#install.packages("pacman") #jau izdarīts, vairs nav jāatkārto
pacman::p_load(tidyverse,
janitor,
MatchIt,
gtsummary, # for tables
table1,
tableone,
survival,
scales,
ggpubr,
RColorBrewer,
ggmap,
geojsonR,
leaflet,
rgdal,
sf,
sjPlot,
viridis) # paleta de colores
theme_set(ggpubr::theme_pubclean()) # define the theme for all graphs
Datu ceļš no zobārstiem līdz analīzei: 1. Izsūtītas anketas elektroniskā formātā 1092 zobārstiem, iegūtas 235 aizpildītas anketas 2. Izdalītas 294 anketas konferenču laikā (244 LZA Bērnu zobārstniecības sēdē 17.-18. septembrī un Zobārstniecības un 50 Estētikas Apmācības centra (ZAEC) rīkotajos privātajos kursos septembra un oktobra laikā), iegūtas 129 anketas no LZA sēdes un 9 no ZAEC. 3. Papīra formāta anketas ievadītas un pārbaudītas (pārbaudot katru desmito anketu, netika atrasta neviena kļūda). 4. Kopā iegūti dati no 373 anketām.
Manipulācijas ar datiem pirms csv faila izveides: 1. Jautājumi no 5. līdz 8. pārkopēti un kodēti sekojoši: 5. jautājums no 0 līdz 5 (0=izgaismojums iekšējā dentīna trešdaļā) 6. jautājums no 0 līdz 4 (0=Ievērojams zoba audu zudums un / vai rentgenoloģiski kariesa pazīmes redzamas līdz iekšējai dentīna trešdaļai) 7. un 8. jautājums no 0 līdz 3 (0=Neveiktu nekādu ārstēšanu; 1=Aplicētu fluorīdu laku vai Aplicētu silantu; 2=Veidotu kavitāti, izņemot tikai kariozos audus, atjaunotu ar restaurāciju + pārējās fisūras slēgtu ar silantu vai Veidotu kavitāti, izņemot tikai kariozos audus, atjaunotu ar restaurāciju; 3=Veidotu kavitāti, iekļaujot visas fisūras, atjaunotu ar restaurāciju) 2. Papīra formātos trūka 7 dati, lai aprēķinātu invazivitāti. Katrs gadījums tika atsevišķi izvērtēts, trūkstošie dati aizpildīti ar vērtību, kas veidojās kā vidējā vērtība no citiem jautājumiem (5. līdz 8.). Ja trūka 7., bet bija 8. vai otrādi, trūkstošais tika aizpildīts ar to pašu vērtību, kāda bija otra atbilde. 3. Eksperti izlēma, ka visos jautājumos, lai zobārstu klasificētu kā neinvazīvu, atbildēm jābūt 0 vai 1, kopā maksimālais punktu skaits neinvazīvam zobārstam var būt 4. 4. Kodi tika summēti divējādi: a) visu četru jautājumu kodi vienkārši saskaitīti. Ja iegūst skaitli, kas lielāks par 4, Invazīvs, ja 4 vai mazāk, neinvazīvs. Šo mainīgo nosaucu par Invazivs1. b) katram jautājumam tika dihotomizēti kodi: 0-ja atbilde ir 0 vai 1 un 1, ja atbilde ir lielāka par 1. Tad atkal rezultāti tika saskaitīti, iegūstot Summa2, kur “0” ir, ja ir neinvazīvs, “1-3” - ja invazīvs. Šo mainīgo nosaucu par Invazivs2. 5. Tika pārbaudīts, kādu specialitāšu zobārsti ir aizpildījuši anketas. Noskaidrots, ka 16 kā specialitāti bija nosaukuši vispārējo zobārstniecību, zobārstu vai stomatologu, līdz ar to šie dati tika izlaboti. 3. jautājumā pārlabots uz “Nē” un izdzēsta 3a atbilde.
df <- read_csv("Anketa_zobarstiem_covid.csv")
df <- janitor::clean_names(df) #lai nosaukumi parādītos arī datu režģī
df <- df %>%
mutate(
x10_jaut_ekstrakcija = fct_relevel(
x10_jaut_ekstrakcija,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x10_jaut_ekstrakcija = fct_recode(
x10_jaut_ekstrakcija,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
)
df <- df %>%
mutate(
x10_jaut_selektiva = fct_relevel(
x10_jaut_selektiva,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x10_jaut_selektiva = fct_recode(
x10_jaut_selektiva,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
)
df <- df %>%
mutate(
x10_jaut_sdf = fct_relevel(
x10_jaut_sdf,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x10_jaut_sdf = fct_recode(
x10_jaut_sdf,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
)
df <- df %>%
mutate(
x10_jaut_hall = fct_relevel(
x10_jaut_hall,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x10_jaut_hall = fct_recode(
x10_jaut_hall,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
)
df <- df %>%
mutate(
x10_jaut_nerestorativa = fct_relevel(
x10_jaut_nerestorativa,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x10_jaut_nerestorativa = fct_recode(
x10_jaut_nerestorativa,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
)
df <- df %>%
mutate(
x11_jaut_ekstrakcija = fct_relevel(
x11_jaut_ekstrakcija,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x11_jaut_ekstrakcija = fct_recode(
x11_jaut_ekstrakcija,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
)
df <- df %>%
mutate(
x11_jaut_selektiva = fct_relevel(
x11_jaut_selektiva,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x11_jaut_selektiva = fct_recode(
x11_jaut_selektiva,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
)
df <- df %>%
mutate(
x11_jaut_sdf = fct_relevel(
x11_jaut_sdf,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x11_jaut_sdf = fct_recode(
x11_jaut_sdf,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x11_jaut_silanti = fct_relevel(
x11_jaut_silanti,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x11_jaut_silanti = fct_recode(
x11_jaut_silanti,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x11_jaut_nerestorativa = fct_relevel(
x11_jaut_nerestorativa,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x11_jaut_nerestorativa = fct_recode(
x11_jaut_nerestorativa,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_ekstrakcija = fct_relevel(
x13_jaut_ekstrakcija,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_ekstrakcija = fct_recode(
x13_jaut_ekstrakcija,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_selektiva = fct_relevel(
x13_jaut_selektiva,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_selektiva = fct_recode(
x13_jaut_selektiva,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_sdf = fct_relevel(
x13_jaut_sdf,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_sdf = fct_recode(
x13_jaut_sdf,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_hall = fct_relevel(
x13_jaut_hall,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_hall = fct_recode(
x13_jaut_hall,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_nerestorativa = fct_relevel(
x13_jaut_nerestorativa,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_nerestorativa = fct_recode(
x13_jaut_nerestorativa,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_tradicionala = fct_relevel(
x13_jaut_tradicionala,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x13_jaut_tradicionala = fct_recode(
x13_jaut_tradicionala,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_ekstrakcija = fct_relevel(
x14_jaut_ekstrakcija,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_ekstrakcija = fct_recode(
x14_jaut_ekstrakcija,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_selektiva = fct_relevel(
x14_jaut_selektiva,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_selektiva = fct_recode(
x14_jaut_selektiva,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_sdf = fct_relevel(
x14_jaut_sdf,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_sdf = fct_recode(
x14_jaut_sdf,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_silanti = fct_relevel(
x14_jaut_silanti,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_silanti = fct_recode(
x14_jaut_silanti,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_nerestorativa = fct_relevel(
x14_jaut_nerestorativa,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_nerestorativa = fct_recode(
x14_jaut_nerestorativa,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_tradicionala = fct_relevel(
x14_jaut_tradicionala,
"Neizmantotu" ,
"Maz ticams, ka izmantotu",
"Liekas, ka izmantotu",
"Noteikti izmantotu"
)
) %>%
mutate(
x14_jaut_tradicionala = fct_recode(
x14_jaut_tradicionala,
"Definitely no" = "Neizmantotu" ,
"Unlikely" = "Maz ticams, ka izmantotu",
"Likely" = "Liekas, ka izmantotu",
"Definitely yes" = "Noteikti izmantotu"
)
)
df$x1_jusu_dzimums <-
factor(df$x1_jusu_dzimums,
labels = c("Female",
"Male"))
df$x3_vai_esat_ieguvis_specialista_gradu <-
factor(df$x3_vai_esat_ieguvis_specialista_gradu,
labels = c("Yes",
"No"))
df$x4_vai_jus_arstejat_mazus_bernus_piena_zobus <-
factor(df$x4_vai_jus_arstejat_mazus_bernus_piena_zobus,
labels = c("Adults and children equaly",
"Small children very rare",
"Only adults"))
df$invazivs1 <-
factor(df$invazivs1,
labels = c("Traditional",
"Minimally invasive"))
df$invazivs2 <-
factor(df$invazivs2,
labels = c("Traditional",
"Minimally invasive"))
df$x9_jaut <-
factor(df$x9_jaut,
labels = c("Would not attend",
"Emergency care",
"Normal care"))
df$x12_jaut <-
factor(df$x12_jaut,
labels = c("Would not attend",
"Emergency care",
"Normal care"))
df$x7_jaut_kods <-
factor(df$x7_jaut_kods,
labels = c("No treatment",
"F varnish or sealant",
"Restoration"))
df$x8_jaut_kods <-
factor(df$x8_jaut_kods,
labels = c("No treatment",
"F varnish or sealant",
"Restoration"))
label(df$x1_jusu_dzimums) <- "Gender"
label(df$x2_gads_kura_ieguvat_zobarsta_gradu) <- "Graduation year"
label(df$x3_vai_esat_ieguvis_specialista_gradu) <- "Specialist degree"
label(df$x4_vai_jus_arstejat_mazus_bernus_piena_zobus) <- "Type of patients"
label(df$invazivs1) <- "Type of treatment approach 1"
label(df$invazivs2) <- "Type of treatment approach 2"
label(df$x9_jaut) <- "If aerosol-generating procedures would be banned, what kind of care would you provide in your clinic?"
label(df$x10_jaut_ekstrakcija) <- "Aerosol-generating procedures banned - caries in deciduous teeth - extraction"
label(df$x10_jaut_selektiva) <- "Aerosol-generating procedures banned - caries in deciduous teeth - selective caries removal with hand instruments"
label(df$x10_jaut_hall) <- "Aerosol-generating procedures banned - caries in deciduous teeth - Hall crowns"
label(df$x10_jaut_sdf) <- "Aerosol-generating procedures banned - caries in deciduous teeth - SDF or similar fluoride treatment"
label(df$x10_jaut_nerestorativa) <- "Aerosol-generating procedures banned - caries in deciduous teeth - nonrestorative treatment"
label(df$x11_jaut_ekstrakcija) <- "Aerosol-generating procedures banned - caries in permanent teeth - extraction"
label(df$x11_jaut_selektiva) <- "Aerosol-generating procedures banned - caries in permanent teeth - selective caries removal with hand instruments"
label(df$x11_jaut_silanti) <- "Aerosol-generating procedures banned - caries in permanent teeth - sealants"
label(df$x11_jaut_sdf) <- "Aerosol-generating procedures banned - caries in permanent teeth - SDF or similar fluoride treatment"
label(df$x11_jaut_nerestorativa) <- "Aerosol-generating procedures banned - caries in permanent teeth - nonrestorative treatment"
label(df$x12_jaut) <- "If you would receive recommendation not to use aerosol-generating procedures, what kind of care would you provide in your clinic?"
