aes(y = milk, color = "milk"),size=.8) +
labs(title = "Food Prices During COVID19 Pandemic", y="Price", x="Date") +
theme_economist()+
theme(legend.position="top", plot.title = element_text(hjust = 0.5))
