1 Descriptive summary of source datafile

2 Plotting means by timepoint: KP biomarkers

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = TRP_nM))
gg.idline <- gg.base + geom_line(aes(color = TRP_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = five_HT_nM))
gg.idline <- gg.base + geom_line(aes(color = five_HT_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = KYN_nM))
gg.idline <- gg.base + geom_line(aes(color = KYN_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = three_HK_nM))
gg.idline <- gg.base + geom_line(aes(color = three_HK_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = KYNA_nM))
gg.idline <- gg.base + geom_line(aes(color = KYNA_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = PIC_nM))
gg.idline <- gg.base + geom_line(aes(color = PIC_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = Quin_nM))
gg.idline <- gg.base + geom_line(aes(color = Quin_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = AA_nM))
gg.idline <- gg.base + geom_line(aes(color = AA_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = KYN_TRP_ratio))
gg.idline <- gg.base + geom_line(aes(color = KYN_TRP_ratio, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = KYN_SER_ratio))
gg.idline <- gg.base + geom_line(aes(color = KYN_SER_ratio, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = QUIN_PIC_ratio))
gg.idline <- gg.base + geom_line(aes(color = QUIN_PIC_ratio, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = QUIN_KYNA_ratio))
gg.idline <- gg.base + geom_line(aes(color = QUIN_KYNA_ratio, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = threeHK_KYN_ratio))
gg.idline <- gg.base + geom_line(aes(color = threeHK_KYN_ratio, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = threeHK_KYNA_ratio))
gg.idline <- gg.base + geom_line(aes(color = threeHK_KYNA_ratio, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

# gg.base + geom_line(aes(color = Remission, group = patientno))+ geom_point()+ 
#   stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

3 Plotting means by timepoint: inflammatory markers

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL1B_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL1B_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL1B_pg_mL_LLOD))
gg.idline <- gg.base + geom_line(aes(color = IL1B_pg_mL_LLOD, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL2_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL2_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL2_pg_mL_LLOD))
gg.idline <- gg.base + geom_line(aes(color = IL2_pg_mL_LLOD, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL4_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL4_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL4_pg_mL_LLOD))
gg.idline <- gg.base + geom_line(aes(color = IL4_pg_mL_LLOD, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL6_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL6_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL8_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL8_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL10_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL10_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL10_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL10_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL12p70_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL12p70_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL12p70_pg_mL_LLOD))
gg.idline <- gg.base + geom_line(aes(color = IL12p70_pg_mL_LLOD, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL13_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IL13_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IL13_pg_mL_LLOD))
gg.idline <- gg.base + geom_line(aes(color = IL13_pg_mL_LLOD, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = TNFa_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = TNFa_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = IFNy_pg_mL))
gg.idline <- gg.base + geom_line(aes(color = IFNy_pg_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = CRP_ng_mL))
gg.idline <- gg.base + geom_line(aes(color = CRP_ng_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

4 Plotting means by timepoint: vascular endothelial biomarkers

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = NIC_nM))
gg.idline <- gg.base + geom_line(aes(color = NIC_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = NIC_nM_LLOD))
gg.idline <- gg.base + geom_line(aes(color = NIC_nM_LLOD, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = NTA_nM))
gg.idline <- gg.base + geom_line(aes(color = NTA_nM, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = SAA_ng_mL))
gg.idline <- gg.base + geom_line(aes(color = SAA_ng_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = VCAM_1_ng_mL))
gg.idline <- gg.base + geom_line(aes(color = VCAM_1_ng_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(Biok_vert_noNA, aes(x = infusionno, y = ICAM_1_ng_mL))
gg.idline <- gg.base + geom_line(aes(color = ICAM_1_ng_mL, group = Remission))
gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()

gg.base + stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

5 PCA - Scree plot

pca_df<-Biok_vert_df %>% dplyr::select(all_of(vars_demo),
                                    all_of(vars_tx),
                                    all_of(vars_cx),
                                    all_of(vars_KP) ,
                                    all_of(vars_inflam),
                                    all_of(vars_vasc)) %>% 
  dplyr::select(-patientno, -age, -sex, -BMI, -race, -Site_Location, -infusionno, -Sample_ID, -Batch_Number, -Blood_Draw_Event, -Remission) %>% 
  arrange(Remission_new) 

#PCA function
row.names(pca_df) <- paste(pca_df$Remission_new, row.names(pca_df), sep="_") 
pca_df$Remission_new <- NULL
bx_pca_scaled <- data.frame(t(na.omit(t(pca_df))))
pca_sample <- prcomp(bx_pca_scaled, retx=TRUE, center = TRUE, scale. = TRUE)

#SCREE PLOT

var_explained = pca_sample$sdev^2 / sum(pca_sample$sdev^2)

qplot(c(1:31), var_explained) + 
  geom_line() + 
  xlab("Principal Component") + 
  ylab("Variance Explained") +
  ggtitle("Scree Plot of total sample") +
  ylim(0, 0.2)

6 PCA by Remission status

#PCA visualization
pca_sample_remission <- c(rep("Non-remitter (N=157)", 157), rep("Remitter (N=60)", 60), rep("(missing, N=1)",1))

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,2), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA2 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA3 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA4 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA5 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(5,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA6 and 7 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_remission) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

7 PCA by sex

#PCA visualization

pca_sample_sex <- c(rep("Female (N=136)", 136), rep("Male (N=82)", 82))

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,2), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA2 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA3 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA4 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA5 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(5,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA6 and 7 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_sex) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

8 PCA by infusion number

pca_sample_infusionno <- c(rep("Baseline", 73), rep("1st infusion", 72), rep("3rd infusion", 73))  


ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,2), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA2 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA3 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA4 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA5 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(5,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA6 and 7 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_infusionno) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

9 PCA by site location

pca_sample_Site_Location <- c(rep("Johns Hopkins", 22), 
                              rep("University of Michigan", 69), 
                              rep("Mayo Clinic", 114), 
                              rep("Pine Rest/MSU", 13)) 


ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,2), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA2 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA3 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA4 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA5 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(5,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA6 and 7 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Site_Location) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

10 PCA by batch

pca_sample_Batch <- c(rep("Batch #1", 35), 
                      rep("Batch #2", 37), 
                      rep("Batch #3", 37), 
                      rep("Batch #4", 36),
                      rep("Batch #5", 36),
                      rep("Batch #6", 37))  


ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,2), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(1,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA2 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,3), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(2,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA3 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,4), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(3,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA4 vs all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,5), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,6), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(4,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA5 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(5,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

#PCA6 and 7 vs. all

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,7), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(6,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()

ggbiplot::ggbiplot(pca_sample,
         ellipse=TRUE,
         choices=c(7,8), 
         obs.scale = 1, 
         var.scale = 1,
         var.axes=FALSE,   
         labels=rownames(Biok_vert_df), 
         groups=pca_sample_Batch) + 
  ggtitle("Principle component analysis (Biok sample N=218)")+
  theme_light()