label(df$x13_jaut_ekstrakcija) <- "Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - extraction"
label(df$x13_jaut_selektiva) <- "Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - selective caries removal with hand instruments"
label(df$x13_jaut_hall) <- "Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - Hall crowns"
label(df$x13_jaut_sdf) <- "Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - SDF or similar fluoride treatment"
label(df$x13_jaut_tradicionala) <- "Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - traditional restorative treatment"
label(df$x13_jaut_nerestorativa) <- "Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - nonrestorative treatment"
label(df$x14_jaut_ekstrakcija) <- "Recommendation not to use aerosol-generating procedures - caries in permanent teeth - extraction"
label(df$x14_jaut_selektiva) <- "Recommendation not to use aerosol-generating procedures - caries in permanent teeth - selective caries removal with hand instruments"
label(df$x14_jaut_silanti) <- "Recommendation not to use aerosol-generating procedures - caries in permanent teeth - sealants"
label(df$x14_jaut_sdf) <- "Recommendation not to use aerosol-generating procedures - caries in permanent teeth - SDF or similar fluoride treatment"
label(df$x14_jaut_nerestorativa) <- "Recommendation not to use aerosol-generating procedures - caries in permanent teeth - nonrestorative treatment"
label(df$x14_jaut_tradicionala) <- "Recommendation not to use aerosol-generating procedures - caries in permanent teeth - traditional restorative treatment"
label(df$x7_jaut_kods) <- "Treatment choice"
label(df$x8_jaut_kods) <- "Treatment choice"
df <- df %>%
rowid_to_column("ID")
#EDA
head(df)
dim(df)
## [1] 373 49
df %>%
count(x2_gads_kura_ieguvat_zobarsta_gradu)
names(df)
## [1] "ID"
## [2] "timestamp"
## [3] "x1_jusu_dzimums"
## [4] "x2_gads_kura_ieguvat_zobarsta_gradu"
## [5] "x3_vai_esat_ieguvis_specialista_gradu"
## [6] "x3_a_kadas_specialitates_gradu_esat_ieguvis"
## [7] "x4_vai_jus_arstejat_mazus_bernus_piena_zobus"
## [8] "x5_jaut"
## [9] "x6_jaut"
## [10] "x7_jaut"
## [11] "x8_jaut"
## [12] "x9_jaut"
## [13] "x10_jaut_ekstrakcija"
## [14] "x10_jaut_selektiva"
## [15] "x10_jaut_hall"
## [16] "x10_jaut_sdf"
## [17] "x10_jaut_nerestorativa"
## [18] "x11_jaut_ekstrakcija"
## [19] "x11_jaut_selektiva"
## [20] "x11_jaut_silanti"
## [21] "x11_jaut_sdf"
## [22] "x11_jaut_nerestorativa"
## [23] "x12_jaut"
## [24] "x13_jaut_ekstrakcija"
## [25] "x13_jaut_tradicionala"
## [26] "x13_jaut_selektiva"
## [27] "x13_jaut_hall"
## [28] "x13_jaut_sdf"
## [29] "x13_jaut_nerestorativa"
## [30] "x14_jaut_ekstrakcija"
## [31] "x14_jaut_tradicionala"
## [32] "x14_jaut_selektiva"
## [33] "x14_jaut_silanti"
## [34] "x14_jaut_sdf"
## [35] "x14_jaut_nerestorativa"
## [36] "vai_jus_interesetu_kursi_par_sim_neinvazivam_un_minimali_invazivam_kariesa_arstesanas_metodem"
## [37] "daudzums"
## [38] "invazivs1"
## [39] "kodu_summa"
## [40] "x5_jaut_kods"
## [41] "x6_jaut_kods"
## [42] "x7_jaut_kods"
## [43] "x8_jaut_kods"
## [44] "x5kods_dihotoms"
## [45] "x6kods_dihotoms"
## [46] "x7kods_dihotoms"
## [47] "x8kods_dihotoms"
## [48] "summa2"
## [49] "invazivs2"
table1::table1(
~ x1_jusu_dzimums + x3_vai_esat_ieguvis_specialista_gradu + x4_vai_jus_arstejat_mazus_bernus_piena_zobus + invazivs1 + invazivs2 ,
data = df
)
Overall (N=373) |
|
---|---|
Gender | |
Female | 344 (92.2%) |
Male | 29 (7.8%) |
Specialist degree | |
Yes | 29 (7.8%) |
No | 344 (92.2%) |
Type of patients | |
Adults and children equaly | 223 (59.8%) |
Small children very rare | 67 (18.0%) |
Only adults | 81 (21.7%) |
Missing | 2 (0.5%) |
Type of treatment approach 1 | |
Traditional | 266 (71.3%) |
Minimally invasive | 107 (28.7%) |
Type of treatment approach 2 | |
Traditional | 321 (86.1%) |
Minimally invasive | 52 (13.9%) |
Years from graduation
df %>%
mutate(years = 2020 - x2_gads_kura_ieguvat_zobarsta_gradu) %>%
ggplot(aes(x = years)) +
geom_histogram(bins = 10)
df %>%
drop_na(x2_gads_kura_ieguvat_zobarsta_gradu) %>%
mutate(years = 2020 - x2_gads_kura_ieguvat_zobarsta_gradu) %>%
summarise(average = mean(years), sd = sd(years), min = min(years), max = max(years))
Table 1
df %>%
mutate(years = 2020 - x2_gads_kura_ieguvat_zobarsta_gradu) %>%
select(
x1_jusu_dzimums, x3_vai_esat_ieguvis_specialista_gradu, x4_vai_jus_arstejat_mazus_bernus_piena_zobus, years
) %>%
gtsummary::tbl_summary()
Characteristic | N = 3731 |
---|---|
Gender | |
Female | 344 (92%) |
Male | 29 (7.8%) |
Specialist degree | 29 (7.8%) |
Type of patients | |
Adults and children equaly | 223 (60%) |
Small children very rare | 67 (18%) |
Only adults | 81 (22%) |
Unknown | 2 |
Graduation year | 24 (10, 34) |
Unknown | 1 |
1
Statistics presented: n (%); Median (IQR)
|
table1::table1(
~ x12_jaut + x13_jaut_ekstrakcija + x13_jaut_tradicionala + x13_jaut_selektiva + x13_jaut_hall + x13_jaut_sdf + x13_jaut_nerestorativa + x14_jaut_ekstrakcija + x14_jaut_tradicionala + x14_jaut_selektiva + x14_jaut_silanti + x14_jaut_sdf + x14_jaut_nerestorativa |
invazivs1 ,
data = df
)
Traditional (N=266) |
Minimally invasive (N=107) |
Overall (N=373) |
|
---|---|---|---|
If you would receive recommendation not to use aerosol-generating procedures, what kind of care would you provide in your clinic? | |||
Would not attend | 25 (9.4%) | 12 (11.2%) | 37 (9.9%) |
Emergency care | 137 (51.5%) | 59 (55.1%) | 196 (52.5%) |
Normal care | 96 (36.1%) | 35 (32.7%) | 131 (35.1%) |
Missing | 8 (3.0%) | 1 (0.9%) | 9 (2.4%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - extraction | |||
Definitely no | 174 (65.4%) | 74 (69.2%) | 248 (66.5%) |
Unlikely | 38 (14.3%) | 15 (14.0%) | 53 (14.2%) |
Likely | 23 (8.6%) | 8 (7.5%) | 31 (8.3%) |
Definitely yes | 15 (5.6%) | 9 (8.4%) | 24 (6.4%) |
Missing | 16 (6.0%) | 1 (0.9%) | 17 (4.6%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - traditional restorative treatment | |||
Definitely no | 74 (27.8%) | 43 (40.2%) | 117 (31.4%) |
Unlikely | 95 (35.7%) | 32 (29.9%) | 127 (34.0%) |
Likely | 51 (19.2%) | 16 (15.0%) | 67 (18.0%) |
Definitely yes | 27 (10.2%) | 15 (14.0%) | 42 (11.3%) |
Missing | 19 (7.1%) | 1 (0.9%) | 20 (5.4%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - selective caries removal with hand instruments | |||
Definitely no | 17 (6.4%) | 12 (11.2%) | 29 (7.8%) |
Unlikely | 38 (14.3%) | 15 (14.0%) | 53 (14.2%) |
Likely | 96 (36.1%) | 25 (23.4%) | 121 (32.4%) |
Definitely yes | 105 (39.5%) | 55 (51.4%) | 160 (42.9%) |
Missing | 10 (3.8%) | 0 (0%) | 10 (2.7%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - Hall crowns | |||
Definitely no | 111 (41.7%) | 47 (43.9%) | 158 (42.4%) |
Unlikely | 74 (27.8%) | 34 (31.8%) | 108 (29.0%) |
Likely | 35 (13.2%) | 14 (13.1%) | 49 (13.1%) |
Definitely yes | 21 (7.9%) | 11 (10.3%) | 32 (8.6%) |
Missing | 25 (9.4%) | 1 (0.9%) | 26 (7.0%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - SDF or similar fluoride treatment | |||
Definitely no | 29 (10.9%) | 22 (20.6%) | 51 (13.7%) |
Unlikely | 49 (18.4%) | 20 (18.7%) | 69 (18.5%) |
Likely | 103 (38.7%) | 33 (30.8%) | 136 (36.5%) |
Definitely yes | 71 (26.7%) | 31 (29.0%) | 102 (27.3%) |
Missing | 14 (5.3%) | 1 (0.9%) | 15 (4.0%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - nonrestorative treatment | |||
Definitely no | 29 (10.9%) | 14 (13.1%) | 43 (11.5%) |
Unlikely | 47 (17.7%) | 10 (9.3%) | 57 (15.3%) |
Likely | 79 (29.7%) | 43 (40.2%) | 122 (32.7%) |
Definitely yes | 98 (36.8%) | 39 (36.4%) | 137 (36.7%) |
Missing | 13 (4.9%) | 1 (0.9%) | 14 (3.8%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - extraction | |||
Definitely no | 196 (73.7%) | 87 (81.3%) | 283 (75.9%) |
Unlikely | 30 (11.3%) | 8 (7.5%) | 38 (10.2%) |
Likely | 12 (4.5%) | 2 (1.9%) | 14 (3.8%) |
Definitely yes | 13 (4.9%) | 9 (8.4%) | 22 (5.9%) |
Missing | 15 (5.6%) | 1 (0.9%) | 16 (4.3%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - traditional restorative treatment | |||
Definitely no | 70 (26.3%) | 36 (33.6%) | 106 (28.4%) |
Unlikely | 81 (30.5%) | 31 (29.0%) | 112 (30.0%) |
Likely | 72 (27.1%) | 29 (27.1%) | 101 (27.1%) |
Definitely yes | 29 (10.9%) | 10 (9.3%) | 39 (10.5%) |
Missing | 14 (5.3%) | 1 (0.9%) | 15 (4.0%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - selective caries removal with hand instruments | |||
Definitely no | 20 (7.5%) | 13 (12.1%) | 33 (8.8%) |
Unlikely | 39 (14.7%) | 18 (16.8%) | 57 (15.3%) |
Likely | 114 (42.9%) | 31 (29.0%) | 145 (38.9%) |
Definitely yes | 86 (32.3%) | 45 (42.1%) | 131 (35.1%) |
Missing | 7 (2.6%) | 0 (0%) | 7 (1.9%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - sealants | |||
Definitely no | 71 (26.7%) | 36 (33.6%) | 107 (28.7%) |
Unlikely | 78 (29.3%) | 22 (20.6%) | 100 (26.8%) |
Likely | 67 (25.2%) | 24 (22.4%) | 91 (24.4%) |
Definitely yes | 37 (13.9%) | 24 (22.4%) | 61 (16.4%) |
Missing | 13 (4.9%) | 1 (0.9%) | 14 (3.8%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - SDF or similar fluoride treatment | |||
Definitely no | 40 (15.0%) | 22 (20.6%) | 62 (16.6%) |
Unlikely | 56 (21.1%) | 18 (16.8%) | 74 (19.8%) |
Likely | 95 (35.7%) | 35 (32.7%) | 130 (34.9%) |
Definitely yes | 62 (23.3%) | 31 (29.0%) | 93 (24.9%) |
Missing | 13 (4.9%) | 1 (0.9%) | 14 (3.8%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - nonrestorative treatment | |||
Definitely no | 33 (12.4%) | 13 (12.1%) | 46 (12.3%) |
Unlikely | 55 (20.7%) | 16 (15.0%) | 71 (19.0%) |
Likely | 77 (28.9%) | 37 (34.6%) | 114 (30.6%) |
