Modelos de Rregresion para erodentina

5 de setiembre de 2013


# 5 de setiembre de 2013

library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
options(OutDec = ",")




library(survey)
# load('~/Dropbox/odontologia/maestria
# licet/julio_2013/datos_licet_25072013.RData')

# load('C:/Users/usuario/Dropbox/odontologia/maestria
# licet/julio_2013/datos_licet_25072013.RData')

load("~/Dropbox/odontologia/maestria licet/julio_2013/datos_licet_25072013.RData")

library(car)
## Loading required package: MASS
## Loading required package: nnet

diseniopost1$variables$erodentina.rec <- as.factor(diseniopost1$variables$erodentina.rec)

modelo_ero_1.logit <- svyglm(erodentina.rec ~ Sexo, design = diseniopost1, family = quasibinomial())

summary(modelo_ero_1.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Sexo, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -3,627      0,344  -10,54  7,8e-13 ***
## SexoM          0,979      0,469    2,09    0,044 *  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9818)
## 
## Number of Fisher Scoring iterations: 6


modelo_ero_2.logit <- svyglm(erodentina.rec ~ UsoDentifrico3.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_2.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ UsoDentifrico3.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              -3,018      0,224  -13,48  4,6e-16 ***
## UsoDentifrico3.rec2-No    0,215      0,884    0,24     0,81    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9781)
## 
## Number of Fisher Scoring iterations: 5


modelo_ero_3.logit <- svyglm(erodentina.rec ~ Nivel.Educativo.de.la.Madre1.rec, 
    design = diseniopost1, family = quasibinomial())
summary(modelo_ero_3.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Nivel.Educativo.de.la.Madre1.rec, 
##     design = diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                                -1,923      0,480   -4,00
## Nivel.Educativo.de.la.Madre1.rec2-Basic    -1,229      0,521   -2,36
## Nivel.Educativo.de.la.Madre1.rec3-Medium   -1,445      0,640   -2,26
## Nivel.Educativo.de.la.Madre1.rec4-High     -1,082      0,652   -1,66
##                                          Pr(>|t|)    
## (Intercept)                                0,0003 ***
## Nivel.Educativo.de.la.Madre1.rec2-Basic    0,0239 *  
## Nivel.Educativo.de.la.Madre1.rec3-Medium   0,0301 *  
## Nivel.Educativo.de.la.Madre1.rec4-High     0,1058    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9559)
## 
## Number of Fisher Scoring iterations: 5



modelo_ero_4.logit <- svyglm(erodentina.rec ~ FrCepDenti.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_4.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ FrCepDenti.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                           -3,0515     0,4123   -7,40  8,3e-09
## FrCepDenti.rec2- 2 veces al dia       -0,0996     0,6101   -0,16     0,87
## FrCepDenti.rec3-3 o mas veces al dia   0,1836     0,4928    0,37     0,71
##                                         
## (Intercept)                          ***
## FrCepDenti.rec2- 2 veces al dia         
## FrCepDenti.rec3-3 o mas veces al dia    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,956)
## 
## Number of Fisher Scoring iterations: 5


modelo_ero_5.logit <- svyglm(erodentina.rec ~ IGS.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_5.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ IGS.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     -4,80       1,06   -4,54  5,9e-05 ***
## IGS.rec2-De 45 a 60              1,74       1,16    1,49    0,144    
## IGS.rec3 -Menos o igual a 45     1,87       1,03    1,81    0,079 .  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9818)
## 
## Number of Fisher Scoring iterations: 7



modelo_ero_6.logit <- svyglm(erodentina.rec ~ MedResp.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_6.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ MedResp.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -2,950      0,223  -13,25  8,1e-16 ***
## MedResp.rec2-Yes   -0,525      0,596   -0,88     0,38    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9635)
## 
## Number of Fisher Scoring iterations: 6

modelo_ero_7.logit <- svyglm(erodentina.rec ~ AlterGastrica.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_7.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ AlterGastrica.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              -2,955      0,218   -13,6  3,8e-16 ***
## AlterGastrica.rec2-Yes  -15,737      0,205   -76,7  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9127)
## 
## Number of Fisher Scoring iterations: 17

modelo_ero_8.logit <- svyglm(erodentina.rec ~ Consumo_bebidas_cola, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_8.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Consumo_bebidas_cola, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            -4,089      0,790   -5,18  7,6e-06 ***
## Consumo_bebidas_cola    0,769      0,540    1,42     0,16    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9583)
## 
## Number of Fisher Scoring iterations: 6

modelo_ero_9.logit <- svyglm(erodentina.rec ~ Consitencia_Cepillo.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_9.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Consitencia_Cepillo.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -2,5258     0,5797   -4,36  0,00013 ***
## Consitencia_Cepillo.rec2   0,0785     0,7204    0,11  0,91391    
## Consitencia_Cepillo.rec3  -0,9167     0,5895   -1,56  0,12976    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,7872)
## 
## Number of Fisher Scoring iterations: 6

