Objetivo

Proba funcioens de librería dplyr

Desarrollo

Cargar librerías

library(dplyr)
library(readr)

Cargar datos

datos.temperaturas <- read.csv("https://raw.githubusercontent.com/rpizarrog/CIIT.-Diplomado-en-Ciencia-de-los-Datos-e-IoT/main/M%C3%B3dulo%20I/datos/datos.temperaturas.csv", encoding = "UTF8", stringsAsFactors = TRUE)

datos.precipitaciones <- read.csv("https://raw.githubusercontent.com/rpizarrog/CIIT.-Diplomado-en-Ciencia-de-los-Datos-e-IoT/main/M%C3%B3dulo%20I/datos/datos.precipitaciones.csv", encoding = "UTF-8", stringsAsFactors = TRUE)

Describir los datos

Datos de temperatura

summary(datos.temperaturas)
##        X           abreviatura                  entidad         ene       
##  Min.   :  1.00   AGS    : 12   Aguascalientes      :  9   Min.   : 9.10  
##  1st Qu.: 96.75   BC     : 12   Baja California     :  9   1st Qu.:13.70  
##  Median :192.50   BCS    : 12   Baja California Sur :  9   Median :16.48  
##  Mean   :192.50   CAMP   : 12   Campeche            :  9   Mean   :17.09  
##  3rd Qu.:288.25   CDMX   : 12   Chiapas             :  9   3rd Qu.:21.00  
##  Max.   :384.00   CHIH   : 12   Chihuahua           :  9   Max.   :25.90  
##                   (Other):312   (Other)             :330                  
##       feb             mar             abr             may       
##  Min.   :10.10   Min.   :13.40   Min.   :14.80   Min.   :16.80  
##  1st Qu.:15.43   1st Qu.:18.04   1st Qu.:20.20   1st Qu.:22.03  
##  Median :18.10   Median :20.70   Median :22.85   Median :24.95  
##  Mean   :18.70   Mean   :20.95   Mean   :23.01   Mean   :24.65  
##  3rd Qu.:22.60   3rd Qu.:24.02   3rd Qu.:25.80   3rd Qu.:27.20  
##  Max.   :26.70   Max.   :28.00   Max.   :31.10   Max.   :31.30  
##                                                                 
##       jun             jul             ago             sep       
##  Min.   :15.70   Min.   :15.30   Min.   :15.00   Min.   :14.10  
##  1st Qu.:22.07   1st Qu.:21.07   1st Qu.:20.80   1st Qu.:20.50  
##  Median :25.71   Median :25.40   Median :25.20   Median :24.70  
##  Mean   :24.97   Mean   :24.63   Mean   :24.68   Mean   :23.89  
##  3rd Qu.:28.24   3rd Qu.:28.40   3rd Qu.:28.48   3rd Qu.:27.70  
##  Max.   :30.60   Max.   :31.90   Max.   :32.50   Max.   :30.40  
##                                                                 
##       oct             nov             dic            anual           agnio     
##  Min.   :12.80   Min.   :11.80   Min.   : 9.30   Min.   :14.00   Min.   :2010  
##  1st Qu.:18.71   1st Qu.:16.29   1st Qu.:13.97   1st Qu.:18.90   1st Qu.:2013  
##  Median :22.45   Median :19.34   Median :17.00   Median :22.30   Median :2016  
##  Mean   :22.15   Mean   :19.69   Mean   :17.46   Mean   :21.84   Mean   :2016  
##  3rd Qu.:25.60   3rd Qu.:23.62   3rd Qu.:21.20   3rd Qu.:25.02   3rd Qu.:2018  
##  Max.   :29.50   Max.   :28.00   Max.   :26.60   Max.   :28.10   Max.   :2021  
##  NA's   :32      NA's   :32      NA's   :32      NA's   :192
str(datos.temperaturas)
## 'data.frame':    384 obs. of  17 variables:
##  $ X          : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ abreviatura: Factor w/ 32 levels "AGS","BC","BCS",..: 1 2 3 4 8 9 7 6 5 10 ...
##  $ entidad    : Factor w/ 64 levels "Aguascalientes ",..: 2 4 6 8 15 17 10 12 18 20 ...
##  $ ene        : num  11.4 13.9 17.7 21.6 11.5 23.5 21 9.1 13.1 10 ...
##  $ feb        : num  12.2 13.8 18.2 23.1 12.4 23.1 23.3 10.1 14.6 10.6 ...
##  $ mar        : num  15.3 14.8 19 24.1 17.1 23.8 24 13.4 18.2 13.6 ...
##  $ abr        : num  18.3 15.9 20.8 28.6 22.3 25.1 26.7 18.1 18.8 17.7 ...
##  $ may        : num  21.4 18.8 23.1 29.9 26.4 26.1 26.7 21.6 20.8 21.4 ...
##  $ jun        : num  22.4 23.4 25.4 29.6 28.5 27.6 26.4 25.7 20.5 23.6 ...
##  $ jul        : num  19.9 27.2 27.5 28.4 26.2 26.8 25.3 23.9 18.1 21.6 ...
##  $ ago        : num  20.6 28.3 29.5 28.3 28 27 24.9 24.3 18.4 22.1 ...
##  $ sep        : num  20.8 26.1 28.3 28.1 22.2 24.3 25.1 26.6 17.9 20.8 ...
##  $ oct        : num  17.5 22.1 25.4 25.9 22 27.2 23.9 18.8 16.6 17.5 ...
##  $ nov        : num  15 16.7 20.5 25 17.4 24.8 22.9 13.4 14.9 13.5 ...
##  $ dic        : num  12.7 15.4 18.1 21.4 13.9 22.9 21.4 12 12.8 11.4 ...
##  $ anual      : num  17.3 19.7 22.8 26.2 20.7 25.2 24.3 18.1 17.1 17 ...
##  $ agnio      : int  2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...

Mostrar datos

head(datos.temperaturas, 20)
##     X abreviatura              entidad  ene  feb  mar  abr  may  jun  jul  ago
## 1   1         AGS      AGUASCALIENTES  11.4 12.2 15.3 18.3 21.4 22.4 19.9 20.6
## 2   2          BC     BAJA CALIFORNIA  13.9 13.8 14.8 15.9 18.8 23.4 27.2 28.3
## 3   3         BCS BAJA CALIFORNIA SUR  17.7 18.2 19.0 20.8 23.1 25.4 27.5 29.5
## 4   4        CAMP            CAMPECHE  21.6 23.1 24.1 28.6 29.9 29.6 28.4 28.3
## 5   5        COAH            COAHUILA  11.5 12.4 17.1 22.3 26.4 28.5 26.2 28.0
## 6   6         COL              COLIMA  23.5 23.1 23.8 25.1 26.1 27.6 26.8 27.0
## 7   7        CHIS             CHIAPAS  21.0 23.3 24.0 26.7 26.7 26.4 25.3 24.9
## 8   8        CHIH           CHIHUAHUA   9.1 10.1 13.4 18.1 21.6 25.7 23.9 24.3
## 9   9        CDMX    DISTRITO FEDERAL  13.1 14.6 18.2 18.8 20.8 20.5 18.1 18.4
## 10 10         DGO             DURANGO  10.0 10.6 13.6 17.7 21.4 23.6 21.6 22.1
## 11 11         GTO          GUANAJUATO  13.2 14.1 17.6 20.0 22.5 23.1 20.6 21.0
## 12 12         GRO            GUERRERO  22.5 23.3 24.7 26.3 27.7 27.0 25.4 25.2
## 13 13         HGO             HIDALGO  12.7 13.7 16.7 19.4 20.8 21.5 18.8 19.3
## 14 14         JAL             JALISCO  15.5 16.4 19.0 21.0 24.0 24.5 22.5 22.8
## 15 15         MEX    ESTADO DE MÉXICO   9.4 11.2 14.2 15.9 17.8 17.6 15.7 15.5
## 16 16        MICH           MICHOACÁN  14.4 14.5 17.7 19.9 22.3 22.3 20.3 20.2
## 17 17         MOR             MORELOS  17.3 19.0 22.5 23.4 26.4 24.9 22.2 22.2
## 18 18         NAY             NAYARIT  21.0 21.2 22.9 25.0 26.8 28.8 27.2 28.0
## 19 19          NL          NUEVO LEÓN  12.5 13.3 17.6 22.4 26.4 28.6 26.6 28.2
## 20 20         OAX              OAXACA  20.0 21.5 23.2 25.9 27.4 26.0 24.6 24.5
##     sep  oct  nov  dic anual agnio
## 1  20.8 17.5 15.0 12.7  17.3  2010
## 2  26.1 22.1 16.7 15.4  19.7  2010
## 3  28.3 25.4 20.5 18.1  22.8  2010
## 4  28.1 25.9 25.0 21.4  26.2  2010
## 5  22.2 22.0 17.4 13.9  20.7  2010
## 6  24.3 27.2 24.8 22.9  25.2  2010
## 7  25.1 23.9 22.9 21.4  24.3  2010
## 8  26.6 18.8 13.4 12.0  18.1  2010
## 9  17.9 16.6 14.9 12.8  17.1  2010
## 10 20.8 17.5 13.5 11.4  17.0  2010
## 11 24.9 17.9 15.8 13.7  18.7  2010
## 12 20.5 25.6 23.9 21.8  24.5  2010
## 13 19.1 16.3 14.7 12.7  17.2  2010
## 14 22.6 20.6 18.0 17.3  20.4  2010
## 15 15.0 13.4 11.8 11.0  14.0  2010
## 16 20.0 18.1 16.1 14.0  18.3  2010
## 17 21.9 21.7 19.7 17.5  21.6  2010
## 18 27.5 27.1 23.6 21.4  25.0  2010
## 19 25.9 22.4 18.3 14.8  21.4  2010
## 20 23.8 23.4 22.7 20.2  23.6  2010
tail(datos.temperaturas)
##       X abreviatura     entidad  ene  feb  mar  abr  may  jun  jul  ago  sep
## 379 379         TAB    Tabasco  24.2 25.0 27.3 29.5 29.4 28.8 29.2 28.9 28.6
## 380 380       TAMPS Tamaulipas  18.4 18.3 23.0 26.3 28.2 28.7 28.6 29.7 28.5
## 381 381        TLAX   Tlaxcala  12.6 13.0 16.2 16.8 16.9 16.0 15.8 15.9 15.8
## 382 382         VER   Veracruz  19.0 19.9 22.5 24.9 25.8 25.1 24.9 24.7 24.7
## 383 383         YUC    Yucatán  23.3 24.7 26.6 29.1 29.5 28.6 28.9 28.6 28.4
## 384 384         ZAC  Zacatecas  13.0 15.5 18.2 19.9 21.6 21.2 20.0 20.2 19.5
##     oct nov dic anual agnio
## 379  NA  NA  NA    NA  2021
## 380  NA  NA  NA    NA  2021
## 381  NA  NA  NA    NA  2021
## 382  NA  NA  NA    NA  2021
## 383  NA  NA  NA    NA  2021
## 384  NA  NA  NA    NA  2021