Definitely yes | 89 (33.5%) | 40 (37.4%) | 129 (34.6%) |
Missing | 12 (4.5%) | 1 (0.9%) | 13 (3.5%) |
# use gtsummary
pacman::p_load(gtsummary)
df %>%
dplyr::select(
x12_jaut ,
x13_jaut_ekstrakcija ,
x13_jaut_tradicionala ,
x13_jaut_selektiva ,
x13_jaut_hall ,
x13_jaut_sdf ,
x13_jaut_nerestorativa ,
x14_jaut_ekstrakcija ,
x14_jaut_tradicionala ,
x14_jaut_selektiva ,
x14_jaut_silanti ,
x14_jaut_sdf ,
x14_jaut_nerestorativa ,
invazivs1
) %>%
gtsummary::tbl_summary(by = invazivs1) %>%
gtsummary::add_overall() %>%
gtsummary::bold_labels()
Characteristic | Overall, N = 3731 | Traditional, N = 2661 | Minimally invasive, N = 1071 |
---|---|---|---|
If you would receive recommendation not to use aerosol-generating procedures, what kind of care would you provide in your clinic? | |||
Would not attend | 37 (10%) | 25 (9.7%) | 12 (11%) |
Emergency care | 196 (54%) | 137 (53%) | 59 (56%) |
Normal care | 131 (36%) | 96 (37%) | 35 (33%) |
Unknown | 9 | 8 | 1 |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - extraction | |||
Definitely no | 248 (70%) | 174 (70%) | 74 (70%) |
Unlikely | 53 (15%) | 38 (15%) | 15 (14%) |
Likely | 31 (8.7%) | 23 (9.2%) | 8 (7.5%) |
Definitely yes | 24 (6.7%) | 15 (6.0%) | 9 (8.5%) |
Unknown | 17 | 16 | 1 |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - traditional restorative treatment | |||
Definitely no | 117 (33%) | 74 (30%) | 43 (41%) |
Unlikely | 127 (36%) | 95 (38%) | 32 (30%) |
Likely | 67 (19%) | 51 (21%) | 16 (15%) |
Definitely yes | 42 (12%) | 27 (11%) | 15 (14%) |
Unknown | 20 | 19 | 1 |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - selective caries removal with hand instruments | |||
Definitely no | 29 (8.0%) | 17 (6.6%) | 12 (11%) |
Unlikely | 53 (15%) | 38 (15%) | 15 (14%) |
Likely | 121 (33%) | 96 (38%) | 25 (23%) |
Definitely yes | 160 (44%) | 105 (41%) | 55 (51%) |
Unknown | 10 | 10 | 0 |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - Hall crowns | |||
Definitely no | 158 (46%) | 111 (46%) | 47 (44%) |
Unlikely | 108 (31%) | 74 (31%) | 34 (32%) |
Likely | 49 (14%) | 35 (15%) | 14 (13%) |
Definitely yes | 32 (9.2%) | 21 (8.7%) | 11 (10%) |
Unknown | 26 | 25 | 1 |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - SDF or similar fluoride treatment | |||
Definitely no | 51 (14%) | 29 (12%) | 22 (21%) |
Unlikely | 69 (19%) | 49 (19%) | 20 (19%) |
Likely | 136 (38%) | 103 (41%) | 33 (31%) |
Definitely yes | 102 (28%) | 71 (28%) | 31 (29%) |
Unknown | 15 | 14 | 1 |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - nonrestorative treatment | |||
Definitely no | 43 (12%) | 29 (11%) | 14 (13%) |
Unlikely | 57 (16%) | 47 (19%) | 10 (9.4%) |
Likely | 122 (34%) | 79 (31%) | 43 (41%) |
Definitely yes | 137 (38%) | 98 (39%) | 39 (37%) |
Unknown | 14 | 13 | 1 |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - extraction | |||
Definitely no | 283 (79%) | 196 (78%) | 87 (82%) |
Unlikely | 38 (11%) | 30 (12%) | 8 (7.5%) |
Likely | 14 (3.9%) | 12 (4.8%) | 2 (1.9%) |
Definitely yes | 22 (6.2%) | 13 (5.2%) | 9 (8.5%) |
Unknown | 16 | 15 | 1 |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - traditional restorative treatment | |||
Definitely no | 106 (30%) | 70 (28%) | 36 (34%) |
Unlikely | 112 (31%) | 81 (32%) | 31 (29%) |
Likely | 101 (28%) | 72 (29%) | 29 (27%) |
Definitely yes | 39 (11%) | 29 (12%) | 10 (9.4%) |
Unknown | 15 | 14 | 1 |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - selective caries removal with hand instruments | |||
Definitely no | 33 (9.0%) | 20 (7.7%) | 13 (12%) |
Unlikely | 57 (16%) | 39 (15%) | 18 (17%) |
Likely | 145 (40%) | 114 (44%) | 31 (29%) |
Definitely yes | 131 (36%) | 86 (33%) | 45 (42%) |
Unknown | 7 | 7 | 0 |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - sealants | |||
Definitely no | 107 (30%) | 71 (28%) | 36 (34%) |
Unlikely | 100 (28%) | 78 (31%) | 22 (21%) |
Likely | 91 (25%) | 67 (26%) | 24 (23%) |
Definitely yes | 61 (17%) | 37 (15%) | 24 (23%) |
Unknown | 14 | 13 | 1 |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - SDF or similar fluoride treatment | |||
Definitely no | 62 (17%) | 40 (16%) | 22 (21%) |
Unlikely | 74 (21%) | 56 (22%) | 18 (17%) |
Likely | 130 (36%) | 95 (38%) | 35 (33%) |
Definitely yes | 93 (26%) | 62 (25%) | 31 (29%) |
Unknown | 14 | 13 | 1 |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - nonrestorative treatment | |||
Definitely no | 46 (13%) | 33 (13%) | 13 (12%) |
Unlikely | 71 (20%) | 55 (22%) | 16 (15%) |
Likely | 114 (32%) | 77 (30%) | 37 (35%) |
Definitely yes | 129 (36%) | 89 (35%) | 40 (38%) |
Unknown | 13 | 12 | 1 |
1
Statistics presented: n (%)
|
table1::table1(
~ x12_jaut + x13_jaut_ekstrakcija + x13_jaut_tradicionala + x13_jaut_selektiva + x13_jaut_hall + x13_jaut_sdf + x13_jaut_nerestorativa + x14_jaut_ekstrakcija + x14_jaut_tradicionala + x14_jaut_selektiva + x14_jaut_silanti + x14_jaut_sdf + x14_jaut_nerestorativa |
invazivs2 ,
data = df
)
Traditional (N=321) |
Minimally invasive (N=52) |
Overall (N=373) |
|
---|---|---|---|
If you would receive recommendation not to use aerosol-generating procedures, what kind of care would you provide in your clinic? | |||
Would not attend | 33 (10.3%) | 4 (7.7%) | 37 (9.9%) |
Emergency care | 167 (52.0%) | 29 (55.8%) | 196 (52.5%) |
Normal care | 112 (34.9%) | 19 (36.5%) | 131 (35.1%) |
Missing | 9 (2.8%) | 0 (0%) | 9 (2.4%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - extraction | |||
Definitely no | 214 (66.7%) | 34 (65.4%) | 248 (66.5%) |
Unlikely | 45 (14.0%) | 8 (15.4%) | 53 (14.2%) |
Likely | 27 (8.4%) | 4 (7.7%) | 31 (8.3%) |
Definitely yes | 19 (5.9%) | 5 (9.6%) | 24 (6.4%) |
Missing | 16 (5.0%) | 1 (1.9%) | 17 (4.6%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - traditional restorative treatment | |||
Definitely no | 92 (28.7%) | 25 (48.1%) | 117 (31.4%) |
Unlikely | 116 (36.1%) | 11 (21.2%) | 127 (34.0%) |
Likely | 58 (18.1%) | 9 (17.3%) | 67 (18.0%) |
Definitely yes | 35 (10.9%) | 7 (13.5%) | 42 (11.3%) |
Missing | 20 (6.2%) | 0 (0%) | 20 (5.4%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - selective caries removal with hand instruments | |||
Definitely no | 24 (7.5%) | 5 (9.6%) | 29 (7.8%) |
Unlikely | 48 (15.0%) | 5 (9.6%) | 53 (14.2%) |
Likely | 110 (34.3%) | 11 (21.2%) | 121 (32.4%) |
Definitely yes | 129 (40.2%) | 31 (59.6%) | 160 (42.9%) |
Missing | 10 (3.1%) | 0 (0%) | 10 (2.7%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - Hall crowns | |||
Definitely no | 135 (42.1%) | 23 (44.2%) | 158 (42.4%) |
Unlikely | 94 (29.3%) | 14 (26.9%) | 108 (29.0%) |
Likely | 41 (12.8%) | 8 (15.4%) | 49 (13.1%) |
Definitely yes | 26 (8.1%) | 6 (11.5%) | 32 (8.6%) |
Missing | 25 (7.8%) | 1 (1.9%) | 26 (7.0%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - SDF or similar fluoride treatment | |||
Definitely no | 43 (13.4%) | 8 (15.4%) | 51 (13.7%) |
Unlikely | 61 (19.0%) | 8 (15.4%) | 69 (18.5%) |
Likely | 119 (37.1%) | 17 (32.7%) | 136 (36.5%) |
Definitely yes | 84 (26.2%) | 18 (34.6%) | 102 (27.3%) |
Missing | 14 (4.4%) | 1 (1.9%) | 15 (4.0%) |
Recommendation not to use aerosol-generating procedures - caries in deciduous teeth - nonrestorative treatment | |||
Definitely no | 38 (11.8%) | 5 (9.6%) | 43 (11.5%) |
Unlikely | 53 (16.5%) | 4 (7.7%) | 57 (15.3%) |
Likely | 102 (31.8%) | 20 (38.5%) | 122 (32.7%) |
Definitely yes | 115 (35.8%) | 22 (42.3%) | 137 (36.7%) |
Missing | 13 (4.0%) | 1 (1.9%) | 14 (3.8%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - extraction | |||
Definitely no | 243 (75.7%) | 40 (76.9%) | 283 (75.9%) |
Unlikely | 32 (10.0%) | 6 (11.5%) | 38 (10.2%) |
Likely | 13 (4.0%) | 1 (1.9%) | 14 (3.8%) |
Definitely yes | 18 (5.6%) | 4 (7.7%) | 22 (5.9%) |
Missing | 15 (4.7%) | 1 (1.9%) | 16 (4.3%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - traditional restorative treatment | |||
Definitely no | 88 (27.4%) | 18 (34.6%) | 106 (28.4%) |
Unlikely | 98 (30.5%) | 14 (26.9%) | 112 (30.0%) |
Likely | 85 (26.5%) | 16 (30.8%) | 101 (27.1%) |
Definitely yes | 36 (11.2%) | 3 (5.8%) | 39 (10.5%) |
Missing | 14 (4.4%) | 1 (1.9%) | 15 (4.0%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - selective caries removal with hand instruments | |||
Definitely no | 28 (8.7%) | 5 (9.6%) | 33 (8.8%) |
Unlikely | 52 (16.2%) | 5 (9.6%) | 57 (15.3%) |
Likely | 126 (39.3%) | 19 (36.5%) | 145 (38.9%) |
Definitely yes | 108 (33.6%) | 23 (44.2%) | 131 (35.1%) |
Missing | 7 (2.2%) | 0 (0%) | 7 (1.9%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - sealants | |||
Definitely no | 94 (29.3%) | 13 (25.0%) | 107 (28.7%) |
Unlikely | 91 (28.3%) | 9 (17.3%) | 100 (26.8%) |
Likely | 76 (23.7%) | 15 (28.8%) | 91 (24.4%) |
Definitely yes | 47 (14.6%) | 14 (26.9%) | 61 (16.4%) |
Missing | 13 (4.0%) | 1 (1.9%) | 14 (3.8%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - SDF or similar fluoride treatment | |||
Definitely no | 56 (17.4%) | 6 (11.5%) | 62 (16.6%) |
Unlikely | 65 (20.2%) | 9 (17.3%) | 74 (19.8%) |
Likely | 113 (35.2%) | 17 (32.7%) | 130 (34.9%) |
Definitely yes | 74 (23.1%) | 19 (36.5%) | 93 (24.9%) |
Missing | 13 (4.0%) | 1 (1.9%) | 14 (3.8%) |
Recommendation not to use aerosol-generating procedures - caries in permanent teeth - nonrestorative treatment | |||
Definitely no | 40 (12.5%) | 6 (11.5%) | 46 (12.3%) |
Unlikely | 66 (20.6%) | 5 (9.6%) | 71 (19.0%) |
Likely | 99 (30.8%) | 15 (28.8%) | 114 (30.6%) |
Definitely yes | 104 (32.4%) | 25 (48.1%) | 129 (34.6%) |
Missing | 12 (3.7%) | 1 (1.9%) | 13 (3.5%) |
table1::table1(
