#Chapter 4 HW

##Question 10

10a)Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
library(class)
library(MASS)
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000
plot(Weekly)

10b)Perform a logistic regression with Directions as the response & five lag variables plus Volume as predictors. Use summary to print results. Do any of the predictors appear to be statistically significant?

glm.fit = glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data = Weekly, family = binomial)
summary(glm.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Lag2 is significant

10c)Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glm.probs = predict(glm.fit, type = "response")
glm.pred = rep("Down",length(glm.probs))
glm.pred[glm.probs>.5]="up"
table(glm.pred, Weekly$Direction)
##         
## glm.pred Down  Up
##     Down   54  48
##     up    430 557

When the market is going up, the logistic regression prediction is right 91.12% of the time. When the market goes down the regression prediction was right 52.94% of the time.

10d)Fit the logistic regression model using training data period 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct for the held out data.

attach(Weekly)
train = (Year < 2009)
Weekly.90 = Weekly[!train,]
glm.fit2 = glm(Direction~Lag2, data = Weekly, family = binomial, subset = train)
glm.prob1 = predict(glm.fit2, Weekly.90, type = "response")
glm.pred1 = rep("Down", length(glm.prob1))
glm.pred1[glm.prob1 > .5] = "Up"
Direction.90 = Direction[!train]
table(glm.pred1, Direction.90)
##          Direction.90
## glm.pred1 Down Up
##      Down    9  5
##      Up     34 56
mean(glm.pred == Direction.90)
## Warning in `==.default`(glm.pred, Direction.90): longer object length is not a
## multiple of shorter object length
## Warning in is.na(e1) | is.na(e2): longer object length is not a multiple of
## shorter object length
## [1] 0.03581267
detach(Weekly)

10e)Repeat d using LDA

attach(Weekly.90)
lda.fit = lda(Direction ~ Lag2, data = Weekly, subset = train)
lda.pred = predict(lda.fit, Weekly.90)
table(lda.pred$class, Direction.90)
##       Direction.90
##        Down Up
##   Down    9  5
##   Up     34 56
mean(lda.pred$class == Direction.90)
## [1] 0.625
detach(Weekly.90)

The overall accuracy for predicting up is FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE

10f)Repeat d using QDA

qda.fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
qda.class = predict(qda.fit, Weekly.90)$class
table(qda.class, Direction.90)
##          Direction.90
## qda.class Down Up
##      Down    0  0
##      Up     43 61
qda.class == Direction.90
##   [1] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
##  [13]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [25] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
##  [37]  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
##  [49]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [61]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [73]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
##  [85] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [97] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE

Overall accuracy is 70%

10g)Repeat d using KNN with K = 1

attach(Weekly)
train.X = as.matrix(Lag2[train])
test.X = as.matrix(Lag2[!train])
train.Direction = Direction[train]
set.seed(1)
knn.pred = knn(train.X, test.X, train.Direction, k=1)
table(knn.pred, Direction.90)
##         Direction.90
## knn.pred Down Up
##     Down   21 30
##     Up     22 31
detach(Weekly)

10h)

10i)

# Logistic regression with Lag2:Lag1
attach(Weekly.90)
glm.fit3 = glm(Direction ~ Lag2:Lag1, data = Weekly, family = binomial, subset = train)
glm.probs1 = predict(glm.fit3, Weekly.90, type = "response")
glm.pred = rep("Down", length(glm.probs1))
glm.pred[glm.probs1 > 0.5] = "Up"
Direction.90 = Weekly$Direction[!train]
table(glm.pred, Direction.90)
##         Direction.90
## glm.pred Down Up
##     Down    1  1
##     Up     42 60
# LDA with Lag2 interaction with Lag1
lda.fit3 = lda(Direction ~ Lag2:Lag1, data = Weekly, subset = train)
lda.pred = predict(lda.fit3, Weekly.90)
mean(lda.pred$class == Direction.90)
## [1] 0.5769231

11

library(ISLR)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365

11a)Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

mpg01 = rep(0, length(Auto$mpg))
mpg01[Auto$mpg > median(Auto$mpg)] = 1
auto = data.frame(Auto, mpg01)

11b)xplore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01?

cor(auto[,-9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
pairs(auto)

11c)Split the data into a training set and test set

train = (auto$year%%2 == 0)
test = !train
auto.train = auto[train, ]
auto.test = auto[test, ]
mpg01.test = mpg01[test]

