Creating the environment

library(tidyverse)
library(tosr)
library(bibliometrix)
library(lubridate)
library(igraph)
library(tidytext)
library(wordcloud)
library(rebus)
library(ggrepel) # improve donut visualization

This template is based in this paper

https://revistas.ucm.es/index.php/REVE/article/view/75566/4564456557467

Data getting

wos_scopus_tos <- 
  tosr::tosr_load("marketing_digital_scopus.bib", 
                  "marketing_digital_wos.txt")
[1] 2

Converting your scopus collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!


Converting your wos collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!


 141 duplicated documents have been removed
tree_of_science <- 
  tosr::tosR("marketing_digital_scopus.bib", 
                  "marketing_digital_wos.txt")
[1] 2

Converting your scopus collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!


Converting your wos collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!


 141 duplicated documents have been removed
Computing TOS SAP
Computing TOS subfields
wos <- 
  bibliometrix::convert2df("marketing_digital_wos.txt") # create dataframe from wos file

Converting your wos collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!
scopus <- 
  bibliometrix::convert2df("marketing_digital_scopus.bib", # Create dataframe from scopus file
                           dbsource = "scopus", 
                           format = "bibtex")

Converting your scopus collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!

Table 1. Search Criteria

table_1 <- 
  tibble(wos = length(wos$SR), # Create a dataframe with the values.
         scopus = length(scopus$SR), 
         total = length(wos_scopus_tos$df$SR))
table_1

Figure 1. Languages

main_languages <- 
  wos_scopus_tos$df |> 
  select(LA) |> 
  separate_rows(LA, sep = "; ") |> 
  count(LA, sort = TRUE) |> 
  slice(1:5)

other_languages <- 
  wos_scopus_tos$df |> 
  separate_rows(LA, sep = "; ") |> 
  select(LA) |> 
  count(LA, sort = TRUE) |> 
  slice(6:n) |> 
  summarise(n = sum(n)) |> 
  mutate(LA = "OTHERS") |> 
  select(LA, n)
Warning in 6:n :
  numerical expression has 8 elements: only the first used
languages <- 
  main_languages |> 
  bind_rows(other_languages) |> 
  mutate(percentage = n / sum(n),
         percentage = round(percentage, 
                            digits = 2) ) |> 
  rename(language = LA) |>
  select(language, percentage, count = n)

languages
df <- languages |> 
  rename(value = percentage, group = language) |>
  mutate(value = value * 100) |> 
  select(value, group)

df2 <- df %>% 
  mutate(csum = rev(cumsum(rev(value))), 
         pos = value/2 + lead(csum, 1),
         pos = if_else(is.na(pos), value/2, pos))

ggplot(df, aes(x = 2 , y = value, fill = fct_inorder(group))) +
  geom_col(width = 1, color = 1) +
  coord_polar(theta = "y") +
  geom_label_repel(data = df2,
                   aes(y = pos, label = paste0(value, "%")),
                   size = 4.5, nudge_x = 1, show.legend = FALSE) +
   theme(panel.background = element_blank(),
        axis.line = element_blank(), 
        axis.text = element_blank(),
        axis.ticks = element_blank(),
        axis.title = element_blank(),
        plot.title = element_text(hjust = 0.5, size = 18)) +
  labs(title = "Languages") +
  guides(fill = guide_legend(title = "")) +
  theme_void() +
  xlim(0.5, 2.5)

Figure 2. Scientific Production

wos_anual_production <- 
  wos |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |> 
  mutate(ref_type = "wos")

scopus_anual_production  <- 
  scopus |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |>
  mutate(ref_type = "scopus")

total_anual_production <- 
  wos_scopus_tos$df |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |>
  mutate(ref_type = "total")

wos_scopus_total_annual_production <- 
  wos_anual_production |> 
  bind_rows(scopus_anual_production,
            total_anual_production) 

figure_2_data <- 
  wos_scopus_total_annual_production |> 
  mutate(PY = replace_na(PY, replace = 0)) |> 
  pivot_wider(names_from = ref_type, 
              values_from = n) |> 
  arrange(desc(PY))

figure_2_data 
wos_scopus_total_annual_production |> 
  ggplot(aes(x = PY, y = n, color = ref_type)) +
  geom_line() +
  labs(title = "Annual Scientific Production", 
       x = "years",
       y = "papers") +
  theme(plot.title = element_text(hjust = 0.5)) 

Table 2. Country production

data_biblio_wos <- biblioAnalysis(wos)

wos_country <- 
  data_biblio_wos$Countries |> 
  data.frame() |> 
  mutate(database = "wos") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

data_biblio_scopus <- biblioAnalysis(scopus)

scopus_country <- 
  data_biblio_scopus$Countries |> 
  data.frame() |> 
  mutate(database = "scopus") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

data_biblio_total <- biblioAnalysis(wos_scopus_tos$df)
  
total_country <- 
  data_biblio_total$Countries |> 
  data.frame() |> 
  mutate(database = "total") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

wos_scopus_total_country <- 
  wos_country |> 
  bind_rows(scopus_country, 
            total_country) |> 
  mutate(country = as.character(country)) |> 
  pivot_wider(names_from = database, 
              values_from = papers) |> 
  arrange(desc(total)) |> 
  slice(1:10) |> 
  mutate(percentage = total / (table_1 |> pull(total)),
         percentage = round(percentage, digits = 2))

wos_scopus_total_country

Table 3. Author production

wos_authors <- 
  data_biblio_wos$Authors |> 
  data.frame() |> 
  rename(authors_wos = AU, papers_wos = Freq) |> 
  arrange(desc(papers_wos)) |> 
  slice(1:10) |> 
  mutate(database_wos = "wos")


scopus_authors <- 
  data_biblio_scopus$Authors |> 
  data.frame() |> 
  rename(authors_scopus = AU, papers_scopus = Freq) |> 
  arrange(desc(papers_scopus)) |> 
  slice(1:10) |> 
  mutate(database_scopus = "scopus")

total_authors <- 
  data_biblio_total$Authors |> 
  data.frame() |> 
  rename(authors_total = AU, 
         papers_total = Freq) |> 
  arrange(desc(papers_total)) |> 
  slice(1:10) |> 
  mutate(database_total = "total")