~ x9_jaut + x10_jaut_ekstrakcija + x10_jaut_selektiva + x10_jaut_hall + x10_jaut_sdf + x10_jaut_nerestorativa + x11_jaut_ekstrakcija + x11_jaut_selektiva + x11_jaut_silanti + x11_jaut_sdf + x11_jaut_nerestorativa |
invazivs1 ,
data = df
)
Traditional (N=266) |
Minimally invasive (N=107) |
Overall (N=373) |
|
---|---|---|---|
If aerosol-generating procedures would be banned, what kind of care would you provide in your clinic? | |||
Would not attend | 39 (14.7%) | 15 (14.0%) | 54 (14.5%) |
Emergency care | 191 (71.8%) | 80 (74.8%) | 271 (72.7%) |
Normal care | 30 (11.3%) | 11 (10.3%) | 41 (11.0%) |
Missing | 6 (2.3%) | 1 (0.9%) | 7 (1.9%) |
Aerosol-generating procedures banned - caries in deciduous teeth - extraction | |||
Definitely no | 169 (63.5%) | 71 (66.4%) | 240 (64.3%) |
Unlikely | 44 (16.5%) | 16 (15.0%) | 60 (16.1%) |
Likely | 27 (10.2%) | 7 (6.5%) | 34 (9.1%) |
Definitely yes | 16 (6.0%) | 12 (11.2%) | 28 (7.5%) |
Missing | 10 (3.8%) | 1 (0.9%) | 11 (2.9%) |
Aerosol-generating procedures banned - caries in deciduous teeth - selective caries removal with hand instruments | |||
Definitely no | 15 (5.6%) | 11 (10.3%) | 26 (7.0%) |
Unlikely | 25 (9.4%) | 12 (11.2%) | 37 (9.9%) |
Likely | 92 (34.6%) | 31 (29.0%) | 123 (33.0%) |
Definitely yes | 126 (47.4%) | 52 (48.6%) | 178 (47.7%) |
Missing | 8 (3.0%) | 1 (0.9%) | 9 (2.4%) |
Aerosol-generating procedures banned - caries in deciduous teeth - Hall crowns | |||
Definitely no | 114 (42.9%) | 53 (49.5%) | 167 (44.8%) |
Unlikely | 78 (29.3%) | 28 (26.2%) | 106 (28.4%) |
Likely | 37 (13.9%) | 14 (13.1%) | 51 (13.7%) |
Definitely yes | 14 (5.3%) | 10 (9.3%) | 24 (6.4%) |
Missing | 23 (8.6%) | 2 (1.9%) | 25 (6.7%) |
Aerosol-generating procedures banned - caries in deciduous teeth - SDF or similar fluoride treatment | |||
Definitely no | 33 (12.4%) | 18 (16.8%) | 51 (13.7%) |
Unlikely | 50 (18.8%) | 20 (18.7%) | 70 (18.8%) |
Likely | 87 (32.7%) | 41 (38.3%) | 128 (34.3%) |
Definitely yes | 85 (32.0%) | 27 (25.2%) | 112 (30.0%) |
Missing | 11 (4.1%) | 1 (0.9%) | 12 (3.2%) |
Aerosol-generating procedures banned - caries in deciduous teeth - nonrestorative treatment | |||
Definitely no | 28 (10.5%) | 12 (11.2%) | 40 (10.7%) |
Unlikely | 47 (17.7%) | 17 (15.9%) | 64 (17.2%) |
Likely | 81 (30.5%) | 40 (37.4%) | 121 (32.4%) |
Definitely yes | 95 (35.7%) | 37 (34.6%) | 132 (35.4%) |
Missing | 15 (5.6%) | 1 (0.9%) | 16 (4.3%) |
Aerosol-generating procedures banned - caries in permanent teeth - extraction | |||
Definitely no | 203 (76.3%) | 84 (78.5%) | 287 (76.9%) |
Unlikely | 29 (10.9%) | 8 (7.5%) | 37 (9.9%) |
Likely | 10 (3.8%) | 8 (7.5%) | 18 (4.8%) |
Definitely yes | 14 (5.3%) | 6 (5.6%) | 20 (5.4%) |
Missing | 10 (3.8%) | 1 (0.9%) | 11 (2.9%) |
Aerosol-generating procedures banned - caries in permanent teeth - selective caries removal with hand instruments | |||
Definitely no | 20 (7.5%) | 12 (11.2%) | 32 (8.6%) |
Unlikely | 37 (13.9%) | 17 (15.9%) | 54 (14.5%) |
Likely | 106 (39.8%) | 39 (36.4%) | 145 (38.9%) |
Definitely yes | 96 (36.1%) | 37 (34.6%) | 133 (35.7%) |
Missing | 7 (2.6%) | 2 (1.9%) | 9 (2.4%) |
Aerosol-generating procedures banned - caries in permanent teeth - sealants | |||
Definitely no | 73 (27.4%) | 31 (29.0%) | 104 (27.9%) |
Unlikely | 78 (29.3%) | 24 (22.4%) | 102 (27.3%) |
Likely | 64 (24.1%) | 33 (30.8%) | 97 (26.0%) |
Definitely yes | 36 (13.5%) | 18 (16.8%) | 54 (14.5%) |
Missing | 15 (5.6%) | 1 (0.9%) | 16 (4.3%) |
Aerosol-generating procedures banned - caries in permanent teeth - SDF or similar fluoride treatment | |||
Definitely no | 34 (12.8%) | 15 (14.0%) | 49 (13.1%) |
Unlikely | 57 (21.4%) | 29 (27.1%) | 86 (23.1%) |
Likely | 100 (37.6%) | 36 (33.6%) | 136 (36.5%) |
Definitely yes | 66 (24.8%) | 26 (24.3%) | 92 (24.7%) |
Missing | 9 (3.4%) | 1 (0.9%) | 10 (2.7%) |
Aerosol-generating procedures banned - caries in permanent teeth - nonrestorative treatment | |||
Definitely no | 31 (11.7%) | 10 (9.3%) | 41 (11.0%) |
Unlikely | 64 (24.1%) | 21 (19.6%) | 85 (22.8%) |
Likely | 78 (29.3%) | 37 (34.6%) | 115 (30.8%) |
Definitely yes | 84 (31.6%) | 38 (35.5%) | 122 (32.7%) |
Missing | 9 (3.4%) | 1 (0.9%) | 10 (2.7%) |
df %>%
dplyr::select(
x9_jaut ,
x10_jaut_ekstrakcija ,
x10_jaut_selektiva ,
x10_jaut_hall ,
x10_jaut_sdf ,
x10_jaut_nerestorativa ,
x11_jaut_ekstrakcija ,
x11_jaut_selektiva ,
x11_jaut_silanti ,
x11_jaut_sdf ,
x11_jaut_nerestorativa ,
invazivs1
) %>%
gtsummary::tbl_summary(by = invazivs1) %>%
gtsummary::add_overall() %>%
gtsummary::bold_labels() %>%
gtsummary::add_p()
Characteristic | Overall, N = 3731 | Traditional, N = 2661 | Minimally invasive, N = 1071 | p-value2 |
---|---|---|---|---|
If aerosol-generating procedures would be banned, what kind of care would you provide in your clinic? | >0.9 | |||
Would not attend | 54 (15%) | 39 (15%) | 15 (14%) | |
Emergency care | 271 (74%) | 191 (73%) | 80 (75%) | |
Normal care | 41 (11%) | 30 (12%) | 11 (10%) | |
Unknown | 7 | 6 | 1 | |
Aerosol-generating procedures banned - caries in deciduous teeth - extraction | 0.3 | |||
Definitely no | 240 (66%) | 169 (66%) | 71 (67%) | |
Unlikely | 60 (17%) | 44 (17%) | 16 (15%) | |
Likely | 34 (9.4%) | 27 (11%) | 7 (6.6%) | |
Definitely yes | 28 (7.7%) | 16 (6.2%) | 12 (11%) | |
Unknown | 11 | 10 | 1 | |
Aerosol-generating procedures banned - caries in deciduous teeth - selective caries removal with hand instruments | 0.3 | |||
Definitely no | 26 (7.1%) | 15 (5.8%) | 11 (10%) | |
Unlikely | 37 (10%) | 25 (9.7%) | 12 (11%) | |
Likely | 123 (34%) | 92 (36%) | 31 (29%) | |
Definitely yes | 178 (49%) | 126 (49%) | 52 (49%) | |
Unknown | 9 | 8 | 1 | |
Aerosol-generating procedures banned - caries in deciduous teeth - Hall crowns | 0.5 | |||
Definitely no | 167 (48%) | 114 (47%) | 53 (50%) | |
Unlikely | 106 (30%) | 78 (32%) | 28 (27%) | |
Likely | 51 (15%) | 37 (15%) | 14 (13%) | |
Definitely yes | 24 (6.9%) | 14 (5.8%) | 10 (9.5%) | |
Unknown | 25 | 23 | 2 | |
Aerosol-generating procedures banned - caries in deciduous teeth - SDF or similar fluoride treatment | 0.4 | |||
Definitely no | 51 (14%) | 33 (13%) | 18 (17%) | |
Unlikely | 70 (19%) | 50 (20%) | 20 (19%) | |
Likely | 128 (35%) | 87 (34%) | 41 (39%) | |
Definitely yes | 112 (31%) | 85 (33%) | 27 (25%) | |
Unknown | 12 | 11 | 1 | |
Aerosol-generating procedures banned - caries in deciduous teeth - nonrestorative treatment | 0.8 | |||
Definitely no | 40 (11%) | 28 (11%) | 12 (11%) | |
Unlikely | 64 (18%) | 47 (19%) | 17 (16%) | |
Likely | 121 (34%) | 81 (32%) | 40 (38%) | |
Definitely yes | 132 (37%) | 95 (38%) | 37 (35%) | |
Unknown | 16 | 15 | 1 | |
Aerosol-generating procedures banned - caries in permanent teeth - extraction | 0.4 | |||
Definitely no | 287 (79%) | 203 (79%) | 84 (79%) | |
Unlikely | 37 (10%) | 29 (11%) | 8 (7.5%) | |
Likely | 18 (5.0%) | 10 (3.9%) | 8 (7.5%) | |
Definitely yes | 20 (5.5%) | 14 (5.5%) | 6 (5.7%) | |
Unknown | 11 | 10 | 1 | |
Aerosol-generating procedures banned - caries in permanent teeth - selective caries removal with hand instruments | 0.6 | |||
Definitely no | 32 (8.8%) | 20 (7.7%) | 12 (11%) | |
Unlikely | 54 (15%) | 37 (14%) | 17 (16%) | |
Likely | 145 (40%) | 106 (41%) | 39 (37%) | |
Definitely yes | 133 (37%) | 96 (37%) | 37 (35%) | |
Unknown | 9 | 7 | 2 | |
Aerosol-generating procedures banned - caries in permanent teeth - sealants | 0.4 | |||
Definitely no | 104 (29%) | 73 (29%) | 31 (29%) | |
Unlikely | 102 (29%) | 78 (31%) | 24 (23%) | |
Likely | 97 (27%) | 64 (25%) | 33 (31%) | |
Definitely yes | 54 (15%) | 36 (14%) | 18 (17%) | |
Unknown | 16 | 15 | 1 | |
Aerosol-generating procedures banned - caries in permanent teeth - SDF or similar fluoride treatment | 0.7 | |||
Definitely no | 49 (13%) | 34 (13%) | 15 (14%) | |
Unlikely | 86 (24%) | 57 (22%) | 29 (27%) | |
Likely | 136 (37%) | 100 (39%) | 36 (34%) | |
Definitely yes | 92 (25%) | 66 (26%) | 26 (25%) | |
Unknown | 10 | 9 | 1 | |
Aerosol-generating procedures banned - caries in permanent teeth - nonrestorative treatment | 0.6 | |||
Definitely no | 41 (11%) | 31 (12%) | 10 (9.4%) | |
Unlikely | 85 (23%) | 64 (25%) | 21 (20%) | |
Likely | 115 (32%) | 78 (30%) | 37 (35%) | |
Definitely yes | 122 (34%) | 84 (33%) | 38 (36%) | |
Unknown | 10 | 9 | 1 | |
1
Statistics presented: n (%)
2
Statistical tests performed: chi-square test of independence
|
table1::table1(
~ x9_jaut + x10_jaut_ekstrakcija + x10_jaut_selektiva + x10_jaut_hall + x10_jaut_sdf + x10_jaut_nerestorativa + x11_jaut_ekstrakcija + x11_jaut_selektiva + x11_jaut_silanti + x11_jaut_sdf + x11_jaut_nerestorativa |
invazivs2 ,
data = df
)
Traditional (N=321) |
Minimally invasive (N=52) |
Overall (N=373) |
|
---|---|---|---|
If aerosol-generating procedures would be banned, what kind of care would you provide in your clinic? | |||
Would not attend | 48 (15.0%) | 6 (11.5%) | 54 (14.5%) |
Emergency care | 232 (72.3%) | 39 (75.0%) | 271 (72.7%) |
Normal care | 35 (10.9%) | 6 (11.5%) | 41 (11.0%) |
Missing | 6 (1.9%) | 1 (1.9%) | 7 (1.9%) |
Aerosol-generating procedures banned - caries in deciduous teeth - extraction | |||
Definitely no | 207 (64.5%) | 33 (63.5%) | 240 (64.3%) |
Unlikely | 51 (15.9%) | 9 (17.3%) | 60 (16.1%) |
Likely | 31 (9.7%) | 3 (5.8%) | 34 (9.1%) |
Definitely yes | 22 (6.9%) | 6 (11.5%) | 28 (7.5%) |
Missing | 10 (3.1%) | 1 (1.9%) | 11 (2.9%) |
Aerosol-generating procedures banned - caries in deciduous teeth - selective caries removal with hand instruments | |||
Definitely no | 23 (7.2%) | 3 (5.8%) | 26 (7.0%) |
Unlikely | 31 (9.7%) | 6 (11.5%) | 37 (9.9%) |