Funciones dplyr

select

Proyectar variables de un conjunto de datos o seleccionar ciertas columnas del conjunto de datos

select(.data = datos.temperaturas, abreviatura, agnio, ene, feb, mar, abr, may, jun)
##     abreviatura agnio      ene      feb      mar      abr      may      jun
## 1           AGS  2010 11.40000 12.20000 15.30000 18.30000 21.40000 22.40000
## 2            BC  2010 13.90000 13.80000 14.80000 15.90000 18.80000 23.40000
## 3           BCS  2010 17.70000 18.20000 19.00000 20.80000 23.10000 25.40000
## 4          CAMP  2010 21.60000 23.10000 24.10000 28.60000 29.90000 29.60000
## 5          COAH  2010 11.50000 12.40000 17.10000 22.30000 26.40000 28.50000
## 6           COL  2010 23.50000 23.10000 23.80000 25.10000 26.10000 27.60000
## 7          CHIS  2010 21.00000 23.30000 24.00000 26.70000 26.70000 26.40000
## 8          CHIH  2010  9.10000 10.10000 13.40000 18.10000 21.60000 25.70000
## 9          CDMX  2010 13.10000 14.60000 18.20000 18.80000 20.80000 20.50000
## 10          DGO  2010 10.00000 10.60000 13.60000 17.70000 21.40000 23.60000
## 11          GTO  2010 13.20000 14.10000 17.60000 20.00000 22.50000 23.10000
## 12          GRO  2010 22.50000 23.30000 24.70000 26.30000 27.70000 27.00000
## 13          HGO  2010 12.70000 13.70000 16.70000 19.40000 20.80000 21.50000
## 14          JAL  2010 15.50000 16.40000 19.00000 21.00000 24.00000 24.50000
## 15          MEX  2010  9.40000 11.20000 14.20000 15.90000 17.80000 17.60000
## 16         MICH  2010 14.40000 14.50000 17.70000 19.90000 22.30000 22.30000
## 17          MOR  2010 17.30000 19.00000 22.50000 23.40000 26.40000 24.90000
## 18          NAY  2010 21.00000 21.20000 22.90000 25.00000 26.80000 28.80000
## 19           NL  2010 12.50000 13.30000 17.60000 22.40000 26.40000 28.60000
## 20          OAX  2010 20.00000 21.50000 23.20000 25.90000 27.40000 26.00000
## 21          PUE  2010 12.10000 14.30000 16.90000 19.10000 21.10000 20.70000
## 22          QRO  2010 13.20000 13.90000 17.50000 20.30000 22.70000 23.00000
## 23         QROO  2010 22.50000 23.50000 23.40000 27.50000 28.60000 29.60000
## 24          SLP  2010 14.80000 15.80000 19.10000 23.40000 26.20000 27.00000
## 25          SIN  2010 19.60000 19.60000 21.30000 23.60000 26.30000 29.40000
## 26          SON  2010 13.70000 14.40000 16.80000 20.00000 23.40000 28.70000
## 27          TAB  2010 21.00000 22.90000 23.80000 28.50000 29.60000 30.00000
## 28        TAMPS  2010 15.50000 15.60000 19.50000 24.20000 27.70000 29.40000
## 29         TLAX  2010 10.60000 11.80000 14.20000 16.10000 17.70000 17.40000
## 30          VER  2010 16.60000 17.90000 20.10000 23.70000 26.10000 26.30000
## 31          YUC  2010 21.60000 22.30000 22.90000 27.50000 28.90000 29.40000
## 32          ZAC  2010 10.70000 11.10000 14.10000 17.40000 21.00000 21.90000
## 33          AGS  2011 12.80000 15.20000 17.90000 20.50000 22.40000 22.00000
## 34           BC  2011 14.10000 11.10000 16.30000 18.10000 19.60000 23.70000
## 35          BCS  2011 16.50000 16.40000 19.70000 21.10000 22.80000 25.00000
## 36         CAMP  2011 23.40000 25.00000 27.00000 29.50000 30.70000 28.20000
## 37         COAH  2011 13.00000 15.80000 21.80000 25.90000 27.50000 28.20000
## 38          COL  2011 22.70000 23.80000 23.90000 25.00000 27.60000 27.00000
## 39         CHIS  2011 22.20000 23.10000 24.40000 26.10000 27.70000 25.40000
## 40         CHIH  2011 10.50000 12.00000 17.80000 20.80000 23.00000 26.70000
## 41         CDMX  2011 14.60000 16.70000 17.20000 20.10000 21.40000 18.90000
## 42          DGO  2011 11.50000 13.30000 17.90000 20.30000 22.30000 24.40000
## 43          GTO  2011 14.70000 16.80000 18.70000 21.80000 23.80000 21.80000
## 44          GRO  2011 22.80000 24.50000 25.10000 26.70000 28.30000 26.20000
## 45          HGO  2011 14.90000 16.50000 17.70000 20.90000 22.20000 19.00000
## 46          JAL  2011 16.40000 18.40000 20.50000 22.60000 24.60000 23.90000
## 47          MEX  2011 11.60000 13.40000 14.40000 16.60000 18.30000 15.70000
## 48         MICH  2011 15.20000 17.20000 19.00000 24.80000 23.50000 21.60000
## 49          MOR  2011 18.40000 20.40000 22.60000 24.80000 24.80000 22.70000
## 50          NAY  2011 20.10000 20.90000 23.00000 24.20000 27.10000 28.10000
## 51           NL  2011 14.00000 17.00000 22.30000 24.70000 28.10000 27.90000
## 52          OAX  2011 21.50000 23.10000 24.70000 27.00000 28.40000 25.90000
## 53          PUE  2011 14.80000 16.10000 17.60000 20.10000 20.70000 18.90000
## 54          QRO  2011 15.20000 16.50000 17.60000 21.20000 22.80000 19.60000
## 55         QROO  2011 24.00000 24.80000 26.10000 28.30000 29.30000 27.50000
## 56          SLP  2011 17.50000 18.20000 23.80000 27.20000 28.40000 26.40000
## 57          SIN  2011 18.30000 18.50000 22.50000 23.80000 26.40000 29.20000
## 58          SON  2011 13.90000 14.00000 19.50000 21.80000 23.90000 28.90000
## 59          TAB  2011 22.60000 23.60000 25.80000 28.50000 29.60000 27.30000
## 60        TAMPS  2011 17.00000 18.20000 23.80000 27.40000 28.60000 28.60000
## 61         TLAX  2011 11.50000 13.70000 14.30000 17.00000 17.80000 16.10000
## 62          VER  2011 19.50000 20.10000 23.00000 26.70000 27.30000 25.50000
## 63          YUC  2011 22.40000 24.10000 26.00000 28.80000 29.70000 27.70000
## 64          ZAC  2011 11.90000 14.20000 17.50000 19.90000 21.80000 21.70000
## 65          AGS  2012 12.90000 14.00000 17.70000 18.50000 21.50000 21.60000
## 66           BC  2012 15.60000 13.40000 14.10000 17.60000 22.00000 23.90000
## 67          BCS  2012 17.60000 17.20000 18.70000 21.10000 24.00000 26.30000
## 68         CAMP  2012 23.90000 25.20000 26.90000 28.20000 29.50000 27.70000
## 69         COAH  2012 14.60000 15.50000 20.70000 24.30000 26.50000 26.50000
## 70          COL  2012 23.70000 23.80000 24.20000 20.40000 26.70000 26.60000
## 71         CHIS  2012 23.20000 23.60000 24.40000 23.50000 26.20000 25.30000
## 72         CHIH  2012 11.20000 12.30000 15.30000 25.10000 23.30000 26.50000
## 73         CDMX  2012 13.90000 15.10000 17.50000 17.90000 19.00000 18.80000
## 74          DGO  2012 12.10000 13.10000 16.40000 19.90000 22.10000 23.60000
## 75          GTO  2012 14.60000 15.90000 18.30000 22.50000 22.40000 22.00000
## 76          GRO  2012 23.70000 24.00000 25.70000 25.50000 27.40000 26.00000
## 77          HGO  2012 13.70000 14.80000 17.10000 18.80000 20.30000 20.40000
## 78          JAL  2012 16.70000 17.70000 19.90000 20.90000 24.00000 23.30000
## 79          MEX  2012 10.80000 12.40000 14.30000 14.80000 16.80000 16.30000
## 80         MICH  2012 15.90000 16.70000 19.70000 20.50000 23.40000 22.10000
## 81          MOR  2012 18.70000 20.30000 22.10000 23.10000 24.20000 22.90000
## 82          NAY  2012 21.10000 21.50000 23.00000 23.90000 27.50000 28.00000
## 83           NL  2012 15.80000 16.20000 20.90000 24.40000 26.30000 27.70000
## 84          OAX  2012 21.60000 23.30000 24.50000 25.20000 26.80000 25.50000
## 85          PUE  2012 15.10000 16.20000 17.90000 18.70000 20.00000 19.30000
## 86          QRO  2012 15.00000 16.70000 19.40000 20.70000 23.00000 21.30000
## 87         QROO  2012 24.10000 24.30000 26.30000 27.20000 28.40000 28.10000
## 88          SLP  2012 17.50000 19.00000 22.10000 23.60000 26.50000 26.70000
## 89          SIN  2012 19.40000 19.50000 20.80000 24.20000 27.80000 29.80000
## 90          SON  2012 15.20000 14.80000 17.10000 21.70000 26.00000 29.70000
## 91          TAB  2012 21.40000 24.00000 26.20000 24.00000 28.50000 27.50000
## 92        TAMPS  2012 18.30000 18.70000 22.90000 25.80000 27.90000 29.10000
## 93         TLAX  2012 11.40000 13.10000 14.70000 14.80000 17.00000 16.70000
## 94          VER  