R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.4     v dplyr   1.0.7
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(dplyr)
library(forcats)
library(patchwork)

Atheletesdf <-  read.csv(paste0("C:/Rdata/EntriesGender.csv"), header=TRUE, sep="|" )
Atheletesdf
##               Discipline Female Male Total
## 1         3x3 Basketball     32   32    64
## 2                Archery     64   64   128
## 3    Artistic Gymnastics     98   98   196
## 4      Artistic Swimming    105    0   105
## 5              Athletics    969 1072  2041
## 6              Badminton     86   87   173
## 7      Baseball/Softball     90  144   234
## 8             Basketball    144  144   288
## 9       Beach Volleyball     48   48    96
## 10                Boxing    102  187   289
## 11          Canoe Slalom     41   41    82
## 12          Canoe Sprint    123  126   249
## 13 Cycling BMX Freestyle     10    9    19
## 14    Cycling BMX Racing     24   24    48
## 15 Cycling Mountain Bike     38   38    76
## 16          Cycling Road     70  131   201
## 17         Cycling Track     90   99   189
## 18                Diving     72   71   143
## 19            Equestrian     73  125   198
## 20               Fencing    107  108   215
## 21              Football    264  344   608
## 22                  Golf     60   60   120
## 23              Handball    168  168   336
## 24                Hockey    192  192   384
## 25                  Judo    192  201   393
## 26                Karate     40   42    82
## 27     Marathon Swimming     25   25    50
## 28     Modern Pentathlon     36   36    72
## 29   Rhythmic Gymnastics     96    0    96
## 30                Rowing    257  265   522
## 31          Rugby Sevens    146  151   297
## 32               Sailing    175  175   350
## 33              Shooting    178  178   356
## 34         Skateboarding     40   40    80
## 35        Sport Climbing     20   20    40
## 36               Surfing     20   20    40
## 37              Swimming    361  418   779
## 38          Table Tennis     86   86   172
## 39             Taekwondo     65   65   130
## 40                Tennis     94   97   191
## 41 Trampoline Gymnastics     16   16    32
## 42             Triathlon     55   55   110
## 43            Volleyball    144  144   288
## 44            Water Polo    122  146   268
## 45         Weightlifting     98   99   197
## 46             Wrestling     96  193   289
#creating new columns
newAtheletesdf <-Atheletesdf%>% 
select(Discipline,Female,Male,Total)%>%  
mutate(female_percent = Female*100/Total, male_percent = Male*100/Total)
newAtheletesdf
##               Discipline Female Male Total female_percent male_percent
## 1         3x3 Basketball     32   32    64       50.00000     50.00000
## 2                Archery     64   64   128       50.00000     50.00000
## 3    Artistic Gymnastics     98   98   196       50.00000     50.00000
## 4      Artistic Swimming    105    0   105      100.00000      0.00000
## 5              Athletics    969 1072  2041       47.47673     52.52327
## 6              Badminton     86   87   173       49.71098     50.28902
## 7      Baseball/Softball     90  144   234       38.46154     61.53846
## 8             Basketball    144  144   288       50.00000     50.00000
## 9       Beach Volleyball     48   48    96       50.00000     50.00000
## 10                Boxing    102  187   289       35.29412     64.70588
## 11          Canoe Slalom     41   41    82       50.00000     50.00000
## 12          Canoe Sprint    123  126   249       49.39759     50.60241
## 13 Cycling BMX Freestyle     10    9    19       52.63158     47.36842
## 14    Cycling BMX Racing     24   24    48       50.00000     50.00000
## 15 Cycling Mountain Bike     38   38    76       50.00000     50.00000
## 16          Cycling Road     70  131   201       34.82587     65.17413
## 17         Cycling Track     90   99   189       47.61905     52.38095
## 18                Diving     72   71   143       50.34965     49.65035
## 19            Equestrian     73  125   198       36.86869     63.13131
## 20               Fencing    107  108   215       49.76744     50.23256
## 21              Football    264  344   608       43.42105     56.57895
## 22                  Golf     60   60   120       50.00000     