Likely | 110 (34.3%) | 13 (25.0%) | 123 (33.0%) |
Definitely yes | 149 (46.4%) | 29 (55.8%) | 178 (47.7%) |
Missing | 8 (2.5%) | 1 (1.9%) | 9 (2.4%) |
Aerosol-generating procedures banned - caries in deciduous teeth - Hall crowns | |||
Definitely no | 146 (45.5%) | 21 (40.4%) | 167 (44.8%) |
Unlikely | 91 (28.3%) | 15 (28.8%) | 106 (28.4%) |
Likely | 42 (13.1%) | 9 (17.3%) | 51 (13.7%) |
Definitely yes | 18 (5.6%) | 6 (11.5%) | 24 (6.4%) |
Missing | 24 (7.5%) | 1 (1.9%) | 25 (6.7%) |
Aerosol-generating procedures banned - caries in deciduous teeth - SDF or similar fluoride treatment | |||
Definitely no | 42 (13.1%) | 9 (17.3%) | 51 (13.7%) |
Unlikely | 62 (19.3%) | 8 (15.4%) | 70 (18.8%) |
Likely | 109 (34.0%) | 19 (36.5%) | 128 (34.3%) |
Definitely yes | 97 (30.2%) | 15 (28.8%) | 112 (30.0%) |
Missing | 11 (3.4%) | 1 (1.9%) | 12 (3.2%) |
Aerosol-generating procedures banned - caries in deciduous teeth - nonrestorative treatment | |||
Definitely no | 36 (11.2%) | 4 (7.7%) | 40 (10.7%) |
Unlikely | 58 (18.1%) | 6 (11.5%) | 64 (17.2%) |
Likely | 104 (32.4%) | 17 (32.7%) | 121 (32.4%) |
Definitely yes | 108 (33.6%) | 24 (46.2%) | 132 (35.4%) |
Missing | 15 (4.7%) | 1 (1.9%) | 16 (4.3%) |
Aerosol-generating procedures banned - caries in permanent teeth - extraction | |||
Definitely no | 248 (77.3%) | 39 (75.0%) | 287 (76.9%) |
Unlikely | 31 (9.7%) | 6 (11.5%) | 37 (9.9%) |
Likely | 15 (4.7%) | 3 (5.8%) | 18 (4.8%) |
Definitely yes | 17 (5.3%) | 3 (5.8%) | 20 (5.4%) |
Missing | 10 (3.1%) | 1 (1.9%) | 11 (2.9%) |
Aerosol-generating procedures banned - caries in permanent teeth - selective caries removal with hand instruments | |||
Definitely no | 29 (9.0%) | 3 (5.8%) | 32 (8.6%) |
Unlikely | 49 (15.3%) | 5 (9.6%) | 54 (14.5%) |
Likely | 124 (38.6%) | 21 (40.4%) | 145 (38.9%) |
Definitely yes | 111 (34.6%) | 22 (42.3%) | 133 (35.7%) |
Missing | 8 (2.5%) | 1 (1.9%) | 9 (2.4%) |
Aerosol-generating procedures banned - caries in permanent teeth - sealants | |||
Definitely no | 91 (28.3%) | 13 (25.0%) | 104 (27.9%) |
Unlikely | 94 (29.3%) | 8 (15.4%) | 102 (27.3%) |
Likely | 79 (24.6%) | 18 (34.6%) | 97 (26.0%) |
Definitely yes | 42 (13.1%) | 12 (23.1%) | 54 (14.5%) |
Missing | 15 (4.7%) | 1 (1.9%) | 16 (4.3%) |
Aerosol-generating procedures banned - caries in permanent teeth - SDF or similar fluoride treatment | |||
Definitely no | 41 (12.8%) | 8 (15.4%) | 49 (13.1%) |
Unlikely | 74 (23.1%) | 12 (23.1%) | 86 (23.1%) |
Likely | 122 (38.0%) | 14 (26.9%) | 136 (36.5%) |
Definitely yes | 75 (23.4%) | 17 (32.7%) | 92 (24.7%) |
Missing | 9 (2.8%) | 1 (1.9%) | 10 (2.7%) |
Aerosol-generating procedures banned - caries in permanent teeth - nonrestorative treatment | |||
Definitely no | 35 (10.9%) | 6 (11.5%) | 41 (11.0%) |
Unlikely | 77 (24.0%) | 8 (15.4%) | 85 (22.8%) |
Likely | 101 (31.5%) | 14 (26.9%) | 115 (30.8%) |
Definitely yes | 99 (30.8%) | 23 (44.2%) | 122 (32.7%) |
Missing | 9 (2.8%) | 1 (1.9%) | 10 (2.7%) |
df %>%
janitor::tabyl(x2_gads_kura_ieguvat_zobarsta_gradu)
df %>%
janitor::tabyl(x2_gads_kura_ieguvat_zobarsta_gradu) %>%
ggplot(aes(x = x2_gads_kura_ieguvat_zobarsta_gradu,
y = percent)) +
geom_col()
Intervention
df %>%
janitor::tabyl(x5_jaut_kods) %>% # make a table to extract the percentages
ggplot(aes(x = x5_jaut_kods,
y = percent,
label = percent)) +
geom_col() +
# geom_col(fill = "#7e0000ff") +
geom_label(
aes(label = scales::percent(percent)),
position = position_dodge(0),
color = "black",
size = 10.5,
vjust = 0.5,
show.legend = FALSE
) +
labs(
y = "",
x = ""
) +
scale_x_reverse() + # inverse levels
scale_y_continuous(labels = scales::label_percent(accuracy = 1L),
limits = c(0, 1)) # convert the y axis to percentage scale
df %>%
janitor::tabyl(x6_jaut_kods) %>% # make a table to extract the percentages
ggplot(aes(x = x6_jaut_kods,
y = percent,
label = percent)) +
geom_col() +
# geom_col(fill = "#7e0000ff") +
geom_label(
aes(label = scales::percent(percent)),
position = position_dodge(0),
color = "black",
size = 10.5,
vjust = 0.5,
show.legend = FALSE
) +
labs(
y = "",
x = ""
) +
scale_x_reverse() + # inverse levels
scale_y_continuous(labels = scales::label_percent(accuracy = 1L),
limits = c(0, 1)) # convert the y axis to percentage scale
df %>%
janitor::tabyl(x7_jaut_kods) %>% # make a table to extract the percentages
ggplot(aes(
x = x7_jaut_kods,
y = percent,
label = percent
)) +
geom_col(width = .5) +
# geom_col(fill="#7e0000ff") +
geom_label(
aes(label = scales::percent(percent)),
position = position_dodge(0),
color = "black",
size = 10.5,
vjust = 0.5,
show.legend = FALSE
) +
labs(y = "",
x = "") +
scale_y_continuous(labels = scales::label_percent(accuracy = 1L),
limits=c(0,1)) # convert the y axis to percentage scale
df %>%
janitor::tabyl(x8_jaut_kods) %>% # make a table to extract the percentages
ggplot(aes(
x = x8_jaut_kods,
y = percent,
label = percent
)) +
geom_col(width = 0.5) +
# geom_col(fill="#7e0000ff") +
geom_label(
aes(label = scales::percent(percent)),
position = position_dodge(0),
color = "black",
size = 10.5,
vjust = 0.5,
show.legend = FALSE
) +
labs(y = "",
x = "") +
scale_y_continuous(labels = scales::label_percent(accuracy = 1L),
limits=c(0,1)) # convert the y axis to percentage scale
df %>%
janitor::tabyl(invazivs2) %>% # make a table to extract the percentages
ggplot(aes(
x = invazivs2,
y = percent,
label = percent
)) +
geom_col(fill="#7e0000ff") +
geom_label(aes(label = scales::percent(percent)),
position = position_dodge(0.9),
color = "black", vjust = 1, show.legend = FALSE) +
scale_y_continuous(labels = scales::label_percent(accuracy = 1L),
limits=c(0,1)) + # convert the y axis to percentage scale +
labs(
x = "",
y = ""
)
df %>%
ggplot(aes(
x = x2_gads_kura_ieguvat_zobarsta_gradu,
y = kodu_summa,
)) +
geom_point(color="#7e0000ff") +
labs(
x = "",
y = ""
)
## Figures of Lickert questions by type of dentists
Izveidoju atsevišķas datu bāzes katrai analīzei
Banned <- df %>%
select(x10_jaut_ekstrakcija : x11_jaut_nerestorativa)
sjPlot::plot_likert(Banned)
sjPlot::plot_likert(Banned, sort.frq = "pos.asc")
rm(Banned)
Banned_noinvasive <- df %>%
filter(invazivs2 == "Minimally invasive") %>%
select(x10_jaut_ekstrakcija : x11_jaut_nerestorativa)
sjPlot::plot_likert(Banned_noinvasive)
sjPlot::plot_likert(Banned_noinvasive, sort.frq = "pos.asc")
rm(Banned_deciduous_noinvasive)
Banned_traditional <- df %>%
filter(invazivs2 == "Traditional") %>%
select(x10_jaut_ekstrakcija : x11_jaut_nerestorativa)
sjPlot::plot_likert(Banned_traditional)
sjPlot::plot_likert(Banned_traditional, sort.frq = "pos.asc")
rm(Banned_traditional)
Recommendations <- df %>%
select(x13_jaut_ekstrakcija : x14_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations)
sjPlot::plot_likert(Recommendations, sort.frq = "pos.asc")
rm(Recommendations)
Recommendations_noinvasive <- df %>%
filter(invazivs2 == "Minimally invasive") %>%
select(x13_jaut_ekstrakcija : x14_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations_noinvasive)
sjPlot::plot_likert(Recommendations_noinvasive, sort.frq = "pos.asc")
rm(Recommendations_noinvasive)
Recommendations_traditional <- df %>%
filter(invazivs2 == "Traditional") %>%
select(x13_jaut_ekstrakcija : x14_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations_traditional)
sjPlot::plot_likert(Recommendations_traditional, sort.frq = "pos.asc")
rm(Recommendations_traditional)
Banned_deciduous <- df %>%
select(x10_jaut_ekstrakcija : x10_jaut_nerestorativa)
sjPlot::plot_likert(Banned_deciduous)
sjPlot::plot_likert(Banned_deciduous, sort.frq = "pos.asc",
# geom.colors = "gs",
values = "sum.outside",
show.prc.sign = TRUE)
sjPlot::plot_likert(Banned_deciduous, sort.frq = "pos.asc",
geom.colors = "gs",
values = "sum.outside",
show.prc.sign = TRUE)
ggsave(path = "figure", filename = "primary_total.jpg", width = 14, height = 14, units = "cm")
rm(Banned_deciduous)
Banned_deciduous_noinvasive <- df %>%
filter(invazivs2 == "Minimally invasive") %>%
select(x10_jaut_ekstrakcija : x10_jaut_nerestorativa)
sjPlot::plot_likert(Banned_deciduous_noinvasive)
sjPlot::plot_likert(Banned_deciduous_noinvasive, sort.frq = "pos.asc")
rm(Banned_deciduous_noinvasive)
Banned_deciduous_traditional <- df %>%
filter(invazivs2 == "Traditional") %>%
select(x10_jaut_ekstrakcija : x10_jaut_nerestorativa)
sjPlot::plot_likert(Banned_deciduous_traditional)
sjPlot::plot_likert(Banned_deciduous_traditional, sort.frq = "pos.asc")
rm(Banned_deciduous_traditional)
Banned_permanent <- df %>%
select(x11_jaut_ekstrakcija : x11_jaut_nerestorativa)
sjPlot::plot_likert(
Banned_permanent,
sort.frq = "pos.asc",
# geom.colors = "gs",
values = "sum.outside",
show.prc.sign = TRUE
)
ggsave(path = "figure", filename = "permanent_total.jpg", width = 14, height = 14, units = "cm")
sjPlot::plot_likert(Banned_permanent, sort.frq = "pos.asc")
tiff("Plot303.tiff", width = 12, height = 6, units = 'in', res = 300)
sjPlot::plot_likert(Banned_permanent, sort.frq = "pos.asc")
dev.off()
## png
## 2
rm(Banned_permanent)
Banned_permanent_noinvasive <- df %>%
filter(invazivs2 == "Minimally invasive") %>%
select(x11_jaut_ekstrakcija : x11_jaut_nerestorativa)
sjPlot::plot_likert(Banned_permanent_noinvasive)
sjPlot::plot_likert(Banned_permanent_noinvasive, sort.frq = "pos.asc")
rm(Banned_permanent_noinvasive)
Banned_permanent_traditional <- df %>%
filter(invazivs2 == "Traditional") %>%
select(x11_jaut_ekstrakcija : x11_jaut_nerestorativa)
sjPlot::plot_likert(Banned_permanent_traditional)
sjPlot::plot_likert(Banned_permanent_traditional, sort.frq = "pos.asc")