wos_scopus_authors <- 
  wos_authors |> 
  bind_cols(scopus_authors,
            total_authors)

wos_scopus_authors

Table 4. Journal production

wos_journal <- 
  wos |> 
  filter(str_detect(DT, "ARTICLE")) |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "wos")

scopus_journal <- 
  scopus |> 
  filter(str_detect(DT, "ARTICLE")) |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "scopus")

total_journal <- 
  wos_scopus_tos$df |> 
  filter(str_detect(DT, "ARTICLE")) |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "total")

wos_scopus_total_journal <- 
  wos_journal |> 
  bind_rows(scopus_journal, 
            total_journal) |> 
  pivot_wider(names_from = database, 
              values_from = publications) |> 
  arrange(desc(total)) |> 
  slice(1:10) |> 
  mutate(percentage = total / table_1 |> pull(total),
         percentage = round(percentage, digits = 2))


wos_scopus_total_journal

Figure 3. Co-citation network

Author co-citation network

wos_scopus_author_metatag <- 
  metaTagExtraction(wos_scopus_tos$df, Field = "CR_AU")

wos_scopus_author_co_citation_matrix <- 
  biblioNetwork(M = wos_scopus_author_metatag, 
                analysis = "co-citation", 
                network = "authors")

plot_net_author_co_citation <- 
  networkPlot(wos_scopus_author_co_citation_matrix, 
              weighted=T, 
              n = 30, 
              Title = "Author Co-citation Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

Author Collaboration network

wos_scopus_author_collab_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "collaboration", 
                network = "authors")

plot_author_collab <- 
  networkPlot(NetMatrix = wos_scopus_author_collab_matrix, 
              weighted=T, n = 30, 
              Title = "Author Collaboration Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

Country Collaboration Network

wos_scopus_country_collab_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "collaboration", 
                network = "countries")

plot_country_collab <- 
  networkPlot(wos_scopus_country_collab_matrix, 
              weighted=T, n = 30, 
              Title = "Country Collaboration Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

Keyword co-occurrence network

wos_scopus_keyword_co_occurrence_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "co-occurrences", 
                network = "keywords", 
                sep = ";")

plot_net_co_occurrence <- 
  networkPlot(wos_scopus_keyword_co_occurrence_matrix, 
              weighted=T, n = 30, 
              Title = "Keyword Co-occurrence Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)

Figure 4. Tree of Science

Tree of Science

tree_of_science

Clustering analysis

Finding the clusters

nodes <-  
  tibble(name = V(wos_scopus_tos$graph)$name) |> 
  left_join(wos_scopus_tos$nodes, 
            by = c("name" = "ID_TOS"))

wos_scopus_citation_network_1 <- 
  wos_scopus_tos$graph |> 
  igraph::set.vertex.attribute(name = "full_name", 
                               index = V(wos_scopus_tos$graph)$name, 
                               value = nodes$CITE)

nodes_1 <- 
  tibble(name = V(wos_scopus_citation_network_1)$name,
         cluster = V(wos_scopus_citation_network_1)$subfield,
         full_name = V(wos_scopus_citation_network_1)$full_name)
  
nodes_2 <- 
  nodes_1 |> 
  count(cluster, sort = TRUE) |> 
  mutate(cluster_1 = row_number()) |> 
  select(cluster, cluster_1)

nodes_3 <- 
  nodes_1 |> 
  left_join(nodes_2) |> 
  rename(subfield = cluster_1) |> 
  select(name, full_name, subfield)
Joining, by = "cluster"
edge_list <- 
  get.edgelist(wos_scopus_citation_network_1) |> 
  data.frame() |> 
  rename(Source = X1, Target = X2)

wos_scopus_citation_network <- 
  graph.data.frame(d = edge_list, 
                   directed = FALSE, 
                   vertices = nodes_3)

wos_scopus_citation_network |> 
  summary()
IGRAPH e5cf517 UN-- 1716 3684 -- 
+ attr: name (v/c), full_name (v/c), subfield (v/n)

Choosing clusters

clusters <- 
  tibble(cluster = V(wos_scopus_citation_network)$subfield) |> 
  count(cluster, sort = TRUE)

clusters |> 
  ggplot(aes(x = reorder(cluster, n), y = n)) +
  geom_point() 

Removing not chosen clusters

wos_scopus_citation_network_clusters <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1 & # filter clusters 
                          V(wos_scopus_citation_network)$subfield != 2 &
                          V(wos_scopus_citation_network)$subfield != 3  &
                          V(wos_scopus_citation_network)$subfield != 4))

wos_scopus_citation_network_clusters |> 
  summary()
IGRAPH 37f6a8b UN-- 525 996 -- 
+ attr: name (v/c), full_name (v/c), subfield (v/n)

Cluster 1

pal <- brewer.pal(8,"Dark2")

nodes_full_data <- 
  tibble(name = V(wos_scopus_citation_network)$name,
         cluster = V(wos_scopus_citation_network)$subfield,
         full_name = V(wos_scopus_citation_network)$full_name)

cluster_1 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1))

cluster_1_page_rank <- 
  cluster_1 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_1)$vector)

cluster_1_df <- 
  tibble(name = V(cluster_1_page_rank)$name,
         full_name = V(cluster_1_page_rank)$full_name,
         page_rank = V(cluster_1_page_rank)$page_rank,
         cluster = V(cluster_1_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 1) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> # Tokenization
  anti_join(stop_words) |>  # Removing stop words
   filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"),  # Words removed
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "digital"),
         word == str_remove(word, pattern = "marketing")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"

Cluster 2

cluster_2 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 2))

cluster_2_page_rank <- 
  cluster_2 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_2)$vector)

cluster_2_df <- 
  tibble(name = V(cluster_2_page_rank)$name,
         full_name = V(cluster_2_page_rank)$full_name,
         page_rank = V(cluster_2_page_rank)$page_rank,
         cluster = V(cluster_2_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 2) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |>
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"), 
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "journal"),
         word == str_remove(word, pattern = "digital"),
         word == str_remove(word, pattern = "marketing")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  management could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  computer could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  environment could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  intelligence could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  creation could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  effectiveness could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  empirical could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  engine could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  information could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  insights could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  integrating could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  journey could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  proceedings could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  product could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
  technology could not be fit on page. It will not be plotted.

