# Mean: survey design
# Survey design created
survey_design <- df0 %>%
as_survey_design(id=Conglomerado_,
weight = fexp,
strata=strata_)
options(survey.lonely.psu="certainty")
# Subset survey design
survey_design1 <- subset(survey_design,
!is.na(outcome) &!is.na(exposure) & Edad>=15 )
# Mean and 95%CI
survey_design1 %>%
summarize(mean = survey_mean(outcome))
## mean mean_se
## 1 19.81445 0.2964882
# outcome in this case is v_25_OH_Vitamina_D2_D3
survey_design1 %>%
summarize(mean = survey_mean(v_25_OH_Vitamina_D2_D3))
## mean mean_se
## 1 19.81445 0.2964882
survey_design1 %>%
summarize(mean = survey_mean(v_25_OH_Vitamina_D2_D3, vartype = c("se","ci")))
## mean mean_se mean_low mean_upp
## 1 19.81445 0.2964882 19.23262 20.39628
survey_design1 %>%
summarize(mean = survey_mean(v_25_OH_Vitamina_D2_D3, vartype = c("se","ci")),
n = unweighted(n()))
## mean mean_se mean_low mean_upp n
## 1 19.81445 0.2964882 19.23262 20.39628 2859
res_survey <- survey_design1 %>%
summarize(mean = survey_mean(v_25_OH_Vitamina_D2_D3, vartype = c("se","ci")),
n = unweighted(n()))
res_survey
## mean mean_se mean_low mean_upp n
## 1 19.81445 0.2964882 19.23262 20.39628 2859
res_v0 <- survey_design1 %>%
group_by(exposure) %>%
summarize(mean = survey_mean(outcome,
vartype = c("se","ci"),
deff=TRUE),
n = unweighted(n()))
res_v0
## # A tibble: 3 x 7
## exposure mean mean_se mean_low mean_upp mean_deff n
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 Low 19.8 0.605 18.6 21.0 4.08 857
## 2 Mid 19.8 0.367 19.1 20.5 3.24 1391
## 3 High 19.9 0.693 18.5 21.3 3.81 611
res_v1 <- survey_design1 %>%
group_by(Sexo, exposure) %>%
summarize(mean = survey_mean(outcome,
vartype = c("se","ci"),
deff=TRUE),
n = unweighted(n()))
res_v1
## # A tibble: 6 x 8
## # Groups: Sexo [2]
## Sexo exposure mean mean_se mean_low mean_upp mean_deff n
## <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 1 Low 21.6 1.25 19.2 24.1 4.02 239
## 2 1 Mid 19.7 1.26 17.2 22.2 3.41 161
## 3 1 High 21.4 1.21 19.0 23.7 1.93 60
## 4 2 Low 18.9 0.633 17.7 20.2 3.69 618
## 5 2 Mid 19.8 0.385 19.0 20.5 3.23 1230
## 6 2 High 19.7 0.756 18.2 21.2 3.91 551