rm(Banned_permanent_traditional)
Recommendations_deciduous <- df %>%
select(x13_jaut_ekstrakcija : x13_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations_deciduous,
sort.frq = "pos.asc",
# geom.colors = "gs",
values = "sum.outside",
show.prc.sign = TRUE)
ggsave(path = "figure", filename = "primary_total_2.jpg", width = 14, height = 14, units = "cm")
sjPlot::plot_likert(Recommendations_deciduous, sort.frq = "pos.asc")
tiff("Plot301.tiff", width = 12, height = 6, units = 'in', res = 300)
sjPlot::plot_likert(Recommendations_deciduous, sort.frq = "pos.asc")
dev.off()
## png
## 2
rm(Recommendations_deciduous)
Recommendations_deciduous_noinvasive <- df %>%
filter(invazivs2 == "Minimally invasive") %>%
select(x13_jaut_ekstrakcija : x13_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations_deciduous_noinvasive, title = "Recommendations - primary - non invasive")
sjPlot::plot_likert(Recommendations_deciduous_noinvasive, sort.frq = "pos.asc")
rm(Recommendations_deciduous_noinvasive)
Recommendations_deciduous_traditional <- df %>%
filter(invazivs2 == "Traditional") %>%
select(x13_jaut_ekstrakcija : x13_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations_deciduous_traditional, title = "Recommendations - deciduous - traditional")
sjPlot::plot_likert(Recommendations_deciduous_traditional, sort.frq = "pos.asc")
rm(Recommendations_deciduous_traditional)
Recommendations_permanent <- df %>%
select(x14_jaut_ekstrakcija : x14_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations_permanent,
sort.frq = "pos.asc",
# geom.colors = "gs",
values = "sum.outside",
show.prc.sign = TRUE)
ggsave(path = "figure", filename = "permanent_total_2.jpg", width = 14, height = 14, units = "cm")
sjPlot::plot_likert(Recommendations_permanent, sort.frq = "pos.asc")
tiff("Plot304.tiff", width = 12, height = 6, units = 'in', res = 300)
sjPlot::plot_likert(Recommendations_permanent, sort.frq = "pos.asc")
dev.off()
## png
## 2
rm(Recommendations_permanent)
Recommendations_permanent_noinvasive <- df %>%
filter(invazivs2 == "Minimally invasive") %>%
select(x14_jaut_ekstrakcija : x14_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations_permanent_noinvasive, title = "Recommendations - permanent - No invasive")
sjPlot::plot_likert(Recommendations_permanent_noinvasive, sort.frq = "pos.asc")
rm(Recommendations_permanent_noinvasive)
Recommendations_permanent_traditional <- df %>%
filter(invazivs2 == "Traditional") %>%
select(x14_jaut_ekstrakcija : x14_jaut_nerestorativa)
sjPlot::plot_likert(Recommendations_permanent_traditional, title = "Recommendations - permanent - traditional")
sjPlot::plot_likert(Recommendations_permanent_traditional, sort.frq = "pos.asc")
rm(Recommendations_permanent_traditional)
prop.test(x = c(56, 37), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(56, 37) out of c(373, 373)
## X-squared = 3.98, df = 1, p-value = 0.04604
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.0009887183 0.1008879574
## sample estimates:
## prop 1 prop 2
## 0.15013405 0.09919571
prop.test(x = c(276, 201), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(276, 201) out of c(373, 373)
## X-squared = 31.837, df = 1, p-value = 1.677e-08
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.1310052 0.2711395
## sample estimates:
## prop 1 prop 2
## 0.7399464 0.5388740
prop.test(x = c(41, 134), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(41, 134) out of c(373, 373)
## X-squared = 63.189, df = 1, p-value = 1.878e-15
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.3101337 -0.1885258
## sample estimates:
## prop 1 prop 2
## 0.1099196 0.3592493
Check numbers here https://docs.google.com/spreadsheets/d/16pBWY0VIeQlsExYIE4eSgmD-z95SQvBTmnYfqwEyAzE/edit#gid=0
Selective
prop.test(x = c(84, 65), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(84, 65) out of c(373, 373)
## X-squared = 2.7172, df = 1, p-value = 0.09927
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.009004705 0.110881380
## sample estimates:
## prop 1 prop 2
## 0.2252011 0.1742627
Non
prop.test(x = c(104, 109), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(104, 109) out of c(373, 373)
## X-squared = 0.10514, df = 1, p-value = 0.7458
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.08090078 0.05409113
## sample estimates:
## prop 1 prop 2
## 0.2788204 0.2922252
SDF
prop.test(x = c(125, 125), n = c(373, 373))
##
## 2-sample test for equality of proportions without continuity
## correction
##
## data: c(125, 125) out of c(373, 373)
## X-squared = 0, df = 1, p-value = 1
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.06774554 0.06774554
## sample estimates:
## prop 1 prop 2
## 0.3351206 0.3351206
Hall
prop.test(x = c(286, 293), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(286, 293) out of c(373, 373)
## X-squared = 0.27775, df = 1, p-value = 0.5982
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.08125545 0.04372194
## sample estimates:
## prop 1 prop 2
## 0.7667560 0.7855228
Extraction
prop.test(x = c(316, 309), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(316, 309) out of c(373, 373)
## X-squared = 0.35512, df = 1, p-value = 0.5512
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.03680278 0.07433629
## sample estimates:
## prop 1 prop 2
## 0.8471850 0.8284182
Selective
prop.test(x = c(92, 88), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(92, 88) out of c(373, 373)
## X-squared = 0.065901, df = 1, p-value = 0.7974
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.05335878 0.07480650
## sample estimates:
## prop 1 prop 2
## 0.2466488 0.2359249
Non
prop.test(x = c(121, 129), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(121, 129) out of c(373, 373)
## X-squared = 0.29479, df = 1, p-value = 0.5872
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.09185674 0.04896130
## sample estimates:
## prop 1 prop 2
## 0.3243968 0.3458445
SDF
prop.test(x = c(141, 139), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(141, 139) out of c(373, 373)
## X-squared = 0.0057174, df = 1, p-value = 0.9397
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.06681109 0.07753495
## sample estimates:
## prop 1 prop 2
## 0.3780161 0.3726542
Traditional
prop.test(x = c(215, 215), n = c(373, 373))
##
## 2-sample test for equality of proportions without continuity
## correction
##
## data: c(215, 215) out of c(373, 373)
## X-squared = 1.774e-29, df = 1, p-value = 1
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.07091655 0.07091655
## sample estimates:
## prop 1 prop 2
## 0.5764075 0.5764075
Extraction
prop.test(x = c(335, 334), n = c(373, 373))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(335, 334) out of c(373, 373)
## X-squared = 1.0491e-29, df = 1, p-value = 1
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.04366405 0.04902598
## sample estimates:
## prop 1 prop 2
## 0.8981233 0.8954424
recode
TRADITIONAL def no unlikely likely def yes Extraction 1 2 3 4 Restoration 1 2 3 4
MINIMALLY INVASIVE def no unlikely likely def yes Select 1 2 3 4 NRCC 1 2 3 4
etc
df_recoded_delete_after_use <- df %>%
# for the TRADITIONAL
# reformat the columns
pivot_longer(
c(
"x10_jaut_ekstrakcija",
"x11_jaut_ekstrakcija",
"x13_jaut_ekstrakcija" ,
"x13_jaut_tradicionala",
"x14_jaut_ekstrakcija" ,
"x14_jaut_tradicionala"
),
names_to = "traditional_methods_numeric",
values_to = "traditional_methods_numeric_values"
) %>%
# create a new column for the code name
mutate(traditional_methods_code = str_replace(traditional_methods_numeric, "jaut", "code")) %>%
# create a new column for the code values
mutate(
traditional_methods_code_values = case_when(
traditional_methods_numeric_values == "Definitely no" ~ 1,
traditional_methods_numeric_values == "Unlikely" ~ 2,
traditional_methods_numeric_values == "Likely" ~ 3,
traditional_methods_numeric_values == "Definitely yes" ~ 4,
)
) %>%
# for the MINIMALLY
# reformat the columns
pivot_longer(
c(
"x10_jaut_selektiva" ,
"x10_jaut_hall" ,
"x10_jaut_sdf",
"x10_jaut_nerestorativa",
"x11_jaut_selektiva" ,
"x11_jaut_silanti" ,
"x11_jaut_sdf",
"x11_jaut_nerestorativa",
"x13_jaut_selektiva" ,
"x13_jaut_hall" ,
"x13_jaut_sdf" ,
"x13_jaut_nerestorativa",
"x14_jaut_selektiva" ,
"x14_jaut_silanti" ,
"x14_jaut_sdf" ,
"x14_jaut_nerestorativa"
),
names_to = "minimally_methods_numeric",
values_to = "minimally_methods_numeric_values"
) %>%
# create a new column for the code name
mutate(minimally_methods_code = str_replace(minimally_methods_numeric, "jaut", "code")) %>%
# create a new column for the code values
mutate(
minimally_methods_code_values = case_when(
minimally_methods_numeric_values == "Definitely no" ~ 4,
minimally_methods_numeric_values == "Unlikely" ~ 3,
minimally_methods_numeric_values == "Likely" ~ 2,
minimally_methods_numeric_values == "Definitely yes" ~ 1,
)
) %>%
select(ID,
traditional_methods_code,
traditional_methods_code_values,
minimally_methods_code,
minimally_methods_code_values) %>%
filter(!is.na(traditional_methods_code_values)) %>%
filter(!is.na(minimally_methods_code_values)) %>%
pivot_wider(names_from = traditional_methods_code,
values_from = traditional_methods_code_values) %>%
pivot_wider(names_from = minimally_methods_code,
values_from = minimally_methods_code_values)
# janitor::tabyl(traditional_methods_numeric,
# traditional_methods_code_values) %>%
# pivot_wider(names_from = traditional_methods_numeric,
# values_from = traditional_methods_numeric_values)
prohibition = sum columns x10 + x11 and if >= 21 then TRADITIONAL if else MINIMALLY INVASIVE DENT recommendation = sum columns x13 + x14 and if >= 25 then TRADITIONAL if else MINIMALLY INVASIVE DENT