2012 18.80000 20.10000 22.60000 24.20000 25.60000 25.30000
## 95          YUC  2012 22.80000 24.30000 26.00000 26.80000 28.40000 27.60000
## 96          ZAC  2012 12.20000 13.30000 16.80000 18.20000 21.00000 21.10000
## 97          AGS  2013 12.81667 14.97222 17.93064 19.57576 21.54882 21.80202
## 98           BC  2013 14.40303 13.49512 15.20354 18.32811 20.49916 23.98249
## 99          BCS  2013 17.87525 18.10657 19.63434 21.72205 23.51768 26.20152
## 100        CAMP  2013 23.24259 25.25640 26.76027 29.21599 30.05556 28.96263
## 101        COAH  2013 13.03603 15.62963 20.05017 23.47424 26.76599 28.22475
## 102         COL  2013 24.48535 24.55505 25.04091 24.97071 27.05101 27.95185
## 103        CHIS  2013 22.71852 24.09495 25.03384 26.45118 27.08047 25.93131
## 104        CHIH  2013 10.42811 12.42290 16.01633 19.99226 22.96330 26.38468
## 105        CDMX  2013 14.46987 16.58737 18.52609 19.59529 20.46549 19.50370
## 106         DGO  2013 11.63114 13.84327 17.09697 19.55404 22.03013 23.94933
## 107         GTO  2013 14.62441 16.62138 19.39428 21.47475 22.78131 21.95118
## 108         GRO  2013 23.28923 24.22391 25.58805 26.46633 27.41599 26.31650
## 109         HGO  2013 14.43485 16.40354 18.50741 20.58535 21.66279 20.70724
## 110         JAL  2013 16.81953 18.61498 20.77963 22.09024 24.15825 24.24697
## 111         MEX  2013 11.24276 13.22492 15.28737 16.44731 17.49276 16.71835
## 112        MICH  2013 16.33098 17.83047 20.27576 22.22475 23.18872 22.36431
## 113         MOR  2013 18.68569 20.79916 23.53939 24.58148 25.01481 23.57508
## 114         NAY  2013 21.41566 22.42172 23.62710 24.89411 27.17172 28.78114
## 115          NL  2013 14.14007 16.53333 20.72323 23.49848 26.53401 27.71347
## 116         OAX  2013 20.99899 22.79158 24.25758 25.86414 26.81263 25.20791
## 117         PUE  2013 14.50152 16.49293 18.49680 20.17643 20.91835 20.09798
## 118         QRO  2013 15.07407 17.23956 19.76448 21.99040 23.41667 21.97256
## 119        QROO  2013 23.88535 25.30842 26.03569 28.22273 29.10034 29.02424
## 120         SLP  2013 17.23148 19.38552 22.69680 25.58906 27.44192 27.15791
## 121         SIN  2013 19.64916 20.23569 22.14343 24.24630 27.01128 29.97508
## 122         SON  2013 14.64276 15.07020 18.04024 21.45926 24.43603 29.41128
## 123         TAB  2013 22.80825 24.69192 26.30101 28.47727 29.72896 28.78872
## 124       TAMPS  2013 17.20909 18.89529 22.86549 25.85724 28.28468 29.16650
## 125        TLAX  2013 11.59697 13.56886 15.47862 16.73434 17.56734 16.84562
## 126         VER  2013 18.40438 20.11599 22.33232 24.79428 26.19933 25.64512
## 127         YUC  2013 22.53064 24.50202 25.77862 28.51380 29.24680 28.63535
## 128         ZAC  2013 12.25471 14.34040 17.35051 19.09562 21.36364 21.76498
## 129         AGS  2014 12.80833 15.06944 17.95370 19.68333 21.55370 21.82222
## 130          BC  2014 14.28333 13.50463 15.31389 18.40093 20.34907 23.99074
## 131         BCS  2014 17.90278 18.19722 19.72778 21.78426 23.46944 26.19167
## 132        CAMP  2014 23.17685 25.26204 26.74630 29.31759 30.11111 29.08889
## 133        COAH  2014 12.87963 15.64259 19.98519 23.39167 26.79259 28.39722
## 134         COL  2014 24.56389 24.63056 25.12500 25.42778 27.08611 28.08704
## 135        CHIS  2014 22.67037 24.14444 25.09722 26.74630 27.16852 25.99444
## 136        CHIH  2014 10.35093 12.43519 16.08796 19.48148 22.92963 26.37315
## 137        CDMX  2014 14.52685 16.73611 18.62870 19.76481 20.61204 19.57407
## 138         DGO  2014 11.58426 13.91759 17.16667 19.51944 22.02315 23.98426
## 139         GTO  2014 14.62685 16.69352 19.50370 21.37222 22.81944 21.94630
## 140         GRO  2014 23.24815 24.24630 25.57685 26.56296 27.41759 26.34815
## 141         HGO  2014 14.50833 16.56389 18.64815 20.76389 21.79907 20.73796
## 142         JAL  2014 16.83148 18.70648 20.86759 22.20926 24.17407 24.34167
## 143         MEX  2014 11.28704 13.30741 15.38611 16.61204 17.56204 16.76019
## 144        MICH  2014 16.37407 17.94352 20.33333 22.39722 23.16759 22.39074
## 145         MOR  2014 18.68426 20.84907 23.68333 24.72963 25.09630 23.64259
## 146         NAY  2014 21.44722 22.51389 23.68981 24.99352 27.13889 28.85926
## 147          NL  2014 13.97407 16.56667 20.70556 23.40833 26.55741 27.71481
## 148         OAX  2014 20.93889 22.74074 24.23333 25.93056 26.81389 25.17870
## 149         PUE  2014 14.44167 16.52222 18.55648 20.32407 21.01019 20.17778
## 150         QRO  2014 15.08148 17.29352 19.80093 22.11944 23.45833 22.03981
## 151        QROO  2014 23.86389 25.40926 26.00926 28.32500 29.17037 29.11667
## 152         SLP  2014 17.20463 19.42407 22.75648 25.78796 27.53611 27.20370
## 153         SIN  2014 19.67407 20.30926 22.27778 24.25093 26.93241 29.99259
## 154         SON  2014 14.58704 15.09722 18.13426 21.43519 24.27963 29.38241
## 155         TAB  2014 22.94907 24.76111 26.31111 28.92500 29.85185 28.91759
## 156       TAMPS  2014 17.10000 18.91481 22.86204 25.86296 28.32315 29.17315
## 157        TLAX  2014 11.61667 13.61574 15.55648 16.92778 17.62407 16.86019
## 158         VER  2014 18.36481 20.11759 22.30556 24.85370 26.25926 25.67963
## 159         YUC  2014 22.50370 24.52222 25.75648 28.68519 29.33148 28.73889
## 160         ZAC  2014 12.26019 14.44444 17.40556 19.18519 21.40000 21.83148
## 161         AGS  2015 12.47500 14.42500 17.31667 19.55000 21.71667 22.00000
## 162          BC  2015 14.15000 13.00833 15.42500 17.74167 19.80833 23.78333
## 163         BCS  2015 17.52500 17.77500 19.55000 21.39167 23.22500 25.72500
## 164        CAMP  2015 22.85833 24.69167 26.18333 29.19167 30.20000 29.00000
## 165        COAH  2015 12.58333 14.91667 19.73333 23.72500 26.86667 28.37500
## 166         COL  2015 23.87500 24.07500 24.52500 25.25000 26.97500 27.71667
## 167        CHIS  2015 22.16667 23.70000 24.67500 26.58333 27.18333 25.95000
## 168        CHIH  2015 10.09167 11.78333 15.85833 19.46667 22.63333 26.29167
## 169        CDMX  2015 14.20833 16.22500 18.19167 19.61667 20.84167 19.63333
## 170         DGO  2015 11.19167 12.99167 16.50000 19.27500 21.94167 23.99167
## 171         GTO  2015 14.30833 16.10833 18.86667 21.15000 22.97500 22.18333
## 172         GRO  2015 22.96667 24.08333 25.25833 26.53333 27.69167 26.46667
## 173         HGO  2015 14.17500 15.87500 17.96667 20.47500 21.65833 20.50833
## 174         JAL  2015 16.41667 18.09167 20.34167 22.01667 24.23333 24.27500
## 175         MEX  2015 10.91667 12.83333 14.87500 16.44167 17.79167 16.70833
## 176        MICH  2015 15.63333 16.95833 19.40000 22.37500 23.04167 22.18333
## 177         MOR  2015 18.29167 20.30833 23.15000 24.43333 25.33333 23.71667
## 178         NAY  2015 21.02500 21.82500 23.34167 24.80833 27.05000 28.66667
## 179          NL  2015 13.63333 15.90000 20.35000 23.47500 26.88333 27.96667
## 180         OAX  2015 20.85000 22.53333 24.10000 26.17500 27.32500 25.54167
## 181         PUE  2015 13.97500 15.90000 17.94167 19.98333 20.95833 20.00000
## 182         QRO  2015 14.66667 16.30833 18.74167 21.47500 23.12500 21.69167
## 183        QROO  2015 23.57500 24.81667 25.41667 28.12500 29.06667 28.85000
## 184         SLP  2015 16.70833 18.28333 22.14167 25.55833 27.42500 26.96667
## 185         SIN  2015 19.33333 19.71667 22.10000 23.99167 26.65833 29.66667
## 186         SON  2015 14.21667 14.67500 18.14167 21.18333 23.98333 29.10833
## 187         TAB  2015 22.40833 24.05000 25.60000 28.72500 29.73333 28.79167
## 188       TAMPS  2015 16.70000 17.96667 22.29167 25.83333 28.24167 29.09167
## 189        TLAX  2015 11.35000 13.20833 14.94167 16.75000 17.68333 16.80833
## 190         VER  2015 18.21667 19.59167 21.95000 25.01667 26.46667 25.78333
## 191         