Algoritma & Struktur Data
Tugas Algoritma dan Struktur Data pertemuan ke-10
| Kontak | : \(\downarrow\) |
| dsciencelabs@outlook.com | |
| https://www.instagram.com/dsciencelabs/ | |
| RPubs | https://rpubs.com/dsciencelabs/ |
Impor/ekspor CSV
Directory
print (getwd())## [1] "C:/Users/HP/OneDrive/Documents/tugas algo 5"
getwd()## [1] "C:/Users/HP/OneDrive/Documents/tugas algo 5"
setwd(getwd())Impor file CSV
data1 <- read.csv("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input1.csv", sep = ";")
data2 <- read.csv("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input2.csv",sep = ",")
data1data2ekspor data dalam bentuk Output
write.csv(data1,"C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output1.csv", row.names = FALSE)
write.csv(data2,"C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output2.csv", row.names = FALSE)Impor/ekspor Excel
Directory
# install.packages(c("readxl","writexl")) # install packages readxl and writexl
pacman::p_load(readxl, writexl) # install pacmanImpor data Excel
data3 <- read_excel("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input3.xlsx") # impor data xlsx
data4 <- read_excel("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input4.xlsx", sheet=1) # impor data xlsx
data3data4Ekspor data dalam bentuk output
write_xlsx(data3,"C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output3.xlsx")
write_xlsx(data4,"C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output4.xlsx")Impor/ekspor TXT and RDS
Directory
getwd()## [1] "C:/Users/HP/OneDrive/Documents/tugas algo 5"
setwd(getwd()) impor
data5 <- read.table("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input5.txt")
data6 <- source("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input6.Rdmpd")
data7 <- readRDS("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input7.rds")
data8 <- readRDS("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input8.ascii")
# memanggil data 5-8
data5data6## $value
## id name salary start_date dept
## 1 1 Julian 623,3 1/1/2022 DS
## 2 2 Vanessa 515,2 9/23/2022 DS
## 3 3 Jeffry 611 11/15/2022 BA
## 4 4 Angel 729 5/11/2022 DA
## 5 5 Nikki 843,25 3/27/2022 DS
## 6 6 Ardifo 578 5/21/2022 Actuaries
## 7 7 Irene 722,5 7/30/2022 Actuaries
## 8 8 Kefas 632,8 6/17/2022 CA
## 9 9 Sherly 632,8 7/30/2022 DE
## 10 10 Bakti <NA> 9/3/2018 Lecturer
##
## $visible
## [1] FALSE
data7data8ekspor
write.table(data5,"C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output5.txt")
dump("data6", "C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output6.Rdmpd")
saveRDS(data7, "C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output7.rds")
saveRDS(data8, "C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output8.ascii", ascii = TRUE)ekspor/impor XML
Directory
# install.packages("XML")
library("XML")
library("methods")impor XML
data9 <- xmlParse(file= "C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input9.xml")
print(data9)## <?xml version="1.0"?>
## <RECORDS>
## <EMPLOYEE>
## <id>1</id>
## <name>Julian</name>
## <salary>623.3</salary>
## <start_date>1/1/2022</start_date>
## <dept>DS</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>2</id>
## <name>Vanessa</name>
## <salary>515.2</salary>
## <start_date>9/23/2022</start_date>
## <dept>DS</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>3</id>
## <name>Jeffry</name>
## <salary>611</salary>
## <start_date>11/15/2022</start_date>
## <dept>BA</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>4</id>
## <name>Angel</name>
## <salary>729</salary>
## <start_date>5/11/2022</start_date>
## <dept>BA</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>5</id>
## <name>Nikki</name>
## <salary>843.25</salary>
## <start_date>3/27/2022</start_date>
## <dept>DS</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>6</id>
## <name>Ardifo</name>
## <salary>578</salary>
## <start_date>5/21/2022</start_date>
## <dept>Actuaries</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>7</id>
## <name>Irene</name>
## <salary>722.5</salary>
## <start_date>7/30/2022</start_date>
## <dept>Actuaries</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>8</id>
## <name>Kefas</name>
## <salary>632.8</salary>
## <start_date>6/17/2022</start_date>
## <dept>CA</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>9</id>
## <name>Sherly</name>
## <salary>632.8</salary>
## <start_date>7/30/2022</start_date>
## <dept>DE</dept>
## </EMPLOYEE>
## <EMPLOYEE>
## <id>10</id>
## <name>Bakti</name>
## <salary>NA</salary>
## <start_date>9/03/2018</start_date>
## <dept>Lecturer</dept>
## </EMPLOYEE>
## </RECORDS>
##
mengubah XML menjadi dataframe
Mengubahkan XML menjadi dataframe memudahkan dalam melihat secara rapi dan terinci.
data9_df <- xmlToDataFrame(data9)
data9_dfimpor XML
write.csv(data9_df, "C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output9.xml")Impor/ ekspor JSON
Directory
# install.packages("jsonlite")
library(jsonlite)Impor JSON
data10 <- fromJSON("C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\input\\input10.json")
data10## $id
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
##
## $name
## [1] "Julian" "Vanessa" "Jeffry" "Angel" "Nikki" "Ardifo" "Irene"
## [8] "Kefas" "Sherly" "Bakti"
##
## $salary
## [1] "623.3" "515.2" "611" "729" "843.25" "578" "722.5" "632.8"
## [9] "632.8" "NA"
##
## $start_date
## [1] "1/1/2022" "9/23/2022" "11/15/2022" "5/11/2022" "3/27/2022"
## [6] "5/21/2022" "7/30/2022" "6/17/2022" "7/30/2022" "9/3/2018"
##
## $dept
## [1] "DS" "DS" "BA" "DA" "DS" "Actuaries"
## [7] "Actuaries" "CA" "DE" "Lecturer"
ubah JSON menjadi dataframe ‘as.data.frame()’
data10_json_df <- as.data.frame(data10)
data10_json_dfEkspor JSON
write_json(data10_json_df, "C:\\Users\\HP\\OneDrive\\Documents\\tugas algo 5\\output\\output10.json")