df_recoded_delete_after_use <- df_recoded_delete_after_use %>%
mutate(sum_final_prohibition = rowSums(select(., starts_with(c("x10", "x11"))), na.rm = FALSE)) %>%
mutate(sum_final_recommendation = rowSums(select(., starts_with(c("x13", "x14"))), na.rm = FALSE)) %>%
# relocate(sum_final_recommendation, .after = ID) %>%
# relocate(sum_final_prohibition, .after = ID) %>%
# visdat::vis_dat() # to check the NAs
mutate(type_after_prohibition = case_when(
sum_final_prohibition >= 21 ~ "Traditional",
sum_final_prohibition <= 20 ~ "Minimally invasive",
TRUE ~ as.character(NA)
)) %>%
mutate(type_after_recommendation = case_when(
sum_final_recommendation >= 25 ~ "Traditional",
sum_final_recommendation <= 24 ~ "Minimally invasive",
TRUE ~ as.character(NA)
)) %>%
select(ID, sum_final_prohibition:type_after_recommendation)
df <- left_join(df,
df_recoded_delete_after_use,
by = "ID")
rm(df_recoded_delete_after_use)
Explore the prohibition and recommendation status
df %>%
ggplot(aes(x = sum_final_prohibition)) +
geom_histogram()
df %>%
ggplot(aes(x = sum_final_recommendation)) +
geom_histogram()
Correlation between both points
df %>%
filter(!is.na(sum_final_recommendation)) %>%
filter(!is.na(sum_final_recommendation)) %>%
filter(!is.na(x4_vai_jus_arstejat_mazus_bernus_piena_zobus)) %>%
ggplot(aes(x = sum_final_prohibition,
y = sum_final_recommendation,
color = x4_vai_jus_arstejat_mazus_bernus_piena_zobus)) +
geom_jitter() +
theme_minimal() +
# ggpubr::theme_classic2() +
theme(legend.position = "bottom") +
labs(
title = "Correlation between baseline value and change \nafter prohibition or recommendation ",
x = "Sum for prohibition",
y = "Sum for recommendation",
color = "Type of practice"
) +
facet_grid(.~summa2)
Create two new variables, classifying a dentist as minimally invasive dentist or traditional if
sum_final_prohibition equal or less 20 = minimally invasive, TRUE ~ traditional sum_final_recommendation equal or less 24 = minimally, TRUE ~ traditional
df <- df %>%
mutate(
dentist_after_prohibition = case_when(
sum_final_prohibition <= 20 ~ "Minimally invasive",
TRUE ~ "Traditional"
)
) %>%
mutate(
dentist_after_recommendation = case_when(
sum_final_recommendation <= 24 ~ "Minimally invasive",
TRUE ~ "Traditional"
))
Check Invazivs2 vs change after prohibition or recommendation
df %>%
tabyl(dentist_after_prohibition, dentist_after_recommendation, invazivs2)
## $Traditional
## dentist_after_prohibition Minimally invasive Traditional
## Minimally invasive 95 36
## Traditional 25 165
##
## $`Minimally invasive`
## dentist_after_prohibition Minimally invasive Traditional
## Minimally invasive 26 4
## Traditional 7 15
then classify as change if invazivs2 equal or different to after_prohibition or after_recommendation
df <- df %>%
mutate(change_for_baseline_to_prohibition = case_when(
invazivs2 == "Traditional" & dentist_after_prohibition == "Minimally invasive" ~ "Change to less invasive",
invazivs2 == "Minimally invasive" & dentist_after_prohibition == "Traditional" ~ "Change to more invasive",
TRUE ~ "No change"
)) %>%
mutate(change_for_baseline_to_recommendation = case_when(
invazivs2 == "Traditional" & dentist_after_recommendation == "Minimally invasive" ~ "Change to less invasive",
invazivs2 == "Minimally invasive" & dentist_after_recommendation == "Traditional" ~ "Change to more invasive",
TRUE ~ "No change"
))
Relevel the levels of change to change to invasive - no change - change to less invasive
df <- df %>%
mutate(
change_for_baseline_to_prohibition = fct_relevel(
change_for_baseline_to_prohibition,
"Change to less invasive",
"No change",
"Change to more invasive"
)
) %>%
mutate(
change_for_baseline_to_recommendation = fct_relevel(
change_for_baseline_to_recommendation,
"Change to less invasive",
"No change",
"Change to more invasive"
)
)
Identify the change of the dentists from invazivs1 to type_after_recommendation y prohibition
df <- df %>%
select(
ID,
# explanatory variables
x1_jusu_dzimums,
x2_gads_kura_ieguvat_zobarsta_gradu,
x3_vai_esat_ieguvis_specialista_gradu,
x4_vai_jus_arstejat_mazus_bernus_piena_zobus,
# baseline
invazivs1,
invazivs2,
# status after recommendation
type_after_recommendation,
# status after prohibition
type_after_prohibition
) %>%
# make the change column
# from invazivs1
mutate(
change_after_reccomendation_i1 = case_when(
invazivs1 == "Traditional" &
type_after_recommendation == "Minimally invasive" ~ "Change to LESS invasive",
invazivs1 == "Minimally invasive" &
type_after_recommendation == "Traditional" ~ "Change to MORE invasive",
TRUE ~ "No change"
)
)
df %>%
filter(!is.na(type_after_prohibition)) %>%
ggplot(aes(x = invazivs1,
fill = type_after_prohibition)) +
geom_bar(stat = "count") +
stat_count(
geom = "text",
colour = "white",
size = 3.5,
aes(label = ..count..),
position = position_stack(vjust = 0.8)
) +
labs(title = "Change from baseline after prohibition (I1)",
x = "Baseline",
fill = "Change",
y = "Count")
df %>%
filter(!is.na(type_after_prohibition)) %>%
ggplot(aes(x = invazivs2,
fill = type_after_prohibition)) +
geom_bar(stat = "count") +
stat_count(
geom = "text",
colour = "white",
size = 3.5,
aes(label = ..count..),
position = position_stack(vjust = 0.8)
) +
labs(title = "Change from baseline after prohibition (I2)",
x = "Baseline",
fill = "Change",
y = "Count")
### After recommendation
df %>%
filter(!is.na(type_after_recommendation)) %>%
ggplot(aes(x = invazivs1,
fill = type_after_recommendation)) +
geom_bar(stat = "count") +
stat_count(
geom = "text",
colour = "white",
size = 3.5,
aes(label = ..count..),
position = position_stack(vjust = 0.8)
) +
labs(title = "Change from baseline after recommendation (I1)",
x = "Baseline",
fill = "Change",
y = "Count")
df %>%
filter(!is.na(type_after_recommendation)) %>%
ggplot(aes(x = invazivs2,
fill = type_after_recommendation)) +
geom_bar(stat = "count") +
stat_count(
geom = "text",
colour = "white",
size = 3.5,
aes(label = ..count..),
position = position_stack(vjust = 0.8)
) +
labs(title = "Change from baseline after recommendation (I2)",
x = "Baseline",
fill = "Change",
y = "Count")
mosaicplot(table(df$invazivs1, df$type_after_recommendation), shade = T)
mosaicplot(table(df$invazivs1, df$type_after_prohibition), shade = T)
mosaicplot(table(df$invazivs2, df$type_after_recommendation), shade = T)
mosaicplot(table(df$invazivs2, df$type_after_prohibition), shade = T)
## Tables ### Prohibition
df %>%
janitor::tabyl(invazivs1, type_after_prohibition) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
#adorn_title("combined") %>%
adorn_ns() %>%
knitr::kable()
invazivs1 | Minimally invasive | Traditional | NA_ |
---|---|---|---|
Traditional | 42.11% (112) | 44.74% (119) | 13.16% (35) |
Minimally invasive | 45.79% (49) | 51.40% (55) | 2.80% (3) |
df %>%
janitor::tabyl(invazivs1, type_after_prohibition) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
#adorn_title("combined") %>%
adorn_ns() %>%
knitr::kable()
invazivs1 | Minimally invasive | Traditional | NA_ |
---|---|---|---|
Traditional | 42.11% (112) | 44.74% (119) | 13.16% (35) |
Minimally invasive | 45.79% (49) | 51.40% (55) | 2.80% (3) |
df %>%
janitor::tabyl(invazivs2, type_after_recommendation) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
#adorn_title("combined") %>%
adorn_ns() %>%
knitr::kable()
invazivs2 | Minimally invasive | Traditional | NA_ |
---|---|---|---|
Traditional | 37.38% (120) | 51.09% (164) | 11.53% (37) |
Minimally invasive | 63.46% (33) | 34.62% (18) | 1.92% (1) |
df %>%
janitor::tabyl(invazivs2, type_after_prohibition) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
#adorn_title("combined") %>%
adorn_ns() %>%
knitr::kable()
invazivs2 | Minimally invasive | Traditional | NA_ |
---|---|---|---|
Traditional | 40.81% (131) | 47.66% (153) | 11.53% (37) |
Minimally invasive | 57.69% (30) | 40.38% (21) | 1.92% (1) |
df %>%
janitor::tabyl(invazivs1, type_after_recommendation) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
#adorn_title("combined") %>%
adorn_ns() %>%
knitr::kable()
invazivs1 | Minimally invasive | Traditional | NA_ |
---|---|---|---|
Traditional | 37.22% (99) | 49.25% (131) | 13.53% (36) |
Minimally invasive | 50.47% (54) | 47.66% (51) | 1.87% (2) |
df %>%
janitor::tabyl(invazivs1, type_after_recommendation) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
#adorn_title("combined") %>%
adorn_ns() %>%
knitr::kable()
invazivs1 | Minimally invasive | Traditional | NA_ |
---|---|---|---|
Traditional | 37.22% (99) | 49.25% (131) | 13.53% (36) |
Minimally invasive | 50.47% (54) | 47.66% (51) | 1.87% (2) |
df %>%
janitor::tabyl(invazivs2, type_after_recommendation) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
#adorn_title("combined") %>%
adorn_ns() %>%
knitr::kable()
invazivs2 | Minimally invasive | Traditional | NA_ |
---|---|---|---|
Traditional | 37.38% (120) | 51.09% (164) | 11.53% (37) |
Minimally invasive | 63.46% (33) | 34.62% (18) | 1.92% (1) |
df %>%
janitor::tabyl(invazivs2, type_after_recommendation) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
#adorn_title("combined") %>%
adorn_ns() %>%
knitr::kable()
invazivs2 | Minimally invasive | Traditional | NA_ |
---|---|---|---|
Traditional | 37.38% (120) | 51.09% (164) | 11.53% (37) |
Minimally invasive | 63.46% (33) | 34.62% (18) | 1.92% (1) |
pacman::p_load(ggalluvial)
Format in alluvial shape
df %>%