YUC  2015 22.26667 23.90000 25.14167 28.43333 29.31667 28.65000
## 192         ZAC  2015 11.80833 13.60000 16.65000 18.93333 21.40000 21.81667
## 193         AGS  2016 12.85000 15.15000 18.03333 19.70000 21.53333 21.80000
## 194          BC  2016 14.30000 13.56667 15.30000 18.48333 20.41667 24.01667
## 195         BCS  2016 17.95000 18.25000 19.75000 21.83333 23.50000 26.25000
## 196        CAMP  2016 23.21667 25.33333 26.81667 29.33333 30.10000 29.10000
## 197        COAH  2016 12.91667 15.73333 20.01667 23.35000 26.78333 28.40000
## 198         COL  2016 24.65000 24.70000 25.20000 25.45000 27.10000 28.13333
## 199        CHIS  2016 22.73333 24.20000 25.15000 26.76667 27.16667 26.00000
## 200        CHIH  2016 10.38333 12.51667 16.11667 19.48333 22.96667 26.38333
## 201        CDMX  2016 14.56667 16.80000 18.68333 19.78333 20.58333 19.56667
## 202         DGO  2016 11.63333 14.03333 17.25000 19.55000 22.03333 23.98333
## 203         GTO  2016 14.66667 16.76667 19.58333 21.40000 22.80000 21.91667
## 204         GRO  2016 23.28333 24.26667 25.61667 26.56667 27.38333 26.33333
## 205         HGO  2016 14.55000 16.65000 18.73333 20.80000 21.81667 20.76667
## 206         JAL  2016 16.88333 18.78333 20.93333 22.23333 24.16667 24.35000
## 207         MEX  2016 11.33333 13.36667 15.45000 16.63333 17.53333 16.76667
## 208        MICH  2016 16.46667 18.06667 20.45000 22.40000 23.18333 22.41667
## 209         MOR  2016 18.73333 20.91667 23.75000 24.76667 25.06667 23.63333
## 210         NAY  2016 21.50000 22.60000 23.73333 25.01667 27.15000 28.88333
## 211          NL  2016 14.01667 16.65000 20.75000 23.40000 26.51667 27.68333
## 212         OAX  2016 20.95000 22.76667 24.25000 25.90000 26.75000 25.13333
## 213         PUE  2016 14.50000 16.60000 18.63333 20.36667 21.01667 20.20000
## 214         QRO  2016 15.13333 17.41667 19.93333 22.20000 23.50000 22.08333
## 215        QROO  2016 23.90000 25.48333 26.08333 28.35000 29.18333 29.15000
## 216         SLP  2016 17.26667 19.56667 22.83333 25.81667 27.55000 27.23333
## 217         SIN  2016 19.71667 20.38333 22.30000 24.28333 26.96667 30.03333
## 218         SON  2016 14.63333 15.15000 18.13333 21.46667 24.31667 29.41667
## 219         TAB  2016 23.01667 24.85000 26.40000 28.95000 29.86667 28.93333
## 220       TAMPS  2016 17.15000 19.03333 22.93333 25.86667 28.33333 29.18333
## 221        TLAX  2016 11.65000 13.66667 15.63333 16.95000 17.61667 16.86667
## 222         VER  2016 18.38333 20.18333 22.35000 24.83333 26.23333 25.66667
## 223         YUC  2016 22.53333 24.60000 25.83333 28.71667 29.33333 28.75000
## 224         ZAC  2016 12.31667 14.55000 17.50000 19.21667 21.40000 21.83333
## 225         AGS  2017 12.85000 15.15000 18.03333 19.70000 21.53333 21.80000
## 226          BC  2017 14.30000 13.56667 15.30000 18.48333 20.41667 24.01667
## 227         BCS  2017 17.95000 18.25000 19.75000 21.83333 23.50000 26.25000
## 228        CAMP  2017 23.21667 25.33333 26.81667 29.33333 30.10000 29.10000
## 229        COAH  2017 12.91667 15.73333 20.01667 23.35000 26.78333 28.40000
## 230         COL  2017 24.65000 24.70000 25.20000 25.45000 27.10000 28.13333
## 231        CHIS  2017 22.73333 24.20000 25.15000 26.76667 27.16667 26.00000
## 232        CHIH  2017 10.38333 12.51667 16.11667 19.48333 22.96667 26.38333
## 233        CDMX  2017 14.56667 16.80000 18.68333 19.78333 20.58333 19.56667
## 234         DGO  2017 11.63333 14.03333 17.25000 19.55000 22.03333 23.98333
## 235         GTO  2017 14.66667 16.76667 19.58333 21.40000 22.80000 21.91667
## 236         GRO  2017 23.28333 24.26667 25.61667 26.56667 27.38333 26.33333
## 237         HGO  2017 14.55000 16.65000 18.73333 20.80000 21.81667 20.76667
## 238         JAL  2017 16.88333 18.78333 20.93333 22.23333 24.16667 24.35000
## 239         MEX  2017 11.33333 13.36667 15.45000 16.63333 17.53333 16.76667
## 240        MICH  2017 16.46667 18.06667 20.45000 22.40000 23.18333 22.41667
## 241         MOR  2017 18.73333 20.91667 23.75000 24.76667 25.06667 23.63333
## 242         NAY  2017 21.50000 22.60000 23.73333 25.01667 27.15000 28.88333
## 243          NL  2017 14.01667 16.65000 20.75000 23.40000 26.51667 27.68333
## 244         OAX  2017 20.95000 22.76667 24.25000 25.90000 26.75000 25.13333
## 245         PUE  2017 14.50000 16.60000 18.63333 20.36667 21.01667 20.20000
## 246         QRO  2017 15.13333 17.41667 19.93333 22.20000 23.50000 22.08333
## 247        QROO  2017 23.90000 25.48333 26.08333 28.35000 29.18333 29.15000
## 248         SLP  2017 17.26667 19.56667 22.83333 25.81667 27.55000 27.23333
## 249         SIN  2017 19.71667 20.38333 22.30000 24.28333 26.96667 30.03333
## 250         SON  2017 14.63333 15.15000 18.13333 21.46667 24.31667 29.41667
## 251         TAB  2017 23.01667 24.85000 26.40000 28.95000 29.86667 28.93333
## 252       TAMPS  2017 17.15000 19.03333 22.93333 25.86667 28.33333 29.18333
## 253        TLAX  2017 11.65000 13.66667 15.63333 16.95000 17.61667 16.86667
## 254         VER  2017 18.38333 20.18333 22.35000 24.83333 26.23333 25.66667
## 255         YUC  2017 22.53333 24.60000 25.83333 28.71667 29.33333 28.75000
## 256         ZAC  2017 12.31667 14.55000 17.50000 19.21667 21.40000 21.83333
## 257         AGS  2018 13.00000 16.70000 18.80000 19.90000 21.90000 21.30000
## 258          BC  2018 16.30000 15.50000 16.60000 20.40000 20.50000 24.30000
## 259         BCS  2018 19.70000 19.90000 20.70000 22.90000 24.80000 26.90000
## 260        CAMP  2018 22.30000 26.10000 27.50000 28.50000 28.90000 28.80000
## 261        COAH  2018 11.70000 18.00000 20.50000 22.20000 27.40000 29.40000
## 262         COL  2018 25.20000 26.20000 25.80000 25.80000 28.70000 28.40000
## 263        CHIS  2018 21.80000 24.70000 26.10000 26.50000 26.90000 25.80000
## 264        CHIH  2018 11.00000 14.80000 17.00000 20.40000 24.70000 26.70000
## 265        CDMX  2018 13.40000 17.00000 19.20000 19.30000 20.30000 19.60000
## 266         DGO  2018 12.10000 15.90000 18.80000 20.40000 23.40000 24.50000
## 267         GTO  2018 13.90000 17.40000 20.30000 21.30000 22.80000 21.40000
## 268         GRO  2018 22.90000 24.40000 25.70000 26.50000 27.10000 26.00000
## 269         HGO  2018 13.40000 16.70000 18.50000 19.50000 20.40000 20.70000
## 270         JAL  2018 16.80000 19.50000 21.10000 22.40000 24.80000 23.80000
## 271         MEX  2018 10.50000 13.80000 15.50000 16.00000 16.90000 16.70000
## 272        MICH  2018 16.50000 19.20000 21.80000 22.90000 24.10000 22.70000
## 273         MOR  2018 18.40000 22.10000 24.60000 25.00000 24.00000 23.20000
## 274         NAY  2018 21.70000 24.70000 24.60000 25.40000 28.60000 29.30000
## 275          NL  2018 12.30000 18.60000 21.50000 21.90000 26.10000 27.80000
## 276         OAX  2018 20.20000 23.10000 24.90000 24.90000 26.60000 24.10000
## 277         PUE  2018 13.10000 17.00000 19.10000 19.30000 20.10000 20.40000
## 278         QRO  2018 13.50000 18.50000 21.00000 22.30000 23.70000 22.00000
## 279        QROO  2018 23.10000 26.40000 26.70000 28.00000 28.50000 29.20000
## 280         SLP  2018 15.50000 21.90000 23.70000 24.10000 26.80000 27.40000
## 281         SIN  2018 20.90000 22.40000 23.00000 25.10000 28.20000 30.40000
## 282         SON  2018 16.70000 16.40000 19.20000 22.70000 25.40000 30.00000
## 283         TAB  2018 22.10000 25.80000 27.50000 28.30000 29.30000 29.00000
## 284       TAMPS  2018 15.10000 22.00000 23.90000 24.50000 28.00000 29.30000
## 285        TLAX  2018 11.10000 14.40000 16.40000 16.40000 17.60000 17.00000
## 286         VER  2018 16.90000 21.30000 22.80000 23.00000 25.10000 25.70000
## 287         YUC  2018 21.70000 25.50000 26.30000 27.70000 28.10000 28.20000
## 