Cluster 3


cluster_3 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 3))

cluster_3_page_rank <- 
  cluster_3 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_3)$vector)

cluster_3_df <- 
  tibble(name = V(cluster_3_page_rank)$name,
         full_name = V(cluster_3_page_rank)$full_name,
         page_rank = V(cluster_3_page_rank)$page_rank,
         cluster = V(cluster_3_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 3) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |>
   filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data 
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"), 
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "digital"),
         word == str_remove(word, pattern = "marketing")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"

Cluster 4


cluster_4 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 4))

cluster_4_page_rank <- 
  cluster_4 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_4)$vector)

cluster_4_df <- 
  tibble(name = V(cluster_4_page_rank)$name,
         full_name = V(cluster_4_page_rank)$full_name,
         page_rank = V(cluster_4_page_rank)$page_rank,
         cluster = V(cluster_4_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 4) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |> 
   filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "citation"),
         word == str_remove(word, pattern = "research"), 
         word == str_remove(word, pattern = "education"), 
         word == str_remove(word, pattern = "de"),
         word == str_remove(word, pattern = "digital"),
         word == str_remove(word, pattern = "marketing")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"

Exporting files


write_csv(table_1, "table_1.csv") # Exporting table 1
write_csv(wos_scopus_total_country, "table_2_.csv")  # Exporting table 2
write_csv(wos_scopus_authors, "table_3.csv") # Exporting table 3
write_csv(wos_scopus_total_journal, "table_4.csv") # Exporting table 4


write_csv(languages, "figure_1.csv") # Exporting data figure 1 
write_csv(figure_2_data, "figure_2.csv") # Exporting data figure 2

write.graph(wos_scopus_citation_network, "citation_network_full.graphml", "graphml") # Exporting graph
write.graph(wos_scopus_citation_network_clusters, 
            "wos_scopus_citation_network_clusters.graphml", 
            "graphml")

write.csv(tree_of_science, "tree_of_science.csv") # Exporting Tree of Science

write.csv(cluster_1_df, "cluster_1.csv") # Exporting cluster 1
write.csv(cluster_2_df, "cluster_2.csv") # Exporting cluster 2
write.csv(cluster_3_df, "cluster_3.csv") # Exporting cluster 3
write.csv(cluster_4_df, "cluster_4.csv") # Exporting cluster 4