modelo_ero_10.logit <- svyglm(erodentina.rec ~ Natac2vec.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_10.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Natac2vec.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -3,041      0,287  -10,61  3,6e-12 ***
## Natac2vec.rec2-Yes    0,117      0,460    0,25      0,8    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,8127)
## 
## Number of Fisher Scoring iterations: 5

modelo_ero_11.logit <- svyglm(erodentina.rec ~ BuchTragar.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_11.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ BuchTragar.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -3,124      0,291  -10,72  2,7e-12 ***
## BuchTragar.rec2-Yes    0,760      0,395    1,92    0,063 .  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,7982)
## 
## Number of Fisher Scoring iterations: 5

modelo_ero_12.logit <- svyglm(erodentina.rec ~ FormBeber.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_12.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ FormBeber.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  -3,056      0,640   -4,78  2,8e-05 ***
## FormBeber.rec2-Por el pico   -0,454      0,858   -0,53     0,60    
## FormBeber.rec3-Con vaso       0,120      0,736    0,16     0,87    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9754)
## 
## Number of Fisher Scoring iterations: 6


modelo_ero_13.logit <- svyglm(erodentina.rec ~ Nivel.Socieconomico.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_13.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Nivel.Socieconomico.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     -3,1238     0,2965  -10,54  1,1e-12 ***
## Nivel.Socieconomico.rec2-MEDIO  -0,0405     0,4247   -0,10     0,92    
## Nivel.Socieconomico.rec3-ALTO    0,4249     0,3972    1,07     0,29    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9713)
## 
## Number of Fisher Scoring iterations: 5


modelo_ero_14.logit <- svyglm(erodentina.rec ~ Tipo.de.Escuela.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_14.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Tipo.de.Escuela.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    -3,734      0,599   -6,24  2,7e-07 ***
## Tipo.de.Escuela.rec2-Private    0,884      0,644    1,37     0,18    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9818)
## 
## Number of Fisher Scoring iterations: 6

modelo_ero_15.logit <- svyglm(erodentina.rec ~ Yogurt.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_15.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Yogurt.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                     -2,177      0,614   -3,55   0,0011 **
## Yogurt.rec2-Todos los dias      -0,985      0,622   -1,58   0,1220   
## Yogurt.rec3-Nunca o raramente   -0,742      0,528   -1,41   0,1681   
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9633)
## 
## Number of Fisher Scoring iterations: 5


modelo_ero_16.logit <- svyglm(erodentina.rec ~ Bruxismo.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_16.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Bruxismo.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -2,991      0,234  -12,80  2,4e-15 ***
## Bruxismo.rec2-Yes   -0,151      0,408   -0,37     0,71    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,964)
## 
## Number of Fisher Scoring iterations: 5


modelo_ero_17.logit <- svyglm(erodentina.rec ~ bedeportediario.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_17.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ bedeportediario.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     -3,111      0,332   -9,38  1,1e-10 ***
## bedeportediario.rec2-Gatorade    0,882      0,863    1,02     0,31    
## bedeportediario.rec3-other      -1,364      1,113   -1,23     0,23    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,8143)
## 
## Number of Fisher Scoring iterations: 6


modelo_ero_19.logit <- svyglm(erodentina.rec ~ jugodiario.nodiario, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_19.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ jugodiario.nodiario, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  -3,0748     0,3351   -9,18  3,5e-11 ***
## jugodiario.nodiario2-Diario   0,0596     0,5045    0,12     0,91    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9706)
## 
## Number of Fisher Scoring iterations: 5





modelo_ero_20.logit <- svyglm(erodentina.rec ~ Bebidas_energizantes.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_20.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ Bebidas_energizantes.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                               Estimate Std. Error t value
## (Intercept)                                     -3,342      0,302  -11,08
## Bebidas_energizantes.rec2-Todos los dias         0,412      0,278    1,48
## Bebidas_energizantes.recMas de 3 veces al dia    2,052      0,670    3,06
##                                               Pr(>|t|)    
## (Intercept)                                    2,6e-13 ***
## Bebidas_energizantes.rec2-Todos los dias        0,1470    
## Bebidas_energizantes.recMas de 3 veces al dia   0,0041 ** 
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9451)
## 
## Number of Fisher Scoring iterations: 6

modelo_ero_21.logit <- svyglm(erodentina.rec ~ bedeportediario.rec, design = diseniopost1, 
    family = quasibinomial())
summary(modelo_ero_21.logit)
## 
## Call:
## svyglm(formula = erodentina.rec ~ bedeportediario.rec, design = diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     -3,111      0,332   -9,38  1,1e-10 ***
## bedeportediario.rec2-Gatorade    0,882      0,863    1,02     0,31    
## bedeportediario.rec3-other      -1,364      1,113   -1,23     0,23    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,8143)
## 
## Number of Fisher Scoring iterations: 6

#
# modelomulti_ero.logit<-svyglm(erodentina.rec~Sexo+Nivel.Educativo.de.la.Madre1+Nivel.Socieconomico+Tipo.de.Escuela+BuchTragar,
# design=diseniopost1, family=quasibinomial())
# 
# summary(modelomulti_ero.logit)
# 
# confint(modelomulti_ero.logit)