288         ZAC  2018 12.50000 15.80000 18.10000 19.30000 21.90000 21.00000
## 289         AGS  2019 14.00000 16.90000 19.00000 19.60000 22.30000 23.20000
## 290          BC  2019 14.30000 12.20000 15.60000 20.40000 20.40000 24.10000
## 291         BCS  2019 18.70000 18.40000 20.30000 22.50000 22.60000 26.50000
## 292        CAMP  2019 23.30000 26.60000 26.90000 28.70000 31.10000 29.90000
## 293        COAH  2019 13.50000 17.10000 18.80000 22.80000 26.40000 28.30000
## 294         COL  2019 25.90000 25.50000 26.20000 25.40000 26.70000 29.30000
## 295        CHIS  2019 23.00000 24.80000 25.40000 26.50000 27.70000 26.60000
## 296        CHIH  2019 11.00000 12.80000 16.40000 18.90000 22.00000 26.30000
## 297        CDMX  2019 15.40000 18.10000 19.20000 20.20000 21.40000 20.10000
## 298         DGO  2019 12.60000 15.60000 17.60000 19.00000 20.90000 24.50000
## 299         GTO  2019 15.50000 18.00000 20.20000 20.90000 23.40000 22.60000
## 300         GRO  2019 23.30000 24.60000 25.90000 25.90000 26.70000 26.50000
## 301         HGO  2019 15.40000 19.00000 19.50000 21.40000 23.70000 22.00000
## 302         JAL  2019 17.30000 19.60000 21.40000 21.80000 24.20000 25.40000
## 303         MEX  2019 12.30000 14.60000 16.10000 16.80000 18.30000 17.70000
## 304        MICH  2019 17.50000 19.90000 21.50000 21.80000 23.90000 23.50000
## 305         MOR  2019 19.20000 21.90000 24.40000 24.60000 25.40000 23.60000
## 306         NAY  2019 22.90000 23.60000 24.40000 25.30000 26.70000 29.90000
## 307          NL  2019 14.20000 18.20000 19.40000 22.70000 26.50000 28.20000
## 308         OAX  2019 21.40000 24.30000 24.40000 25.60000 26.70000 25.80000
## 309         PUE  2019 15.20000 18.10000 18.90000 20.40000 22.10000 20.80000
## 310         QRO  2019 16.60000 19.20000 20.80000 22.30000 25.00000 23.20000
## 311        QROO  2019 23.90000 26.70000 27.00000 28.20000 30.10000 30.60000
## 312         SLP  2019 18.40000 21.80000 22.20000 25.50000 29.20000 28.50000
## 313         SIN  2019 20.40000 20.80000 22.70000 24.20000 26.00000 30.00000
## 314         SON  2019 14.60000 14.40000 18.50000 21.40000 22.50000 28.70000
## 315         TAB  2019 23.50000 26.00000 26.40000 28.10000 31.30000 29.80000
## 316       TAMPS  2019 17.40000 21.00000 22.20000 25.10000 29.30000 30.40000
## 317        TLAX  2019 12.30000 14.90000 16.40000 17.40000 18.60000 17.80000
## 318         VER  2019 18.90000 21.90000 22.00000 23.80000 27.20000 26.20000
## 319         YUC  2019 22.50000 25.90000 26.30000 28.30000 30.40000 30.20000
## 320         ZAC  2019 13.10000 16.00000 18.00000 18.50000 21.10000 22.60000
## 321         AGS  2020 13.00000 15.00000 19.30000 20.50000 20.70000 22.10000
## 322          BC  2020 13.60000 14.40000 14.40000 18.10000 22.70000 24.20000
## 323         BCS  2020 17.80000 18.40000 19.80000 21.80000 23.90000 26.80000
## 324        CAMP  2020 24.60000 26.00000 28.00000 31.10000 30.20000 28.90000
## 325        COAH  2020 14.30000 15.60000 22.10000 23.90000 26.80000 27.90000
## 326         COL  2020 25.80000 25.40000 26.60000 25.90000 26.30000 28.30000
## 327        CHIS  2020 24.50000 25.30000 25.60000 27.80000 27.30000 25.80000
## 328        CHIH  2020 10.80000 12.00000 16.70000 19.40000 23.70000 26.40000
## 329        CDMX  2020 15.60000 18.10000 19.40000 20.70000 19.90000 19.80000
## 330         DGO  2020 11.80000 13.80000 18.40000 20.20000 22.20000 23.70000
## 331         GTO  2020 15.20000 17.30000 20.60000 22.80000 22.20000 22.10000
## 332         GRO  2020 24.20000 24.80000 26.20000 27.10000 27.00000 26.90000
## 333         HGO  2020 15.50000 17.10000 20.50000 22.80000 22.10000 21.20000
## 334         JAL  2020 17.80000 19.50000 22.40000 22.80000 23.50000 24.90000
## 335         MEX  2020 11.80000 14.00000 16.30000 17.60000 16.80000 16.80000
## 336        MICH  2020 17.70000 19.50000 21.70000 23.20000 23.00000 22.90000
## 337         MOR  2020 19.40000 21.40000 24.70000 26.00000 25.30000 24.80000
## 338         NAY  2020 22.60000 22.80000 24.70000 24.80000 26.60000 29.10000
## 339          NL  2020 16.20000 16.50000 22.90000 24.60000 26.00000 26.70000
## 340         OAX  2020 21.80000 22.70000 24.60000 26.70000 25.80000 25.00000
## 341         PUE  2020 15.80000 17.30000 20.00000 22.40000 21.40000 20.90000
## 342         QRO  2020 15.80000 18.70000 22.00000 24.10000 23.80000 22.90000
## 343        QROO  2020 25.30000 26.00000 26.80000 29.60000 29.30000 29.00000
## 344         SLP  2020 18.80000 20.00000 24.60000 28.20000 27.60000 27.90000
## 345         SIN  2020 19.90000 20.50000 22.90000 24.40000 27.30000 30.60000
## 346         SON  2020 14.70000 15.70000 17.70000 21.00000 25.80000 29.80000
## 347         TAB  2020 24.70000 25.80000 27.60000 30.80000 30.00000 28.70000
## 348       TAMPS  2020 19.50000 19.10000 25.20000 27.70000 28.20000 28.70000
## 349        TLAX  2020 11.80000 14.20000 16.30000 18.00000 17.10000 16.90000
## 350         VER  2020 19.40000 20.00000 23.70000 26.90000 25.90000 25.20000
## 351         YUC  2020 23.70000 25.10000 26.90000 30.90000 29.40000 28.40000
## 352         ZAC  2020 12.70000 14.70000 19.10000 20.30000 21.00000 22.60000
## 353         AGS  2021 12.90000 14.90000 17.90000 19.40000 20.50000 19.80000
## 354          BC  2021 13.60000 14.40000 14.10000 18.00000 20.50000 24.40000
## 355         BCS  2021 17.30000 18.20000 19.00000 21.90000 23.80000 26.90000
## 356        CAMP  2021 24.10000 25.20000 27.40000 29.60000 29.80000 29.20000
## 357        COAH  2021 13.50000 15.50000 19.80000 23.00000 26.20000 28.10000
## 358         COL  2021 24.80000 24.20000 24.90000 25.50000 27.20000 28.20000
## 359        CHIS  2021 23.90000 24.00000 25.40000 27.00000 26.70000 26.00000
## 360        CHIH  2021  9.90000 13.40000 15.40000 19.30000 22.80000 26.50000
## 361        CDMX  2021 15.30000 16.30000 18.90000 19.60000 19.70000 18.50000
## 362         DGO  2021 11.80000 15.00000 17.20000 19.70000 22.00000 23.20000
## 363         GTO  2021 15.50000 17.00000 20.10000 21.60000 22.10000 20.50000
## 364         GRO  2021 24.00000 24.00000 26.10000 26.90000 27.50000 25.40000
## 365         HGO  2021 15.40000 16.90000 19.50000 20.80000 21.70000 20.20000
## 366         JAL  2021 17.50000 19.30000 21.20000 22.80000 23.90000 23.60000
## 367         MEX  2021 12.40000 13.20000 16.20000 16.90000 17.10000 16.10000
## 368        MICH  2021 17.50000 18.10000 21.00000 21.80000 22.30000 21.50000
## 369         MOR  2021 19.70000 20.70000 23.70000 24.80000 24.50000 22.60000
## 370         NAY  2021 20.70000 22.40000 22.80000 25.40000 27.10000 28.10000
## 371          NL  2021 14.90000 16.30000 20.80000 24.10000 26.00000 26.90000
## 372         OAX  2021 20.80000 21.90000 23.70000 25.30000 25.60000 24.00000
## 373         PUE  2021 16.00000 16.80000 19.30000 20.90000 20.70000 19.50000
## 374         QRO  2021 16.50000 17.70000 20.70000 23.00000 23.00000 21.80000
## 375        QROO  2021 24.60000 25.50000 26.50000 28.50000 29.30000 29.00000
## 376         SLP  2021 18.60000 19.70000 23.60000 26.50000 27.10000 26.20000
## 377         SIN  2021 19.20000 20.50000 21.40000 24.60000 27.60000 30.60000
## 378         SON  2021 14.20000 16.00000 17.10000 21.90000 24.90000 30.40000
## 379         TAB  2021 24.20000 25.00000 27.30000 29.50000 29.40000 28.80000
## 380       TAMPS  2021 18.40000 18.30000 23.00000 26.30000 28.20000 28.70000
## 381        TLAX  2021 12.60000 13.00000 16.20000 16.80000 16.90000 16.00000
## 382         VER  2021 19.00000 19.90000 22.50000 24.90000 25.80000 25.10000
## 383         YUC  2021 23.30000 24.70000 26.60000 29.10000 29.50000 28.60000
## 384         ZAC  2021 13.00000 15.50000 18.20000 19.90000 21.60000 21.20000