# count for each level
select(invazivs1, type_after_recommendation, type_after_prohibition) %>%
group_by(invazivs1, type_after_recommendation, type_after_prohibition) %>%
count() %>%
# remove NAs values
drop_na() %>%
# now the plot
ggplot(
aes(
y = n,
axis1 = invazivs1,
axis2 = type_after_recommendation,
axis3 = type_after_prohibition
)
) +
geom_alluvium(aes(fill = invazivs1), width = 1 / 12) +
geom_stratum(width = 1 / 12,
fill = "black",
color = "grey") +
geom_label(stat = "stratum", aes(label = after_stat(stratum))) +
scale_x_discrete(limits = c("Baseline", "After recommendation", "After prohibition"),
expand = c(.13, .01)) +
scale_fill_brewer(type = "qual", palette = "Set1") +
labs(title = "Caries treatment decisions after recommendation to\navoid AGP and after prohibition of AGP ",
y = "Count") +
theme(legend.position = "None") +
geom_text(x=3, y=30, label="Scatter plot")
df %>%
# count for each level
select(invazivs1, type_after_prohibition) %>%
group_by(invazivs1, type_after_prohibition) %>%
count() %>%
# remove NAs values
drop_na() %>%
# now the plot
ggplot(aes(y = n,
axis1 = invazivs1,
axis2 = type_after_prohibition)) +
scale_x_discrete(expand = c(.1, .1)) +
geom_flow() +
geom_stratum(alpha = .5) +
geom_alluvium(aes(fill = invazivs1)) +
labs(title = "NOT USE! Caries treatment decisions after prohibition of AGP ",
y = "Count",
fill = "Baseline") +
scale_x_discrete(limits = c("Baseline", "After prohibition"),
expand = c(.15, .01)) +
geom_label(stat = "stratum", aes(label = after_stat(stratum)))
### After recommendation
Calculate the percentages
df %>%
# count for each level
select(invazivs1, type_after_recommendation) %>%
group_by(invazivs1, type_after_recommendation) %>%
count()
p1 <- df %>%
# count for each level
select(invazivs1, type_after_recommendation) %>%
group_by(invazivs1, type_after_recommendation) %>%
count() %>%
# remove NAs values
drop_na() %>%
# now the plot
ggplot(aes(y = n,
axis1 = invazivs1,
axis2 = type_after_recommendation)) +
geom_alluvium(aes(fill = invazivs1), width = 1 / 12) +
geom_stratum(width = 1 / 12,
fill = "black",
color = "grey") +
geom_label(stat = "stratum", aes(label = after_stat(stratum))) +
scale_x_discrete(
limits = c("Baseline", "After recommendations"),
expand = c(.15, .01)
) +
scale_fill_brewer(type = "qual", palette = "Set1") +
labs(title = "A. Caries treatment decisions after recommendation to avoid AGP ",
subtitle = "chi^2 = 19.577, df = 1, p-value < 0.001",
y = "Count",
x = "") +
theme(legend.position = "None") +
geom_text(x = 1, y = 200, label ="68.7%", color = "white", size = 3.5) +
geom_text(x = 1, y = 32, label = "31.3%", color = "white", size = 3.5) +
geom_text(x = 2, y = 223, label = "54.3%", color = "white", size = 3.5) +
geom_text(x = 2, y = 55, label = "45.7%", color = "white", size = 3.5)
p1
R <- as.table(rbind(c(231, 174), c(104, 161)))
dimnames(R) <- list(Baseline = c("T", "M"),
after_proh = c("T","M"))
chisq.test(R)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: R
## X-squared = 19.577, df = 1, p-value = 9.662e-06
Calculate the percentages
df %>%
# count for each level
select(invazivs1, type_after_prohibition) %>%
group_by(invazivs1, type_after_prohibition) %>%
count()
p2 <- df %>%
# count for each level
select(invazivs1, type_after_prohibition) %>%
group_by(invazivs1, type_after_prohibition) %>%
count() %>%
# remove NAs values
drop_na() %>%
# now the plot
ggplot(aes(y = n,
axis1 = invazivs1,
axis2 = type_after_prohibition)) +
geom_alluvium(aes(fill = invazivs1), width = 1 / 12) +
geom_stratum(width = 1 / 12,
fill = "black",
color = "grey") +
geom_label(stat = "stratum", aes(label = after_stat(stratum))) +
scale_x_discrete(
limits = c("Baseline", "After prohibition"),
expand = c(.15, .01)
) +
scale_fill_brewer(type = "qual", palette = "Set1") +
labs(title = "B. Caries treatment decisions after AGP prohibition",
subtitle = "chi^2=13.924, df=1, p-value<0.001",
y = "Count",
x = "") +
theme(legend.position = "None") +
geom_text(x = 1, y = 200, label ="68.7%", color = "white", size = 3.5) +
geom_text(x = 1, y = 32, label = "31.3%", color = "white", size = 3.5) +
geom_text(x = 2, y = 223, label = "51.9%", color = "white", size = 3.5) +
geom_text(x = 2, y = 55, label = "48.1%", color = "white", size = 3.5) +
# remove the y axis
theme(axis.title.y=element_blank(),
axis.text.y=element_blank())
p2
#### Chi square after prohibition
P <- as.table(rbind(c(230, 182), c(105, 153)))
dimnames(P) <- list(Baseline = c("T", "M"),
after_proh = c("T","M"))
chisq.test(P)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: P
## X-squared = 13.924, df = 1, p-value = 0.0001904
rm(p1, p2, R, P)
Recode to less invasive (1) and no change or to more invasive (0)
df_regression <- df %>%
mutate(y_change_to_minimally = case_when(
change_after_reccomendation_i1 == "Change to LESS invasive" ~ 1,
TRUE ~0
))
df_regression <- df %>%
mutate(y_change_to_minimally = case_when(
change_after_reccomendation_i1 == "Change to LESS invasive" ~ 1,
TRUE ~0
)) %>%
## Change to more invasive
mutate(y_change_to_more_invasive = case_when(
change_after_reccomendation_i1 == "Change to MORE invasive" ~ 1,
TRUE ~0
)) %>%
## Any change
mutate(y_no_change = case_when(
change_after_reccomendation_i1 == "No change" ~ 0,
TRUE ~ 1
))
df_regression <- df_regression %>%
rename(Sex = x1_jusu_dzimums,
"Graduation_Year"= x2_gads_kura_ieguvat_zobarsta_gradu,
"Specialist" = x3_vai_esat_ieguvis_specialista_gradu,
"Patients"= x4_vai_jus_arstejat_mazus_bernus_piena_zobus, )
df_regression <- df_regression %>%
select(
Sex,
Graduation_Year,
Specialist,
Patients,
y_no_change,
y_change_to_minimally,
y_change_to_more_invasive
)
less_invasive <- glm(
y_change_to_minimally ~
Sex +
Graduation_Year +
Specialist +
Patients,
data = df_regression,
family = "binomial"
)
more_invasive <- glm(y_change_to_more_invasive ~
Sex +
Graduation_Year +
Specialist +
Patients,
data = df_regression,
family = "binomial" )
no_change <- glm(y_no_change ~
Sex +
Graduation_Year +
Specialist +
Patients,
data = df_regression,
family = "binomial" )
less <- less_invasive %>%
gtsummary::tbl_regression(exponentiate = TRUE)
more <- more_invasive %>%
gtsummary::tbl_regression(exponentiate = TRUE)
any_change <- no_change %>%
gtsummary::tbl_regression(exponentiate = TRUE)
gtsummary::tbl_merge(
tbls = list(less, more, any_change),
tab_spanner = c("**Less invasive**", "**More invasive**", "**Any change**")
)
Characteristic | Less invasive | More invasive | Any change | ||||||
---|---|---|---|---|---|---|---|---|---|
OR1 | 95% CI1 | p-value | OR1 | 95% CI1 | p-value | OR1 | 95% CI1 | p-value | |
Gender | |||||||||
Female | — | — | — | — | — | — | |||
Male | 0.33 | 0.08, 1.00 | 0.081 | 0.39 | 0.06, 1.41 | 0.2 | 0.29 | 0.09, 0.74 | 0.016 |
Graduation year | 1.00 | 0.99, 1.02 | 0.7 | 1.02 | 1.00, 1.05 | 0.094 | 1.01 | 1.00, 1.03 | 0.13 |
Specialist degree | |||||||||
Yes | — | — | — | — | — | — | |||
No | 1.40 | 0.58, 3.94 | 0.5 | 2.18 | 0.61, 13.9 | 0.3 | 1.81 | 0.80, 4.50 | 0.2 |
Type of patients | |||||||||
Adults and children equaly | — | — | — | — | — | — | |||
Small children very rare | 0.52 | 0.24, 1.03 | 0.072 | 1.42 | 0.63, 3.00 | 0.4 | 0.74 | 0.40, 1.32 | 0.3 |
Only adults | 0.92 | 0.50, 1.66 | 0.8 | 0.85 | 0.34, 1.93 | 0.7 | 0.87 | 0.50, 1.51 | 0.6 |
1
OR = Odds Ratio, CI = Confidence Interval
|
gtsummary::tbl_merge(
tbls = list(less, more),
tab_spanner = c("**Less invasive**", "**More invasive**")
)
Characteristic | Less invasive | More invasive | ||||
---|---|---|---|---|---|---|
OR1 | 95% CI1 | p-value | OR1 | 95% CI1 | p-value | |
Gender | ||||||
Female | — | — | — | — | ||
Male | 0.33 | 0.08, 1.00 | 0.081 | 0.39 | 0.06, 1.41 | 0.2 |
Graduation year | 1.00 | 0.99, 1.02 | 0.7 | 1.02 | 1.00, 1.05 | 0.094 |
Specialist degree | ||||||
Yes | — | — | — | — | ||
No | 1.40 | 0.58, 3.94 | 0.5 | 2.18 | 0.61, 13.9 | 0.3 |
Type of patients | ||||||
Adults and children equaly | — | — | — | — | ||
Small children very rare | 0.52 | 0.24, 1.03 | 0.072 | 1.42 | 0.63, 3.00 | 0.4 |
Only adults | 0.92 | 0.50, 1.66 | 0.8 | 0.85 | 0.34, 1.93 | 0.7 |
1
OR = Odds Ratio, CI = Confidence Interval
|
report::report(less_invasive)
## We fitted a logistic model (estimated using ML) to predict y_change_to_minimally with Sex, Graduation_Year, Specialist and Patients (formula: y_change_to_minimally ~ Sex + Graduation_Year + Specialist + Patients). The model's explanatory power is weak (Tjur's R2 = 0.02). The model's intercept, corresponding to Sex = Female, Graduation_Year = 0, Specialist = Yes and Patients = Adults and children equaly, is at -8.01 (95% CI [-44.97, 28.91], p = 0.670). Within this model:
##
## - The effect of Sex [Male] is non-significantly negative (beta = -1.10, 95% CI [-2.57, -2.66e-03], p = 0.081; Std. beta = -1.10, 95% CI [-2.57, -2.66e-03])
## - The effect of Graduation_Year is non-significantly positive (beta = 3.44e-03, 95% CI [-0.02, 0.02], p = 0.715; Std. beta = 0.05, 95% CI [-0.20, 0.29])
## - The effect of Specialist [No] is non-significantly positive (beta = 0.34, 95% CI [-0.55, 1.37], p = 0.480; Std. beta = 0.34, 95% CI [-0.55, 1.37])
## - The effect of Patients [Small children very rare] is non-significantly negative (beta = -0.66, 95% CI [-1.42, 0.03], p = 0.072; Std. beta = -0.66, 95% CI [-1.42, 0.03])
## - The effect of Patients [Only adults] is non-significantly negative (beta = -0.08, 95% CI [-0.70, 0.51], p = 0.785; Std. beta = -0.08, 95% CI [-0.70, 0.51])
##
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using