write.csv(nodes_full_data, "nodes_full_data.csv") # Exporting all nodes
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCi0tLQoKIyBDcmVhdGluZyB0aGUgZW52aXJvbm1lbnQKCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeSh0b3NyKQpsaWJyYXJ5KGJpYmxpb21ldHJpeCkKbGlicmFyeShsdWJyaWRhdGUpCmxpYnJhcnkoaWdyYXBoKQpsaWJyYXJ5KHRpZHl0ZXh0KQpsaWJyYXJ5KHdvcmRjbG91ZCkKbGlicmFyeShyZWJ1cykKbGlicmFyeShnZ3JlcGVsKSAjIGltcHJvdmUgZG9udXQgdmlzdWFsaXphdGlvbgpgYGAKClRoaXMgdGVtcGxhdGUgaXMgYmFzZWQgaW4gdGhpcyBwYXBlcgoKaHR0cHM6Ly9yZXZpc3Rhcy51Y20uZXMvaW5kZXgucGhwL1JFVkUvYXJ0aWNsZS92aWV3Lzc1NTY2LzQ1NjQ0NTY1NTc0NjcgCgojIERhdGEgZ2V0dGluZwoKYGBge3J9Cndvc19zY29wdXNfdG9zIDwtIAogIHRvc3I6OnRvc3JfbG9hZCgibWFya2V0aW5nX2RpZ2l0YWxfc2NvcHVzLmJpYiIsIAogICAgICAgICAgICAgICAgICAibWFya2V0aW5nX2RpZ2l0YWxfd29zLnR4dCIpCgp0cmVlX29mX3NjaWVuY2UgPC0gCiAgdG9zcjo6dG9zUigibWFya2V0aW5nX2RpZ2l0YWxfc2NvcHVzLmJpYiIsIAogICAgICAgICAgICAgICAgICAibWFya2V0aW5nX2RpZ2l0YWxfd29zLnR4dCIpCgp3b3MgPC0gCiAgYmlibGlvbWV0cml4Ojpjb252ZXJ0MmRmKCJtYXJrZXRpbmdfZGlnaXRhbF93b3MudHh0IikgIyBjcmVhdGUgZGF0YWZyYW1lIGZyb20gd29zIGZpbGUKCnNjb3B1cyA8LSAKICBiaWJsaW9tZXRyaXg6OmNvbnZlcnQyZGYoIm1hcmtldGluZ19kaWdpdGFsX3Njb3B1cy5iaWIiLCAjIENyZWF0ZSBkYXRhZnJhbWUgZnJvbSBzY29wdXMgZmlsZQogICAgICAgICAgICAgICAgICAgICAgICAgICBkYnNvdXJjZSA9ICJzY29wdXMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgZm9ybWF0ID0gImJpYnRleCIpCmBgYAoKIyMgVGFibGUgMS4gU2VhcmNoIENyaXRlcmlhCgpgYGB7cn0KdGFibGVfMSA8LSAKICB0aWJibGUod29zID0gbGVuZ3RoKHdvcyRTUiksICMgQ3JlYXRlIGEgZGF0YWZyYW1lIHdpdGggdGhlIHZhbHVlcy4KICAgICAgICAgc2NvcHVzID0gbGVuZ3RoKHNjb3B1cyRTUiksIAogICAgICAgICB0b3RhbCA9IGxlbmd0aCh3b3Nfc2NvcHVzX3RvcyRkZiRTUikpCnRhYmxlXzEKYGBgCgojIyBGaWd1cmUgMS4gTGFuZ3VhZ2VzCgpgYGB7cn0KbWFpbl9sYW5ndWFnZXMgPC0gCiAgd29zX3Njb3B1c190b3MkZGYgfD4gCiAgc2VsZWN0KExBKSB8PiAKICBzZXBhcmF0ZV9yb3dzKExBLCBzZXAgPSAiOyAiKSB8PiAKICBjb3VudChMQSwgc29ydCA9IFRSVUUpIHw+IAogIHNsaWNlKDE6NSkKCm90aGVyX2xhbmd1YWdlcyA8LSAKICB3b3Nfc2NvcHVzX3RvcyRkZiB8PiAKICBzZXBhcmF0ZV9yb3dzKExBLCBzZXAgPSAiOyAiKSB8PiAKICBzZWxlY3QoTEEpIHw+IAogIGNvdW50KExBLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoNjpuKSB8PiAKICBzdW1tYXJpc2UobiA9IHN1bShuKSkgfD4gCiAgbXV0YXRlKExBID0gIk9USEVSUyIpIHw+IAogIHNlbGVjdChMQSwgbikKCmxhbmd1YWdlcyA8LSAKICBtYWluX2xhbmd1YWdlcyB8PiAKICBiaW5kX3Jvd3Mob3RoZXJfbGFuZ3VhZ2VzKSB8PiAKICBtdXRhdGUocGVyY2VudGFnZSA9IG4gLyBzdW0obiksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpZ2l0cyA9IDIpICkgfD4gCiAgcmVuYW1lKGxhbmd1YWdlID0gTEEpIHw+CiAgc2VsZWN0KGxhbmd1YWdlLCBwZXJjZW50YWdlLCBjb3VudCA9IG4pCgpsYW5ndWFnZXMKYGBgCgoKYGBge3J9CmRmIDwtIGxhbmd1YWdlcyB8PiAKICByZW5hbWUodmFsdWUgPSBwZXJjZW50YWdlLCBncm91cCA9IGxhbmd1YWdlKSB8PgogIG11dGF0ZSh2YWx1ZSA9IHZhbHVlICogMTAwKSB8PiAKICBzZWxlY3QodmFsdWUsIGdyb3VwKQoKZGYyIDwtIGRmICU+JSAKICBtdXRhdGUoY3N1bSA9IHJldihjdW1zdW0ocmV2KHZhbHVlKSkpLCAKICAgICAgICAgcG9zID0gdmFsdWUvMiArIGxlYWQoY3N1bSwgMSksCiAgICAgICAgIHBvcyA9IGlmX2Vsc2UoaXMubmEocG9zKSwgdmFsdWUvMiwgcG9zKSkKCmdncGxvdChkZiwgYWVzKHggPSAyICwgeSA9IHZhbHVlLCBmaWxsID0gZmN0X2lub3JkZXIoZ3JvdXApKSkgKwogIGdlb21fY29sKHdpZHRoID0gMSwgY29sb3IgPSAxKSArCiAgY29vcmRfcG9sYXIodGhldGEgPSAieSIpICsKICBnZW9tX2xhYmVsX3JlcGVsKGRhdGEgPSBkZjIsCiAgICAgICAgICAgICAgICAgICBhZXMoeSA9IHBvcywgbGFiZWwgPSBwYXN0ZTAodmFsdWUsICIlIikpLAogICAgICAgICAgICAgICAgICAgc2l6ZSA9IDQuNSwgbnVkZ2VfeCA9IDEsIHNob3cubGVnZW5kID0gRkFMU0UpICsKICAgdGhlbWUocGFuZWwuYmFja2dyb3VuZCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBheGlzLmxpbmUgPSBlbGVtZW50X2JsYW5rKCksIAogICAgICAgIGF4aXMudGV4dCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBheGlzLnRpY2tzID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIGF4aXMudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgcGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSwgc2l6ZSA9IDE4KSkgKwogIGxhYnModGl0bGUgPSAiTGFuZ3VhZ2VzIikgKwogIGd1aWRlcyhmaWxsID0gZ3VpZGVfbGVnZW5kKHRpdGxlID0gIiIpKSArCiAgdGhlbWVfdm9pZCgpICsKICB4bGltKDAuNSwgMi41KQpgYGAKCiMjIEZpZ3VyZSAyLiBTY2llbnRpZmljIFByb2R1Y3Rpb24KCmBgYHtyfQp3b3NfYW51YWxfcHJvZHVjdGlvbiA8LSAKICB3b3MgfD4gCiAgc2VsZWN0KFBZKSB8PiAKICBjb3VudChQWSwgc29ydCA9IFRSVUUpIHw+IAogIG5hLm9taXQoKSB8PiAKICBmaWx0ZXIoUFkgPj0gMjAwMCwKICAgICAgICAgUFkgPCB5ZWFyKHRvZGF5KCkpKSB8PiAKICBtdXRhdGUocmVmX3R5cGUgPSAid29zIikKCnNjb3B1c19hbnVhbF9wcm9kdWN0aW9uICA8LSAKICBzY29wdXMgfD4gCiAgc2VsZWN0KFBZKSB8PiAKICBjb3VudChQWSwgc29ydCA9IFRSVUUpIHw+IAogIG5hLm9taXQoKSB8PiAKICBmaWx0ZXIoUFkgPj0gMjAwMCwKICAgICAgICAgUFkgPCB5ZWFyKHRvZGF5KCkpKSB8PgogIG11dGF0ZShyZWZfdHlwZSA9ICJzY29wdXMiKQoKdG90YWxfYW51YWxfcHJvZHVjdGlvbiA8LSAKICB3b3Nfc2NvcHVzX3RvcyRkZiB8PiAKICBzZWxlY3QoUFkpIHw+IAogIGNvdW50KFBZLCBzb3J0ID0gVFJVRSkgfD4gCiAgbmEub21pdCgpIHw+IAogIGZpbHRlcihQWSA+PSAyMDAwLAogICAgICAgICBQWSA8IHllYXIodG9kYXkoKSkpIHw+CiAgbXV0YXRlKHJlZl90eXBlID0gInRvdGFsIikKCndvc19zY29wdXNfdG90YWxfYW5udWFsX3Byb2R1Y3Rpb24gPC0gCiAgd29zX2FudWFsX3Byb2R1Y3Rpb24gfD4gCiAgYmluZF9yb3dzKHNjb3B1c19hbnVhbF9wcm9kdWN0aW9uLAogICAgICAgICAgICB0b3RhbF9hbnVhbF9wcm9kdWN0aW9uKSAKCmZpZ3VyZV8yX2RhdGEgPC0gCiAgd29zX3Njb3B1c190b3RhbF9hbm51YWxfcHJvZHVjdGlvbiB8PiAKICBtdXRhdGUoUFkgPSByZXBsYWNlX25hKFBZLCByZXBsYWNlID0gMCkpIHw+IAogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSByZWZfdHlwZSwgCiAgICAgICAgICAgICAgdmFsdWVzX2Zyb20gPSBuKSB8PiAKICBhcnJhbmdlKGRlc2MoUFkpKQoKZmlndXJlXzJfZGF0YSAKYGBgCgpgYGB7cn0Kd29zX3Njb3B1c190b3RhbF9hbm51YWxfcHJvZHVjdGlvbiB8PiAKICBnZ3Bsb3QoYWVzKHggPSBQWSwgeSA9IG4sIGNvbG9yID0gcmVmX3R5cGUpKSArCiAgZ2VvbV9saW5lKCkgKwogIGxhYnModGl0bGUgPSAiQW5udWFsIFNjaWVudGlmaWMgUHJvZHVjdGlvbiIsIAogICAgICAgeCA9ICJ5ZWFycyIsCiAgICAgICB5ID0gInBhcGVycyIpICsKICB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41KSkgCmBgYAoKIyMgVGFibGUgMi4gQ291bnRyeSBwcm9kdWN0aW9uCgpgYGB7cn0KZGF0YV9iaWJsaW9fd29zIDwtIGJpYmxpb0FuYWx5c2lzKHdvcykKCndvc19jb3VudHJ5IDwtIAogIGRhdGFfYmlibGlvX3dvcyRDb3VudHJpZXMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJ3b3MiKSB8PiAKICBzZWxlY3QoY291bnRyeSA9IFRhYiwgcGFwZXJzID0gRnJlcSwgZGF0YWJhc2UgKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzKSkgCgpkYXRhX2JpYmxpb19zY29wdXMgPC0gYmlibGlvQW5hbHlzaXMoc2NvcHVzKQoKc2NvcHVzX2NvdW50cnkgPC0gCiAgZGF0YV9iaWJsaW9fc2NvcHVzJENvdW50cmllcyB8PiAKICBkYXRhLmZyYW1lKCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInNjb3B1cyIpIHw+IAogIHNlbGVjdChjb3VudHJ5ID0gVGFiLCBwYXBlcnMgPSBGcmVxLCBkYXRhYmFzZSApIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnMpKSAKCmRhdGFfYmlibGlvX3RvdGFsIDwtIGJpYmxpb0FuYWx5c2lzKHdvc19zY29wdXNfdG9zJGRmKQogIAp0b3RhbF9jb3VudHJ5IDwtIAogIGRhdGFfYmlibGlvX3RvdGFsJENvdW50cmllcyB8PiAKICBkYXRhLmZyYW1lKCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInRvdGFsIikgfD4gCiAgc2VsZWN0KGNvdW50cnkgPSBUYWIsIHBhcGVycyA9IEZyZXEsIGRhdGFiYXNlICkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVycykpIAoKd29zX3Njb3B1c190b3RhbF9jb3VudHJ5IDwtIAogIHdvc19jb3VudHJ5IHw+IAogIGJpbmRfcm93cyhzY29wdXNfY291bnRyeSwgCiAgICAgICAgICAgIHRvdGFsX2NvdW50cnkpIHw+IAogIG11dGF0ZShjb3VudHJ5ID0gYXMuY2hhcmFjdGVyKGNvdW50cnkpKSB8PiAKICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gZGF0YWJhc2UsIAogICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gcGFwZXJzKSB8PiAKICBhcnJhbmdlKGRlc2ModG90YWwpKSB8PiAKICBzbGljZSgxOjEwKSB8PiAKICBtdXRhdGUocGVyY2VudGFnZSA9IHRvdGFsIC8gKHRhYmxlXzEgfD4gcHVsbCh0b3RhbCkpLAogICAgICAgICBwZXJjZW50YWdlID0gcm91bmQocGVyY2VudGFnZSwgZGlnaXRzID0gMikpCgp3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnkKYGBgCgojIyBUYWJsZSAzLiBBdXRob3IgcHJvZHVjdGlvbgoKYGBge3J9Cndvc19hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3dvcyRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc193b3MgPSBBVSwgcGFwZXJzX3dvcyA9IEZyZXEpIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnNfd29zKSkgfD4gCiAgc2xpY2UoMToxMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3dvcyA9ICJ3b3MiKQoKCnNjb3B1c19hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3Njb3B1cyRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc19zY29wdXMgPSBBVSwgcGFwZXJzX3Njb3B1cyA9IEZyZXEpIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnNfc2NvcHVzKSkgfD4gCiAgc2xpY2UoMToxMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3Njb3B1cyA9ICJzY29wdXMiKQoKdG90YWxfYXV0aG9ycyA8LSAKICBkYXRhX2JpYmxpb190b3RhbCRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc190b3RhbCA9IEFVLCAKICAgICAgICAgcGFwZXJzX3RvdGFsID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc190b3RhbCkpIHw+IAogIHNsaWNlKDE6MTApIHw+IAogIG11dGF0ZShkYXRhYmFzZV90b3RhbCA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX2F1dGhvcnMgPC0gCiAgd29zX2F1dGhvcnMgfD4gCiAgYmluZF9jb2xzKHNjb3B1c19hdXRob3JzLAogICAgICAgICAgICB0b3RhbF9hdXRob3JzKQoKd29zX3Njb3B1c19hdXRob3JzCmBgYAoKIyMgVGFibGUgNC4gSm91cm5hbCBwcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2pvdXJuYWwgPC0gCiAgd29zIHw+IAogIGZpbHRlcihzdHJfZGV0ZWN0KERULCAiQVJUSUNMRSIpKSB8PiAKICBzZWxlY3Qoam91cm5hbCA9IFNPKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgY291bnQoam91cm5hbCwgc29ydCA9IFRSVUUpIHw+IAogIHNsaWNlKDE6MjApIHw+IAogIHJlbmFtZShwdWJsaWNhdGlvbnMgPSBuKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAid29zIikKCnNjb3B1c19qb3VybmFsIDwtIAogIHNjb3B1cyB8PiAKICBmaWx0ZXIoc3RyX2RldGVjdChEVCwgIkFSVElDTEUiKSkgfD4gCiAgc2VsZWN0KGpvdXJuYWwgPSBTTykgfD4gCiAgbmEub21pdCgpIHw+IAogIGNvdW50KGpvdXJuYWwsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICByZW5hbWUocHVibGljYXRpb25zID0gbikgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInNjb3B1cyIpCgp0b3RhbF9qb3VybmFsIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIGZpbHRlcihzdHJfZGV0ZWN0KERULCAiQVJUSUNMRSIpKSB8PiAKICBzZWxlY3Qoam91cm5hbCA9IFNPKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgY291bnQoam91cm5hbCwgc29ydCA9IFRSVUUpIHw+IAogIHNsaWNlKDE6MjApIHw+IAogIHJlbmFtZShwdWJsaWNhdGlvbnMgPSBuKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAidG90YWwiKQoKd29zX3Njb3B1c190b3RhbF9qb3VybmFsIDwtIAogIHdvc19qb3VybmFsIHw+IAogIGJpbmRfcm93cyhzY29wdXNfam91cm5hbCwgCiAgICAgICAgICAgIHRvdGFsX2pvdXJuYWwpIHw+IAogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBkYXRhYmFzZSwgCiAgICAgICAgICAgICAgdmFsdWVzX2Zyb20gPSBwdWJsaWNhdGlvbnMpIHw+IAogIGFycmFuZ2UoZGVzYyh0b3RhbCkpIHw+IAogIHNsaWNlKDE6MTApIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gdG90YWwgLyB0YWJsZV8xIHw+IHB1bGwodG90YWwpLAogICAgICAgICBwZXJjZW50YWdlID0gcm91bmQocGVyY2VudGFnZSwgZGlnaXRzID0gMikpCgoKd29zX3Njb3B1c190b3RhbF9qb3VybmFsCmBgYAoKIyMgRmlndXJlIDMuIENvLWNpdGF0aW9uIG5ldHdvcmsKCiMjIyBBdXRob3IgY28tY2l0YXRpb24gbmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfYXV0aG9yX21ldGF0YWcgPC0gCiAgbWV0YVRhZ0V4dHJhY3Rpb24od29zX3Njb3B1c190b3MkZGYsIEZpZWxkID0gIkNSX0FVIikKCndvc19zY29wdXNfYXV0aG9yX2NvX2NpdGF0aW9uX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX2F1dGhvcl9tZXRhdGFnLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvLWNpdGF0aW9uIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImF1dGhvcnMiKQoKcGxvdF9uZXRfYXV0aG9yX2NvX2NpdGF0aW9uIDwtIAogIG5ldHdvcmtQbG90KHdvc19zY29wdXNfYXV0aG9yX2NvX2NpdGF0aW9uX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgCiAgICAgICAgICAgICAgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJBdXRob3IgQ28tY2l0YXRpb24gTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCmBgYAoKIyMjIEF1dGhvciBDb2xsYWJvcmF0aW9uIG5ldHdvcmsKCmBgYHtyfQp3b3Nfc2NvcHVzX2F1dGhvcl9jb2xsYWJfbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfdG9zJGRmLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvbGxhYm9yYXRpb24iLCAKICAgICAgICAgICAgICAgIG5ldHdvcmsgPSAiYXV0aG9ycyIpCgpwbG90X2F1dGhvcl9jb2xsYWIgPC0gCiAgbmV0d29ya1Bsb3QoTmV0TWF0cml4ID0gd29zX3Njb3B1c19hdXRob3JfY29sbGFiX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJBdXRob3IgQ29sbGFib3JhdGlvbiBOZXR3b3JrIiwgCiAgICAgICAgICAgICAgdHlwZSA9ICJmcnVjaHRlcm1hbiIsIAogICAgICAgICAgICAgIHNpemU9VCwKICAgICAgICAgICAgICBlZGdlc2l6ZSA9IDUsCiAgICAgICAgICAgICAgbGFiZWxzaXplPTAuNykKYGBgCgojIyMgQ291bnRyeSBDb2xsYWJvcmF0aW9uIE5ldHdvcmsKCmBgYHtyfQp3b3Nfc2NvcHVzX2NvdW50cnlfY29sbGFiX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX3RvcyRkZiwgCiAgICAgICAgICAgICAgICBhbmFseXNpcyA9ICJjb2xsYWJvcmF0aW9uIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImNvdW50cmllcyIpCgpwbG90X2NvdW50cnlfY29sbGFiIDwtIAogIG5ldHdvcmtQbG90KHdvc19zY29wdXNfY291bnRyeV9jb2xsYWJfbWF0cml4LCAKICAgICAgICAgICAgICB3ZWlnaHRlZD1ULCBuID0gMzAsIAogICAgICAgICAgICAgIFRpdGxlID0gIkNvdW50cnkgQ29sbGFib3JhdGlvbiBOZXR3b3JrIiwgCiAgICAgICAgICAgICAgdHlwZSA9ICJmcnVjaHRlcm1hbiIsIAogICAgICAgICAgICAgIHNpemU9VCwKICAgICAgICAgICAgICBlZGdlc2l6ZSA9IDUsCiAgICAgICAgICAgICAgbGFiZWxzaXplPTAuNykKYGBgCgojIyMgS2V5d29yZCBjby1vY2N1cnJlbmNlIG5ldHdvcmsKCmBgYHtyfQp3b3Nfc2NvcHVzX2tleXdvcmRfY29fb2NjdXJyZW5jZV9tYXRyaXggPC0gCiAgYmlibGlvTmV0d29yayhNID0gd29zX3Njb3B1c190b3MkZGYsIAogICAgICAgICAgICAgICAgYW5hbHlzaXMgPSAiY28tb2NjdXJyZW5jZXMiLCAKICAgICAgICAgICAgICAgIG5ldHdvcmsgPSAia2V5d29yZHMiLCAKICAgICAgICAgICAgICAgIHNlcCA9ICI7IikKCnBsb3RfbmV0X2NvX29jY3VycmVuY2UgPC0gCiAgbmV0d29ya1Bsb3Qod29zX3Njb3B1c19rZXl3b3JkX2NvX29jY3VycmVuY2VfbWF0cml4LCAKICAgICAgICAgICAgICB3ZWlnaHRlZD1ULCBuID0gMzAsIAogICAgICAgICAgICAgIFRpdGxlID0gIktleXdvcmQgQ28tb2NjdXJyZW5jZSBOZXR3b3JrIiwgCiAgICAgICAgICAgICAgdHlwZSA9ICJmcnVjaHRlcm1hbiIsIAogICAgICAgICAgICAgIHNpemU9VCwKICAgICAgICAgICAgICBlZGdlc2l6ZSA9IDUsCiAgICAgICAgICAgICAgbGFiZWxzaXplPTAuNykKYGBgCgojIyBGaWd1cmUgNC4gVHJlZSBvZiBTY2llbmNlCgojIyMgVHJlZSBvZiBTY2llbmNlCgpgYGB7cn0KdHJlZV9vZl9zY2llbmNlCmBgYAoKIyMjIENsdXN0ZXJpbmcgYW5hbHlzaXMKCkZpbmRpbmcgdGhlIGNsdXN0ZXJzCgpgYGB7cn0Kbm9kZXMgPC0gIAogIHRpYmJsZShuYW1lID0gVih3b3Nfc2NvcHVzX3RvcyRncmFwaCkkbmFtZSkgfD4gCiAgbGVmdF9