In this exercise we’ll look at a sequence with known tandem repeats. We’ll load the data, explore it in R, then use the dotPlot() function to make various dotplots to see how changing settings for dotPlots() help make repeat patterns stand out.
Add the necessary code to make this script functional.
library(seqinr)
library(rentrez)
library(compbio4all)
library(Biostrings)
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: XVector
## Loading required package: GenomeInfoDb
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:seqinr':
##
## translate
## The following object is masked from 'package:base':
##
## strsplit
Download sequence P73709
P73709_FASTA <- rentrez::entrez_fetch(id = "P73709" ,
db = "protein",
rettype="fasta")
Clean and set up sequence as vector.
NOTE: no arguments besides sequence passed to fasta_cleaner() - we do this differently for pairwise alignment
P73709_vector <- fasta_cleaner(P73709_FASTA)
Set up as 1 continuous string
P73709_string <- fasta_cleaner(P73709_vector,
parse = F)
Compare structure of each type
str(P73709_FASTA)
## chr ">sp|P73709.1|Y1819_SYNY3 RecName: Full=Uncharacterized protein slr1819\nMEAKELVQRYRNGETLFTGLKLPGINLEAADLIGIVLNE"| __truncated__
str(P73709_vector)
## chr [1:331] "M" "E" "A" "K" "E" "L" "V" "Q" "R" "Y" "R" "N" "G" "E" "T" ...
str(P73709_string)
## chr "M"
# could compare length() or # of characters nchar()
Takes data in STRING form!
align <- pairwiseAlignment(P73709_FASTA,
P73709_FASTA,
type = "global")
Look at PID
pid(align)
## [1] 100
# PID = 100% because the same thing is being compared
str()
[ ]
P73709_vector[1]
## [1] "M"
# gets the element at that index in vector
[x:y]
P73709_vector[1:2] # shows first 2
## [1] "M" "E"
P73709_vector[1:50] # shows first 50
## [1] "M" "E" "A" "K" "E" "L" "V" "Q" "R" "Y" "R" "N" "G" "E" "T" "L" "F" "T" "G"
## [20] "L" "K" "L" "P" "G" "I" "N" "L" "E" "A" "A" "D" "L" "I" "G" "I" "V" "L" "N"
## [39] "E" "A" "D" "L" "R" "G" "A" "N" "L" "L" "F" "C"
length(P73709_vector)
## [1] 331
# Make a table relevant to data
# returns table of frequency of characters
# A B C D
# 2 5 1 5
table(P73709_vector)
## P73709_vector
## A C D E F G H I K L M N P Q R S T V Y
## 53 3 21 13 8 27 4 10 11 52 12 34 2 13 20 15 17 10 6
Note orientation. Any strong diagonals?
dotPlot(P73709_vector[40:70],
P73709_vector[40:70])
Default is exact match (binary):
# dotPlot() defualt makes a binary dotplot
# filter noise and amplify signal
dotPlot(P73709_vector,
P73709_vector,
wsize = 1, #window size
wstep = 1,
nmatch = 1) #"threshold"
Don’t vary wstep
# running average = moving window and smooth out big spikes and get rid of noise
dotPlot(P73709_vector,
P73709_vector,
wsize = 1,
nmatch = 1)
main = … sets a title
I’ll use "Default: wsize = 1, nmatch = 1
dotPlot(P73709_vector,
P73709_vector,
wsize = 1,
nmatch = 1,
main = "Deafult: wsize = 1, nmatch = 1")
We can make a grid of plots with the par() command (we’ll leave this as a black box for now) mfrow sets layout of grid mar sets margins
# set up 2 x 2 grid, make margins things
par(mfrow = c(2,2),
mar = c(0,0,2,1))
# plot 1: Defaults
dotPlot(P73709_vector, P73709_vector,
wsize = 1,
nmatch = 1,
main = "Size = 1, nmatch = 1")
# plot 2 size = 10, nmatch = 1
dotPlot(P73709_vector, P73709_vector,
wsize =10 ,
nmatch =1 ,
main = "Size = 10, nmatch = 1")
# plot 3: size = 10, nmatch = 5
dotPlot(P73709_vector, P73709_vector,
wsize = 10,
nmatch = 5,
main = "Size = 10, nmatch = 5")
# plot 4: size = 20, nmatch = 5
dotPlot(P73709_vector, P73709_vector,
wsize = 20,
nmatch = 5,
main = "Size = 20, nmatch = 5")