filter

Significa hacer un filtro a nivel de registro u opservaciones. El filtro o subconjunto de datos se hace con una expresión booleana que el resultado sea verdadero entonces se aplica el filtro.

estado <- filter(datos.temperaturas, abreviatura == 'COAH')
estado
##      X abreviatura   entidad      ene      feb      mar      abr      may
## 1    5        COAH COAHUILA  11.50000 12.40000 17.10000 22.30000 26.40000
## 2   37        COAH COAHUILA  13.00000 15.80000 21.80000 25.90000 27.50000
## 3   69        COAH COAHUILA  14.60000 15.50000 20.70000 24.30000 26.50000
## 4  101        COAH Coahuila  13.03603 15.62963 20.05017 23.47424 26.76599
## 5  133        COAH Coahuila  12.87963 15.64259 19.98519 23.39167 26.79259
## 6  165        COAH Coahuila  12.58333 14.91667 19.73333 23.72500 26.86667
## 7  197        COAH Coahuila  12.91667 15.73333 20.01667 23.35000 26.78333
## 8  229        COAH Coahuila  12.91667 15.73333 20.01667 23.35000 26.78333
## 9  261        COAH Coahuila  11.70000 18.00000 20.50000 22.20000 27.40000
## 10 293        COAH Coahuila  13.50000 17.10000 18.80000 22.80000 26.40000
## 11 325        COAH Coahuila  14.30000 15.60000 22.10000 23.90000 26.80000
## 12 357        COAH Coahuila  13.50000 15.50000 19.80000 23.00000 26.20000
##         jun      jul      ago      sep      oct      nov      dic anual agnio
## 1  28.50000 26.20000 28.00000 22.20000 22.00000 17.40000 13.90000  20.7  2010
## 2  28.20000 28.80000 29.10000 26.90000 22.70000 17.80000 12.90000  22.5  2011
## 3  26.50000 28.30000 29.50000 26.10000 23.20000 18.50000 15.70000  22.4  2012
## 4  28.22475 28.15943 28.82239 25.36347 22.39281 17.63938 13.86625    NA  2013
## 5  28.39722 28.14537 28.75463 25.28981 22.30313 17.54375 13.66250    NA  2014
## 6  28.37500 27.84167 28.65833 24.94167 22.32500 17.57000 13.54000    NA  2015
## 7  28.40000 28.18333 28.76667 25.33333 22.30000 17.54000 13.68000    NA  2016
## 8  28.40000 28.18333 28.76667 25.33333 22.30000 17.54000 13.68000    NA  2017
## 9  29.40000 28.70000 28.70000 24.70000 21.50000 15.50000 13.60000  21.8  2018
## 10 28.30000 28.70000 30.50000 27.40000 22.80000 17.60000 14.70000  22.4  2019
## 11 27.90000 29.20000 28.50000 24.20000 22.50000 19.40000 13.30000  22.3  2020
## 12 28.10000 27.50000 27.80000 26.60000       NA       NA       NA    NA  2021

pipes

En R el símbolo de %>% usando la librería dplyr significa que el resultado de una expresión es la entrada de otra expresión

estado <- filter(datos.temperaturas, abreviatura == 'YUC' ) %>%
  select(abreviatura, agnio, ene, feb, mar, abr, may, jun)

estado
##    abreviatura agnio      ene      feb      mar      abr      may      jun
## 1          YUC  2010 21.60000 22.30000 22.90000 27.50000 28.90000 29.40000
## 2          YUC  2011 22.40000 24.10000 26.00000 28.80000 29.70000 27.70000
## 3          YUC  2012 22.80000 24.30000 26.00000 26.80000 28.40000 27.60000
## 4          YUC  2013 22.53064 24.50202 25.77862 28.51380 29.24680 28.63535
## 5          YUC  2014 22.50370 24.52222 25.75648 28.68519 29.33148 28.73889
## 6          YUC  2015 22.26667 23.90000 25.14167 28.43333 29.31667 28.65000
## 7          YUC  2016 22.53333 24.60000 25.83333 28.71667 29.33333 28.75000
## 8          YUC  2017 22.53333 24.60000 25.83333 28.71667 29.33333 28.75000
## 9          YUC  2018 21.70000 25.50000 26.30000 27.70000 28.10000 28.20000
## 10         YUC  2019 22.50000 25.90000 26.30000 28.30000 30.40000 30.20000
## 11         YUC  2020 23.70000 25.10000 26.90000 30.90000 29.40000 28.40000
## 12         YUC  2021 23.30000 24.70000 26.60000 29.10000 29.50000 28.60000

Estados que son frontera con USA

estados.frontera <- c('BC', 'SON', 'CHIH', 'COAH', 'NL', 'TAMPS')

estado <- filter(datos.temperaturas, abreviatura %in% estados.frontera ) %>%
  select(abreviatura, agnio, ene, feb, mar, abr, may, jun)