qb2luKHdvc19zY29wdXNfdG9zJG5vZGVzLCAKICAgICAgICAgICAgYnkgPSBjKCJuYW1lIiA9ICJJRF9UT1MiKSkKCndvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya18xIDwtIAogIHdvc19zY29wdXNfdG9zJGdyYXBoIHw+IAogIGlncmFwaDo6c2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJmdWxsX25hbWUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGluZGV4ID0gVih3b3Nfc2NvcHVzX3RvcyRncmFwaCkkbmFtZSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IG5vZGVzJENJVEUpCgpub2Rlc18xIDwtIAogIHRpYmJsZShuYW1lID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkkbmFtZSwKICAgICAgICAgY2x1c3RlciA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpJHN1YmZpZWxkLAogICAgICAgICBmdWxsX25hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya18xKSRmdWxsX25hbWUpCiAgCm5vZGVzXzIgPC0gCiAgbm9kZXNfMSB8PiAKICBjb3VudChjbHVzdGVyLCBzb3J0ID0gVFJVRSkgfD4gCiAgbXV0YXRlKGNsdXN0ZXJfMSA9IHJvd19udW1iZXIoKSkgfD4gCiAgc2VsZWN0KGNsdXN0ZXIsIGNsdXN0ZXJfMSkKCm5vZGVzXzMgPC0gCiAgbm9kZXNfMSB8PiAKICBsZWZ0X2pvaW4obm9kZXNfMikgfD4gCiAgcmVuYW1lKHN1YmZpZWxkID0gY2x1c3Rlcl8xKSB8PiAKICBzZWxlY3QobmFtZSwgZnVsbF9uYW1lLCBzdWJmaWVsZCkKCmVkZ2VfbGlzdCA8LSAKICBnZXQuZWRnZWxpc3Qod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoU291cmNlID0gWDEsIFRhcmdldCA9IFgyKQoKd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIDwtIAogIGdyYXBoLmRhdGEuZnJhbWUoZCA9IGVkZ2VfbGlzdCwgCiAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgIHZlcnRpY2VzID0gbm9kZXNfMykKCndvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBzdW1tYXJ5KCkKYGBgCgpDaG9vc2luZyBjbHVzdGVycwoKYGBge3J9CmNsdXN0ZXJzIDwtIAogIHRpYmJsZShjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkKSB8PiAKICBjb3VudChjbHVzdGVyLCBzb3J0ID0gVFJVRSkKCmNsdXN0ZXJzIHw+IAogIGdncGxvdChhZXMoeCA9IHJlb3JkZXIoY2x1c3RlciwgbiksIHkgPSBuKSkgKwogIGdlb21fcG9pbnQoKSAKYGBgCgpSZW1vdmluZyBub3QgY2hvc2VuIGNsdXN0ZXJzCgpgYGB7cn0Kd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDEgJiAjIGZpbHRlciBjbHVzdGVycyAKICAgICAgICAgICAgICAgICAgICAgICAgICBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gMiAmCiAgICAgICAgICAgICAgICAgICAgICAgICAgVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDMgICYKICAgICAgICAgICAgICAgICAgICAgICAgICBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gNCkpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfY2x1c3RlcnMgfD4gCiAgc3VtbWFyeSgpCmBgYAoKIyMjIENsdXN0ZXIgMQoKYGBge3J9CnBhbCA8LSBicmV3ZXIucGFsKDgsIkRhcmsyIikKCm5vZGVzX2Z1bGxfZGF0YSA8LSAKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRuYW1lLAogICAgICAgICBjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkLAogICAgICAgICBmdWxsX25hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkZnVsbF9uYW1lKQoKY2x1c3Rlcl8xIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDEpKQoKY2x1c3Rlcl8xX3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzEgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzEpJHZlY3RvcikKCmNsdXN0ZXJfMV9kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzFfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzFfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gMSkgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+ICMgVG9rZW5pemF0aW9uCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+ICAjIFJlbW92aW5nIHN0b3Agd29yZHMKICAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YQogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAgIyBXb3JkcyByZW1vdmVkCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImRpZ2l0YWwiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAibWFya2V0aW5nIikpIHw+CiAgY291bnQod29yZCwgc29ydCA9IFRSVUUpIHw+IAogIHdpdGgod29yZGNsb3VkKHdvcmQsIAogICAgICAgICAgICAgICAgIG4sIAogICAgICAgICAgICAgICAgIHJhbmRvbS5vcmRlciA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICBtYXgud29yZHMgPSA1MCwgCiAgICAgICAgICAgICAgICAgY29sb3JzPXBhbCkpCmBgYAoKIyMjIENsdXN0ZXIgMgoKYGBge3J9CmNsdXN0ZXJfMiA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAyKSkKCmNsdXN0ZXJfMl9wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl8yIHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl8yKSR2ZWN0b3IpCgpjbHVzdGVyXzJfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfMl9wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfMl9wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDIpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAKICBhbnRpX2pvaW4oc3RvcF93b3JkcykgfD4KICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhCiAgZmlsdGVyKHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImNpdGF0aW9uIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInJlc2VhcmNoIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJhbmFseXNpcyIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiam91cm5hbCIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJkaWdpdGFsIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gIm1hcmtldGluZyIpKSB8PgogIGNvdW50KHdvcmQsIHNvcnQgPSBUUlVFKSB8PiAKICB3aXRoKHdvcmRjbG91ZCh3b3JkLCAKICAgICAgICAgICAgICAgICBuLCAKICAgICAgICAgICAgICAgICByYW5kb20ub3JkZXIgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgbWF4LndvcmRzID0gNTAsIAogICAgICAgICAgICAgICAgIGNvbG9ycz1wYWwpKQpgYGAKCiMjIyBDbHVzdGVyIDMKCmBgYHtyfQoKY2x1c3Rlcl8zIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDMpKQoKY2x1c3Rlcl8zX3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzMgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzMpJHZlY3RvcikKCmNsdXN0ZXJfM19kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl8zX3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzNfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl8zX3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzNfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gMykgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+IAogIGFudGlfam9pbihzdG9wX3dvcmRzKSB8PgogICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhIAogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiYW5hbHlzaXMiKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVuY2UiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiZGlnaXRhbCIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJtYXJrZXRpbmciKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCiMjIyBDbHVzdGVyIDQKCmBgYHtyfQoKY2x1c3Rlcl80IDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDQpKQoKY2x1c3Rlcl80X3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzQgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzQpJHZlY3RvcikKCmNsdXN0ZXJfNF9kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl80X3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzRfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl80X3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzRfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gNCkgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+IAogIGFudGlfam9pbihzdG9wX3dvcmRzKSB8PiAKICAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YQogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiZWR1Y2F0aW9uIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJkZSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJkaWdpdGFsIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gIm1hcmtldGluZyIpKSB8PgogIGNvdW50KHdvcmQsIHNvcnQgPSBUUlVFKSB8PiAKICB3aXRoKHdvcmRjbG91ZCh3b3JkLCAKICAgICAgICAgICAgICAgICBuLCAKICAgICAgICAgICAgICAgICByYW5kb20ub3JkZXIgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgbWF4LndvcmRzID0gNTAsIAogICAgICAgICAgICAgICAgIGNvbG9ycz1wYWwpKQpgYGAKCiMgRXhwb3J0aW5nIGZpbGVzCgpgYGB7cn0KCndyaXRlX2Nzdih0YWJsZV8xLCAidGFibGVfMS5jc3YiKSAjIEV4cG9ydGluZyB0YWJsZSAxCndyaXRlX2Nzdih3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnksICJ0YWJsZV8yXy5jc3YiKSAgIyBFeHBvcnRpbmcgdGFibGUgMgp3cml0ZV9jc3Yod29zX3Njb3B1c19hdXRob3JzLCAidGFibGVfMy5jc3YiKSAjIEV4cG9ydGluZyB0YWJsZSAzCndyaXRlX2Nzdih3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwsICJ0YWJsZV80LmNzdiIpICMgRXhwb3J0aW5nIHRhYmxlIDQKCgp3cml0ZV9jc3YobGFuZ3VhZ2VzLCAiZmlndXJlXzEuY3N2IikgIyBFeHBvcnRpbmcgZGF0YSBmaWd1cmUgMSAKd3JpdGVfY3N2KGZpZ3VyZV8yX2RhdGEsICJmaWd1cmVfMi5jc3YiKSAjIEV4cG9ydGluZyBkYXRhIGZpZ3VyZSAyCgp3cml0ZS5ncmFwaCh3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmssICJjaXRhdGlvbl9uZXR3b3JrX2Z1bGwuZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnRpbmcgZ3JhcGgKd3JpdGUuZ3JhcGgod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzLCAKICAgICAgICAgICAgIndvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya19jbHVzdGVycy5ncmFwaG1sIiwgCiAgICAgICAgICAgICJncmFwaG1sIikKCndyaXRlLmNzdih0cmVlX29mX3NjaWVuY2UsICJ0cmVlX29mX3NjaWVuY2UuY3N2IikgIyBFeHBvcnRpbmcgVHJlZSBvZiBTY2llbmNlCgp3cml0ZS5jc3YoY2x1c3Rlcl8xX2RmLCAiY2x1c3Rlcl8xLmNzdiIpICMgRXhwb3J0aW5nIGNsdXN0ZXIgMQp3cml0ZS5jc3YoY2x1c3Rlcl8yX2RmLCAiY2x1c3Rlcl8yLmNzdiIpICMgRXhwb3J0aW5nIGNsdXN0ZXIgMgp3cml0ZS5jc3YoY2x1c3Rlcl8zX2RmLCAiY2x1c3Rlcl8zLmNzdiIpICMgRXhwb3J0aW5nIGNsdXN0ZXIgMwp3cml0ZS5jc3YoY2x1c3Rlcl80X2RmLCAiY2x1c3Rlcl80LmNzdiIpICMgRXhwb3J0aW5nIGNsdXN0ZXIgNAoKd3JpdGUuY3N2KG5vZGVzX2Z1bGxfZGF0YSwgIm5vZGVzX2Z1bGxfZGF0YS5jc3YiKSAjIEV4cG9ydGluZyBhbGwgbm9kZXMKYGBgCgo=