50.00000
## 23              Handball    168  168   336       50.00000     50.00000
## 24                Hockey    192  192   384       50.00000     50.00000
## 25                  Judo    192  201   393       48.85496     51.14504
## 26                Karate     40   42    82       48.78049     51.21951
## 27     Marathon Swimming     25   25    50       50.00000     50.00000
## 28     Modern Pentathlon     36   36    72       50.00000     50.00000
## 29   Rhythmic Gymnastics     96    0    96      100.00000      0.00000
## 30                Rowing    257  265   522       49.23372     50.76628
## 31          Rugby Sevens    146  151   297       49.15825     50.84175
## 32               Sailing    175  175   350       50.00000     50.00000
## 33              Shooting    178  178   356       50.00000     50.00000
## 34         Skateboarding     40   40    80       50.00000     50.00000
## 35        Sport Climbing     20   20    40       50.00000     50.00000
## 36               Surfing     20   20    40       50.00000     50.00000
## 37              Swimming    361  418   779       46.34146     53.65854
## 38          Table Tennis     86   86   172       50.00000     50.00000
## 39             Taekwondo     65   65   130       50.00000     50.00000
## 40                Tennis     94   97   191       49.21466     50.78534
## 41 Trampoline Gymnastics     16   16    32       50.00000     50.00000
## 42             Triathlon     55   55   110       50.00000     50.00000
## 43            Volleyball    144  144   288       50.00000     50.00000
## 44            Water Polo    122  146   268       45.52239     54.47761
## 45         Weightlifting     98   99   197       49.74619     50.25381
## 46             Wrestling     96  193   289       33.21799     66.78201
## Group By
newAtheletesdf%>% 
group_by(Discipline) 
## # A tibble: 46 x 6
## # Groups:   Discipline [46]
##    Discipline          Female  Male Total female_percent male_percent
##    <chr>                <int> <int> <int>          <dbl>        <dbl>
##  1 3x3 Basketball          32    32    64           50           50  
##  2 Archery                 64    64   128           50           50  
##  3 Artistic Gymnastics     98    98   196           50           50  
##  4 Artistic Swimming      105     0   105          100            0  
##  5 Athletics              969  1072  2041           47.5         52.5
##  6 Badminton               86    87   173           49.7         50.3
##  7 Baseball/Softball       90   144   234           38.5         61.5
##  8 Basketball             144   144   288           50           50  
##  9 Beach Volleyball        48    48    96           50           50  
## 10 Boxing                 102   187   289           35.3         64.7
## # ... with 36 more rows
##Plotting and displaying plots next to each other using patch
p1 <- newAtheletesdf%>% 
  ggplot(aes(x = Discipline, y = female_percent)) + 
    geom_col(fill = "lightblue") + 
    labs(x = "Discipline", y = "female_percent", 
           caption = "https://en.wikipedia.org/wiki/Atheletesfemale_percent") 
p2 <- newAtheletesdf%>% 
  ggplot(aes(x = Discipline, y = male_percent,male_percent)) + 
    geom_col(fill = "lightblue") + 
    labs(x = "Discipline", y = "female_percent,male_percent,", 
           caption = "https://en.wikipedia.org/wiki/Atheletesfemale_male_percent") 
p1 + p2

## flipping coordinates
p3 <- newAtheletesdf%>% 
  ggplot(aes(x = Discipline, y = female_percent)) + 
    geom_col(fill = "lightblue") + 
    labs(x = "Discipline", y = "female_percent", 
           caption = "https://en.wikipedia.org/wiki/Atheletesfemale_percent") + coord_flip()
p4 <- newAtheletesdf%>% 
  ggplot(aes(x = Discipline, y = male_percent,male_percent)) + 
    geom_col(fill = "lightblue") + 
    labs(x = "Discipline", y = "female_percent,male_percent,", 
           caption = "https://en.wikipedia.org/wiki/Atheletesfemale_male_percent") + coord_flip()
p3 + p4

# ordered by Discipline


newAtheletesdf%>% 
  ggplot(aes(x = fct_reorder(Discipline,female_percent), y = female_percent)) + 
    geom_col(fill = "lightblue") + 
    labs(x = "Discipline", y = "female_percent", 
           caption = "https://en.wikipedia.org/wiki/Atheletesfemale_percent") + coord_flip()

```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.