# reset par() - run this or other plots will be small!
par(mfrow = c(1,1),
mar = c(4,4,4,4))
wsize = 20, wstep = 1, nmatch = 5
# be sure to run par - re-run just in case
par(mfrow = c(1,1),
mar = c(4,4,4,4))
dotPlot(P73709_vector,
P73709_vector
)
Make new function
dot_plot <- function(seq1, seq2, wsize = 1, wstep = 1, nmatch = 1, col = c("white",
"black"), xlab = deparse(substitute(seq1)), ylab = deparse(substitute(seq2)),
...) {
# make sure input works
if (nchar(seq1[1]) > 1)
stop("seq1 should be provided as a vector of single chars")
if (nchar(seq2[1]) > 1)
stop("seq2 should be provided as a vector of single chars")
if (wsize < 1)
stop("non allowed value for wsize")
if (wstep < 1)
stop("non allowed value for wstep")
if (nmatch < 1)
stop("non allowed value for nmatch")
if (nmatch > wsize)
stop("nmatch > wsize is not allowed")
# internal function
# function defined within a function!
mkwin <- function(seq, wsize, wstep) {
sapply(seq(from = 1, to = length(seq) - wsize + 1, by = wstep),
function(i) c2s(seq[i:(i + wsize - 1)]))
}
wseq1 <- mkwin(seq1, wsize, wstep)
wseq2 <- mkwin(seq2, wsize, wstep)
if (nmatch == wsize) {
xy <- outer(wseq1, wseq2, "==")
}
else {
"%==%" <- function(x, y) colSums(sapply(x, s2c) == sapply(y,
s2c)) >= nmatch
xy <- outer(wseq1, wseq2, "%==%")
}
# compile output in list
out <- list(x = seq(from = 1, to = length(seq1), length = length(wseq1)),
y = seq(from = 1, to = length(seq2), length = length(wseq2)),
z = xy)
}
Use new function, save output (doesn’t autoplot)
my_dot_out <- dot_plot(P73709_vector,
P73709_vector,
wsize = 15,
wstep = 1,
nmatch = 5) # threshold of matches or hits in the window out of 15, only 5 need to match
Get rid of upper triangular portion
my_dot_out$z[lower.tri(my_dot_out$z)] <- FALSE
Do some weird prep (don’t worry about it)
my_dot_out$z <- my_dot_out$z[, nrow(my_dot_out$z):1]
Plot using image() command
# seriously - it will drive you crazy if you forget about this
par(mfrow = c(1,1),
mar = c(4,4,4,4)) # will leave this as a black box for now
# plot with image()
image(x = my_dot_out$x,
y = my_dot_out$y,
z = my_dot_out$z)
P24587 <- rentrez::entrez_fetch(id = "P24587",
db = "protein",
rettype="fasta")
P24587 <- fasta_cleaner(P24587)
length(P24587)
## [1] 714
# Use [ : ] to subset 300 to 400
dotPlot(P24587[300:400],
P24587[300:400],
wsize = 15,
wstep = 1,
nmatch = 5)
P02840 <- rentrez::entrez_fetch(id = "P02840",db = "protein", rettype="fasta")
P02840 <- fasta_cleaner(P02840)
length(P02840)
## [1] 307
# set limit to 80 to 113
dotPlot(P02840[80:113],P02840[80:113],
wsize = 5,
wstep = 1,
nmatch = 5)
P19246 <- rentrez::entrez_fetch(id = "P19246",
db = "protein",
rettype="fasta")
P19246 <- fasta_cleaner(P19246)
length(P19246)
## [1] 1090
# full
dotPlot(P19246,P19246,
wsize = 1,
wstep = 1,
nmatch = 1)
# set limit to 525:550
dotPlot(P19246[525:550],P19246[525:550],
wsize = 1,
wstep = 1,
nmatch = 1)
Q55837 <- rentrez::entrez_fetch(id = "Q55837",
db = "protein",
rettype="fasta")
Q55837 <- fasta_cleaner(Q55837)
dotPlot(Q55837,
Q55837)