#estado <- filter(datos.temperaturas, abreviatura == 'BC' | abreviatura == 'SON' | abreviatura == 'CHIH' | abreviatura == 'COAH' | abreviatura == 'NL' | abreviatura == 'TAMPS') %>%
 # select(abreviatura, agnio, ene, feb, mar, abr, may, jun)

Ordenar datos

arrange(estado, abreviatura, desc(agnio))
##    abreviatura agnio      ene      feb      mar      abr      may      jun
## 1           BC  2021 13.60000 14.40000 14.10000 18.00000 20.50000 24.40000
## 2           BC  2020 13.60000 14.40000 14.40000 18.10000 22.70000 24.20000
## 3           BC  2019 14.30000 12.20000 15.60000 20.40000 20.40000 24.10000
## 4           BC  2018 16.30000 15.50000 16.60000 20.40000 20.50000 24.30000
## 5           BC  2017 14.30000 13.56667 15.30000 18.48333 20.41667 24.01667
## 6           BC  2016 14.30000 13.56667 15.30000 18.48333 20.41667 24.01667
## 7           BC  2015 14.15000 13.00833 15.42500 17.74167 19.80833 23.78333
## 8           BC  2014 14.28333 13.50463 15.31389 18.40093 20.34907 23.99074
## 9           BC  2013 14.40303 13.49512 15.20354 18.32811 20.49916 23.98249
## 10          BC  2012 15.60000 13.40000 14.10000 17.60000 22.00000 23.90000
## 11          BC  2011 14.10000 11.10000 16.30000 18.10000 19.60000 23.70000
## 12          BC  2010 13.90000 13.80000 14.80000 15.90000 18.80000 23.40000
## 13        CHIH  2021  9.90000 13.40000 15.40000 19.30000 22.80000 26.50000
## 14        CHIH  2020 10.80000 12.00000 16.70000 19.40000 23.70000 26.40000
## 15        CHIH  2019 11.00000 12.80000 16.40000 18.90000 22.00000 26.30000
## 16        CHIH  2018 11.00000 14.80000 17.00000 20.40000 24.70000 26.70000
## 17        CHIH  2017 10.38333 12.51667 16.11667 19.48333 22.96667 26.38333
## 18        CHIH  2016 10.38333 12.51667 16.11667 19.48333 22.96667 26.38333
## 19        CHIH  2015 10.09167 11.78333 15.85833 19.46667 22.63333 26.29167
## 20        CHIH  2014 10.35093 12.43519 16.08796 19.48148 22.92963 26.37315
## 21        CHIH  2013 10.42811 12.42290 16.01633 19.99226 22.96330 26.38468
## 22        CHIH  2012 11.20000 12.30000 15.30000 25.10000 23.30000 26.50000
## 23        CHIH  2011 10.50000 12.00000 17.80000 20.80000 23.00000 26.70000
## 24        CHIH  2010  9.10000 10.10000 13.40000 18.10000 21.60000 25.70000
## 25        COAH  2021 13.50000 15.50000 19.80000 23.00000 26.20000 28.10000
## 26        COAH  2020 14.30000 15.60000 22.10000 23.90000 26.80000 27.90000
## 27        COAH  2019 13.50000 17.10000 18.80000 22.80000 26.40000 28.30000
## 28        COAH  2018 11.70000 18.00000 20.50000 22.20000 27.40000 29.40000
## 29        COAH  2017 12.91667 15.73333 20.01667 23.35000 26.78333 28.40000
## 30        COAH  2016 12.91667 15.73333 20.01667 23.35000 26.78333 28.40000
## 31        COAH  2015 12.58333 14.91667 19.73333 23.72500 26.86667 28.37500
## 32        COAH  2014 12.87963 15.64259 19.98519 23.39167 26.79259 28.39722
## 33        COAH  2013 13.03603 15.62963 20.05017 23.47424 26.76599 28.22475
## 34        COAH  2012 14.60000 15.50000 20.70000 24.30000 26.50000 26.50000
## 35        COAH  2011 13.00000 15.80000 21.80000 25.90000 27.50000 28.20000
## 36        COAH  2010 11.50000 12.40000 17.10000 22.30000 26.40000 28.50000
## 37          NL  2021 14.90000 16.30000 20.80000 24.10000 26.00000 26.90000
## 38          NL  2020 16.20000 16.50000 22.90000 24.60000 26.00000 26.70000
## 39          NL  2019 14.20000 18.20000 19.40000 22.70000 26.50000 28.20000
## 40          NL  2018 12.30000 18.60000 21.50000 21.90000 26.10000 27.80000
## 41          NL  2017 14.01667 16.65000 20.75000 23.40000 26.51667 27.68333
## 42          NL  2016 14.01667 16.65000 20.75000 23.40000 26.51667 27.68333
## 43          NL  2015 13.63333 15.90000 20.35000 23.47500 26.88333 27.96667
## 44          NL  2014 13.97407 16.56667 20.70556 23.40833 26.55741 27.71481
## 45          NL  2013 14.14007 16.53333 20.72323 23.49848 26.53401 27.71347
## 46          NL  2012 15.80000 16.20000 20.90000 24.40000 26.30000 27.70000
## 47          NL  2011 14.00000 17.00000 22.30000 24.70000 28.10000 27.90000
## 48          NL  2010 12.50000 13.30000 17.60000 22.40000 26.40000 28.60000
## 49         SON  2021 14.20000 16.00000 17.10000 21.90000 24.90000 30.40000
## 50         SON  2020 14.70000 15.70000 17.70000 21.00000 25.80000 29.80000
## 51         SON  2019 14.60000 14.40000 18.50000 21.40000 22.50000 28.70000
## 52         SON  2018 16.70000 16.40000 19.20000 22.70000 25.40000 30.00000
## 53         SON  2017 14.63333 15.15000 18.13333 21.46667 24.31667 29.41667
## 54         SON  2016 14.63333 15.15000 18.13333 21.46667 24.31667 29.41667
## 55         SON  2015 14.21667 14.67500 18.14167 21.18333 23.98333 29.10833
## 56         SON  2014 14.58704 15.09722 18.13426 21.43519 24.27963 29.38241
## 57         SON  2013 14.64276 15.07020 18.04024 21.45926 24.43603 29.41128
## 58         SON  2012 15.20000 14.80000 17.10000 21.70000 26.00000 29.70000
## 59         SON  2011 13.90000 14.00000 19.50000 21.80000 23.90000 28.90000
## 60         SON  2010 13.70000 14.40000 16.80000 20.00000 23.40000 28.70000
## 61       TAMPS  2021 18.40000 18.30000 23.00000 26.30000 28.20000 28.70000
## 62       TAMPS  2020 19.50000 19.10000 25.20000 27.70000 28.20000 28.70000
## 63       TAMPS  2019 17.40000 21.00000 22.20000 25.10000 29.30000 30.40000
## 64       TAMPS  2018 15.10000 22.00000 23.90000 24.50000 28.00000 29.30000
## 65       TAMPS  2017 17.15000 19.03333 22.93333 25.86667 28.33333 29.18333
## 66       TAMPS  2016 17.15000 19.03333 22.93333 25.86667 28.33333 29.18333
## 67       TAMPS  2015 16.70000 17.96667 22.29167 25.83333 28.24167 29.09167
## 68       TAMPS  2014 17.10000 18.91481 22.86204 25.86296 28.32315 29.17315
## 69       TAMPS  2013 17.20909 18.89529 22.86549 25.85724 28.28468 29.16650
## 70       TAMPS  2012 18.30000 18.70000 22.90000 25.80000 27.90000 29.10000
## 71       TAMPS  2011 17.00000 18.20000 23.80000 27.40000 28.60000 28.60000
## 72       TAMPS  2010 15.50000 15.60000 19.50000 24.20000 27.70000 29.40000

Agregar columnas

Con la función mutate se agregan columnas o modifica valores de variables en el conjunto de datos

