Cargando datos

library(readxl)
datosavena <- read_excel("C:/Users/ginna/Desktop/datosavena5/datosavena.xlsx", 
    sheet = "Avena ")
# View(datosavena)

Ejemplo para sacar estadisticos

head(iris)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.5     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.0.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'purrr' was built under R version 4.0.3
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
resum = iris %>% 
  group_by(Species) %>% 
  summarise(m_PW = mean(Petal.Width),
            md_PW = median(Petal.Width),
            v_PW = var(Petal.Width),
            d_PW = sd(Petal.Width),
            min_PW = min(Petal.Width),
            n = n())
resum
## # A tibble: 3 x 7
##   Species     m_PW md_PW   v_PW  d_PW min_PW     n
##   <fct>      <dbl> <dbl>  <dbl> <dbl>  <dbl> <int>
## 1 setosa     0.246   0.2 0.0111 0.105    0.1    50
## 2 versicolor 1.33    1.3 0.0391 0.198    1      50
## 3 virginica  2.03    2   0.0754 0.275    1.4    50
resum %>% 
  ggplot()+
  aes(x = Species, y = m_PW)+
  geom_col()

Datos de avena

library(tidyverse)

resum = datosavena %>% 
  group_by(planta) %>% 
  summarise(m_PW = mean(porcentaje),
            md_PW = median(porcentaje),
            v_PW = var(porcentaje),
            d_PW = sd(porcentaje),
            min_PW = min(porcentaje),
            n = n())
resum
## # A tibble: 5 x 7
##   planta        m_PW md_PW    v_PW  d_PW min_PW     n
##   <chr>        <dbl> <dbl>   <dbl> <dbl>  <dbl> <int>
## 1 amaranthus   24.1   15    458.   21.4       3     8
## 2 avena        10.2   10     50.5   7.11      0     8
## 3 heliotropium  8.25   5     83.1   9.11      0     8
## 4 lolium       26.5   12.5 1119.   33.5       1     8
## 5 rumex         2.12   1      5.84  2.42      0     8
resum %>% 
  ggplot()+
  aes(x = planta, y = m_PW)+
  geom_col()

probando que sucede si agrupo por muestreo

resum = datosavena %>% 
  group_by(Muestreo) %>% 
  summarise(m_PW = mean(porcentaje),
            md_PW = median(porcentaje),
            v_PW = var(porcentaje),
            d_PW = sd(porcentaje),
            min_PW = min(porcentaje),
            n = n())
resum
## # A tibble: 8 x 7
##   Muestreo  m_PW md_PW   v_PW  d_PW min_PW     n
##      <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl> <int>
## 1        1   7       3   66.5  8.15      1     5
## 2        2   7.6     5   70.3  8.38      0     5
## 3        3  13.2     5  351.  18.7       0     5
## 4        4  12.2     5  252.  15.9       1     5
## 5        5  23      20  520   22.8       0     5
## 6        6  21      10 1130   33.6       0     5
## 7        7  22      10 1082.  32.9       0     5
## 8        8   8       5   20    4.47      5     5
resum %>% 
  ggplot()+
  aes(x = Muestreo, y = m_PW)+
  geom_col()

Descargando datos apio 2 muestreo y sacando datos por malezas

library(readxl)
datosapio1 <- read_excel("C:/Users/ginna/Desktop/datosavena5/datosapio1.xlsx", 
    sheet = "rmalezas")
#View(datosapio1)

resum = datosapio1 %>% 
  group_by(planta) %>% 
  summarise(m_PW = mean(densidad),
            md_PW = median(densidad),
            v_PW = var(densidad),
            d_PW = sd(densidad),
            min_PW = min(densidad),
            n = n())
resum
## # A tibble: 13 x 7
##    planta  m_PW md_PW   v_PW  d_PW min_PW     n
##     <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl> <int>
##  1      1 0.333     0  0.5   0.707      0     9
##  2      2 0.222     0  0.194 0.441      0     9
##  3      3 0.778     0  1.94  1.39       0     9
##  4      4 0.222     0  0.194 0.441      0     9
##  5      5 0.111     0  0.111 0.333      0     9
##  6      6 0.222     0  0.444 0.667      0     9
##  7      7 0.111     0  0.111 0.333      0     9
##  8      8 0.111     0  0.111 0.333      0     9
##  9      9 1         0  9     3          0     9
## 10     10 1.11      0 11.1   3.33       0     9
## 11     11 0.111     0  0.111 0.333      0     9
## 12     12 0.111     0  0.111 0.333      0     9
## 13     13 0.111     0  0.111 0.333      0     9
resum %>% 
  ggplot()+
  aes(x = planta, y = m_PW)+
  geom_col()

Datos para mirar estadisticos apio 2 muestreo por altura

library(readxl)
datosapio1 <- read_excel("datosapio1.xlsx", 
    sheet = "rdatos")

# View(datosapio1)
 
resum = datosapio1 %>% 
  group_by(Planta) %>% 
  summarise(m_PW = mean(promedioAltura),
            md_PW = median(promedioAltura),
            v_PW = var(promedioAltura),
            d_PW = sd(promedioAltura),
            min_PW = min(promedioAltura),
            n = n())
resum
## # A tibble: 1 x 7
##   Planta  m_PW md_PW  v_PW  d_PW min_PW     n
##    <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <int>
## 1      1  37.2  39.5  63.1  7.94     24     9

Datos apio primer muestreo por altura

library(readxl)
datosavena <- read_excel("C:/Users/ginna/Desktop/datosavena5/datosavena.xlsx", 
    sheet = "r2apio")
#View(datosavena)

resum = datosavena %>% 
  group_by(planta) %>% 
  summarise(m_PW = mean(promedioAltura),
            md_PW = median(promedioAltura),
            v_PW = var(promedioAltura),
            d_PW = sd(promedioAltura),
            min_PW = min(promedioAltura),
            n = n())
resum
## # A tibble: 1 x 7
##   planta  m_PW md_PW  v_PW  d_PW min_PW     n
##    <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <int>
## 1      1  33.7  31.2  120.  11.0   18.8    11