11d)Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

lda.fita = lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = auto, subset = train)
lda.preda = predict(lda.fita, auto.test)
mean(lda.preda$class != mpg01.test)
## [1] 0.1263736

11e)Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

qda.fita = qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = auto, subset = train)
qda.preda = predict(qda.fita, auto.test)
mean(qda.preda$class != mpg01.test)
## [1] 0.1318681

11f)Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

glm.fita = glm(mpg01 ~ cylinders + weight + displacement + horsepower, data = auto, subset = train)
glm.probsa = predict(glm.fita, auto.test, type = "response")
glm.preda = rep(0, length(glm.probsa))
glm.preda[glm.probsa > 0.5] = 1
mean(glm.preda != mpg01.test)
## [1] 0.1263736

11g)Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

attach(auto)
## The following object is masked _by_ .GlobalEnv:
## 
##     mpg01
train.xa = cbind(cylinders, weight, displacement, horsepower)[train,]
test.XA = cbind(cylinders, weight, displacement, horsepower)[test,]
train.mpg01 = mpg01[train]
set.seed(1)
knn.preda = knn(train.xa, test.XA, train.mpg01, k = 1)
mean(knn.preda != mpg01.test)
## [1] 0.1538462
detach(auto)
knn.preda2 = knn(train.xa, test.XA, train.mpg01, k = 50)
mean(knn.preda2 != mpg01.test)
## [1] 0.1483516
knn.preda3 = knn(train.xa, test.XA, train.mpg01, k = 1)
mean(knn.preda3 != mpg01.test)
## [1] 0.1538462

K with 50 seems to be the best at .148 error rate

13)Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

attach(Boston)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
crime01 = rep(0, length(crim))
crime01[crim > median(crim)] = 1
boston = data.frame(Boston, crime01)

train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train = Boston[train, ]
Boston.test = Boston[test, ]
crime01.test = crime01[test]
#Logistic Regression
glm.fit = glm(crime01 ~ . - crime01 - crim, data = Boston, family = binomial, 
    subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs = predict(glm.fit, Boston.test, type = "response")
glm.pred = rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
mean(glm.pred != crime01.test)
## [1] 0.1818182
glm.fit = glm(crime01 ~ . - crime01 - crim - chas - tax, data = Boston, family = binomial, 
    subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs = predict(glm.fit, Boston.test, type = "response")
glm.pred = rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
mean(glm.pred != crime01.test)
## [1] 0.1857708
# LDA
lda.fit = lda(crime01 ~ . - crime01 - crim, data = Boston, subset = train)
lda.pred = predict(lda.fit, Boston.test)
mean(lda.pred$class != crime01.test)
## [1] 0.1343874
# LDA
lda.fit = lda(crime01 ~ . - crime01 - crim, data = Boston, subset = train)
lda.pred = predict(lda.fit, Boston.test)
mean(lda.pred$class != crime01.test)
## [1] 0.1343874
lda.fit = lda(crime01 ~ . - crime01 - crim - chas - tax, data = Boston, subset = train)
lda.pred = predict(lda.fit, Boston.test)
mean(lda.pred$class != crime01.test)
## [1] 0.1225296
lda.fit = lda(crime01 ~ . - crime01 - crim - chas - tax - lstat - indus - age, 
data = Boston, subset = train)
lda.pred = predict(lda.fit, Boston.test)
mean(lda.pred$class != crime01.test)
## [1] 0.1185771
train.X = cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, 
lstat, medv)[train, ]
test.X = cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, 
lstat, medv)[test, ]
train.crime01 = crime01[train]
set.seed(1)
knn.pred = knn(train.X, test.X, train.crime01, k = 1)
mean(knn.pred != crime01.test)
## [1] 0.458498
knn.pred = knn(train.X, test.X, train.crime01, k = 1)
mean(knn.pred != crime01.test)
## [1] 0.458498
# KNN(k=10) with subset of variables
train.X = cbind(zn, nox, rm, dis, rad, ptratio, black, medv)[train, ]
test.X = cbind(zn, nox, rm, dis, rad, ptratio, black, medv)[test, ]
knn.pred = knn(train.X, test.X, train.crime01, k = 10)
mean(knn.pred != crime01.test)
## [1] 0.2766798