Exploratory analysis

#downloads the file from the database and then loads it

download.file("http://www.openintro.org/stat/data/nc.RData", destfile = "nc.RData")
load("nc.RData")

Exercise 1

What are the cases in this data set? How many cases are there in our sample?

The cases in the data set are the babies. There are 1000 cases in the sample.

summary(nc)
##       fage            mage            mature        weeks             premie   
##  Min.   :14.00   Min.   :13   mature mom :133   Min.   :20.00   full term:846  
##  1st Qu.:25.00   1st Qu.:22   younger mom:867   1st Qu.:37.00   premie   :152  
##  Median :30.00   Median :27                     Median :39.00   NA's     :  2  
##  Mean   :30.26   Mean   :27                     Mean   :38.33                  
##  3rd Qu.:35.00   3rd Qu.:32                     3rd Qu.:40.00                  
##  Max.   :55.00   Max.   :50                     Max.   :45.00                  
##  NA's   :171                                    NA's   :2                      
##      visits            marital        gained          weight      
##  Min.   : 0.0   married    :386   Min.   : 0.00   Min.   : 1.000  
##  1st Qu.:10.0   not married:613   1st Qu.:20.00   1st Qu.: 6.380  
##  Median :12.0   NA's       :  1   Median :30.00   Median : 7.310  
##  Mean   :12.1                     Mean   :30.33   Mean   : 7.101  
##  3rd Qu.:15.0                     3rd Qu.:38.00   3rd Qu.: 8.060  
##  Max.   :30.0                     Max.   :85.00   Max.   :11.750  
##  NA's   :9                        NA's   :27                      
##  lowbirthweight    gender          habit          whitemom  
##  low    :111    female:503   nonsmoker:873   not white:284  
##  not low:889    male  :497   smoker   :126   white    :714  
##                              NA's     :  1   NA's     :  2  
##                                                             
##                                                             
##                                                             
## 

Exercise 2

Make a side-by-side boxplot of habit and weight. What does the plot highlight about the relationship between these two variables?

Based on the plots the the plots have similar IQR ranges and the non smoker habit has more outliers compared to the smoker habits.

##code for boxplot using nc$ because that is how R looks at the graph and then does it 
##boxplot(y~x) habit is catergorical so it is on the x

boxplot(nc$weight ~ nc$habit )

##comparing means of distribution
by(nc$weight, nc$habit, mean)
## nc$habit: nonsmoker
## [1] 7.144273
## ------------------------------------------------------------ 
## nc$habit: smoker
## [1] 6.82873

Inference

Exercise 3

Check if the conditions necessary for inference are satisfied. Note that you will need to obtain sample sizes to check the conditions. You can compute the group size using the same by command above but replacing mean with length.

The samples sizes are large enough so it is basically symetric. The two groups are also independent and the sample was randomly chosen so they are independent.

by(nc$weight, nc$habit, length)
## nc$habit: nonsmoker
## [1] 873
## ------------------------------------------------------------ 
## nc$habit: smoker
## [1] 126

Exercise 4

Write the hypotheses for testing if the average weights of babies born to smoking and non-smoking mothers are different.

Ho - \(\mu\) habit = \(\mu\) weight Ha - \(\mu\) habit \(\neq\) \(\mu\) weight

inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
## 
## H0: mu_nonsmoker - mu_smoker = 0 
## HA: mu_nonsmoker - mu_smoker != 0 
## Standard error = 0.134 
## Test statistic: Z =  2.359 
## p-value =  0.0184

Exercise 5

Change the type argument to “ci” to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.

inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862

## Observed difference between means (nonsmoker-smoker) = 0.3155
## 
## Standard error = 0.1338 
## 95 % Confidence interval = ( 0.0534 , 0.5777 )