estado.modificado <- mutate(estado, abrev.minusc = tolower(abreviatura))
estado.modificado
##    abreviatura agnio      ene      feb      mar      abr      may      jun
## 1           BC  2010 13.90000 13.80000 14.80000 15.90000 18.80000 23.40000
## 2         COAH  2010 11.50000 12.40000 17.10000 22.30000 26.40000 28.50000
## 3         CHIH  2010  9.10000 10.10000 13.40000 18.10000 21.60000 25.70000
## 4           NL  2010 12.50000 13.30000 17.60000 22.40000 26.40000 28.60000
## 5          SON  2010 13.70000 14.40000 16.80000 20.00000 23.40000 28.70000
## 6        TAMPS  2010 15.50000 15.60000 19.50000 24.20000 27.70000 29.40000
## 7           BC  2011 14.10000 11.10000 16.30000 18.10000 19.60000 23.70000
## 8         COAH  2011 13.00000 15.80000 21.80000 25.90000 27.50000 28.20000
## 9         CHIH  2011 10.50000 12.00000 17.80000 20.80000 23.00000 26.70000
## 10          NL  2011 14.00000 17.00000 22.30000 24.70000 28.10000 27.90000
## 11         SON  2011 13.90000 14.00000 19.50000 21.80000 23.90000 28.90000
## 12       TAMPS  2011 17.00000 18.20000 23.80000 27.40000 28.60000 28.60000
## 13          BC  2012 15.60000 13.40000 14.10000 17.60000 22.00000 23.90000
## 14        COAH  2012 14.60000 15.50000 20.70000 24.30000 26.50000 26.50000
## 15        CHIH  2012 11.20000 12.30000 15.30000 25.10000 23.30000 26.50000
## 16          NL  2012 15.80000 16.20000 20.90000 24.40000 26.30000 27.70000
## 17         SON  2012 15.20000 14.80000 17.10000 21.70000 26.00000 29.70000
## 18       TAMPS  2012 18.30000 18.70000 22.90000 25.80000 27.90000 29.10000
## 19          BC  2013 14.40303 13.49512 15.20354 18.32811 20.49916 23.98249
## 20        COAH  2013 13.03603 15.62963 20.05017 23.47424 26.76599 28.22475
## 21        CHIH  2013 10.42811 12.42290 16.01633 19.99226 22.96330 26.38468
## 22          NL  2013 14.14007 16.53333 20.72323 23.49848 26.53401 27.71347
## 23         SON  2013 14.64276 15.07020 18.04024 21.45926 24.43603 29.41128
## 24       TAMPS  2013 17.20909 18.89529 22.86549 25.85724 28.28468 29.16650
## 25          BC  2014 14.28333 13.50463 15.31389 18.40093 20.34907 23.99074
## 26        COAH  2014 12.87963 15.64259 19.98519 23.39167 26.79259 28.39722
## 27        CHIH  2014 10.35093 12.43519 16.08796 19.48148 22.92963 26.37315
## 28          NL  2014 13.97407 16.56667 20.70556 23.40833 26.55741 27.71481
## 29         SON  2014 14.58704 15.09722 18.13426 21.43519 24.27963 29.38241
## 30       TAMPS  2014 17.10000 18.91481 22.86204 25.86296 28.32315 29.17315
## 31          BC  2015 14.15000 13.00833 15.42500 17.74167 19.80833 23.78333
## 32        COAH  2015 12.58333 14.91667 19.73333 23.72500 26.86667 28.37500
## 33        CHIH  2015 10.09167 11.78333 15.85833 19.46667 22.63333 26.29167
## 34          NL  2015 13.63333 15.90000 20.35000 23.47500 26.88333 27.96667
## 35         SON  2015 14.21667 14.67500 18.14167 21.18333 23.98333 29.10833
## 36       TAMPS  2015 16.70000 17.96667 22.29167 25.83333 28.24167 29.09167
## 37          BC  2016 14.30000 13.56667 15.30000 18.48333 20.41667 24.01667
## 38        COAH  2016 12.91667 15.73333 20.01667 23.35000 26.78333 28.40000
## 39        CHIH  2016 10.38333 12.51667 16.11667 19.48333 22.96667 26.38333
## 40          NL  2016 14.01667 16.65000 20.75000 23.40000 26.51667 27.68333
## 41         SON  2016 14.63333 15.15000 18.13333 21.46667 24.31667 29.41667
## 42       TAMPS  2016 17.15000 19.03333 22.93333 25.86667 28.33333 29.18333
## 43          BC  2017 14.30000 13.56667 15.30000 18.48333 20.41667 24.01667
## 44        COAH  2017 12.91667 15.73333 20.01667 23.35000 26.78333 28.40000
## 45        CHIH  2017 10.38333 12.51667 16.11667 19.48333 22.96667 26.38333
## 46          NL  2017 14.01667 16.65000 20.75000 23.40000 26.51667 27.68333
## 47         SON  2017 14.63333 15.15000 18.13333 21.46667 24.31667 29.41667
## 48       TAMPS  2017 17.15000 19.03333 22.93333 25.86667 28.33333 29.18333
## 49          BC  2018 16.30000 15.50000 16.60000 20.40000 20.50000 24.30000
## 50        COAH  2018 11.70000 18.00000 20.50000 22.20000 27.40000 29.40000
## 51        CHIH  2018 11.00000 14.80000 17.00000 20.40000 24.70000 26.70000
## 52          NL  2018 12.30000 18.60000 21.50000 21.90000 26.10000 27.80000
## 53         SON  2018 16.70000 16.40000 19.20000 22.70000 25.40000 30.00000
## 54       TAMPS  2018 15.10000 22.00000 23.90000 24.50000 28.00000 29.30000
## 55          BC  2019 14.30000 12.20000 15.60000 20.40000 20.40000 24.10000
## 56        COAH  2019 13.50000 17.10000 18.80000 22.80000 26.40000 28.30000
## 57        CHIH  2019 11.00000 12.80000 16.40000 18.90000 22.00000 26.30000
## 58          NL  2019 14.20000 18.20000 19.40000 22.70000 26.50000 28.20000
## 59         SON  2019 14.60000 14.40000 18.50000 21.40000 22.50000 28.70000
## 60       TAMPS  2019 17.40000 21.00000 22.20000 25.10000 29.30000 30.40000
## 61          BC  2020 13.60000 14.40000 14.40000 18.10000 22.70000 24.20000
## 62        COAH  2020 14.30000 15.60000 22.10000 23.90000 26.80000 27.90000
## 63        CHIH  2020 10.80000 12.00000 16.70000 19.40000 23.70000 26.40000
## 64          NL  2020 16.20000 16.50000 22.90000 24.60000 26.00000 26.70000
## 65         SON  2020 14.70000 15.70000 17.70000 21.00000 25.80000 29.80000
## 66       TAMPS  2020 19.50000 19.10000 25.20000 27.70000 28.20000 28.70000
## 67          BC  2021 13.60000 14.40000 14.10000 18.00000 20.50000 24.40000
## 68        COAH  2021 13.50000 15.50000 19.80000 23.00000 26.20000 28.10000
## 69        CHIH  2021  9.90000 13.40000 15.40000 19.30000 22.80000 26.50000
## 70          NL  2021 14.90000 16.30000 20.80000 24.10000 26.00000 26.90000
## 71         SON  2021 14.20000 16.00000 17.10000 21.90000 24.90000 30.40000
## 72       TAMPS  2021 18.40000 18.30000 23.00000 26.30000 28.20000 28.70000
##    abrev.minusc
## 1            bc
## 2          coah
## 3          chih
## 4            nl
## 5           son
## 6         tamps
## 7            bc
## 8          coah
## 9          chih
## 10           nl
## 11          son
## 12        tamps
## 13           bc
## 14         coah
## 15         chih
## 16           nl
## 17          son
## 18        tamps
## 19           bc
## 20         coah
## 21         chih
## 22           nl
## 23          son
## 24        tamps
## 25           bc
## 26         coah
## 27         chih
## 28           nl
## 29          son
## 30        tamps
## 31           bc
## 32         coah
## 33         chih
## 34           nl
## 35          son
## 36        tamps
## 37           bc
## 38         coah
## 39         chih
## 40           nl
## 41          son
## 42        tamps
## 43           bc
## 44         coah
## 45         chih
## 46           nl
## 47          son
## 48        tamps
## 49           bc
## 50         coah
## 51         chih
## 52           nl
## 53          son
## 54        tamps
## 55           bc
## 56         coah
## 57         chih
## 58           nl
## 59          son
## 60        tamps
## 61           bc
## 62         coah
## 63         chih
## 64           nl
## 65          son
## 66        tamps
## 67           bc
## 68         coah
## 69         chih
## 70           nl
## 71          son
## 72        tamps

Funciones de agregado

Agrupar datos y calcular alguna función mean(), n() o sd()

group_by summarize()

estado %>%
summarise(media.ene = mean(ene), n = n())
##   media.ene  n
## 1  13.97652 72

Ahora agrupados por estado

estado %>%
  group_by(abreviatura) %>%
summarise(media.ene = mean(ene), n = n())
## # A tibble: 6 x 3
##   abreviatura media.ene     n
##   <fct>           <dbl> <int>
## 1 BC               14.4    12
## 2 CHIH             10.4    12
## 3 COAH             13.0    12
## 4 NL               14.1    12
## 5 SON              14.6    12
## 6 TAMPS            17.2    12

Simular con datos de personas

Cargar los datos

personas <- read.csv("https://raw.githubusercontent.com/rpizarrog/CIIT.-Diplomado-en-Ciencia-de-los-Datos-e-IoT/main/M%C3%B3dulo%20I/datos/datos.personas.csv", encoding = "1859-1", stringsAsFactors =TRUE)

Describir los datos

summary(personas)
##        X              edad            genero                 estado    
##  Min.   :    1   Min.   :18.0   FEMENINO :5215   DURANGO        :1278  
##  1st Qu.: 2501   1st Qu.:30.0   MASCULINO:4785   NUEVO LEÓN     :1276  
##  Median : 5000   Median :41.0                    CHIHUAHUA      :1271  
##  Mean   : 5000   Mean   :41.5                    COAHUILA       :1267  
##  3rd Qu.: 7500   3rd Qu.:53.0                    BAJA CALIFORNIA:1257  
##  Max.   :10000   Max.   :65.0                    TAMAULIPAS     :1251  
##                                                  (Other)        :2400  
##       feliz     
##  FELIZ   :4950  
##  NO FELIZ:5050  
##                 
##                 
##                 
##                 
## 
str(personas)
## 'data.frame':    10000 obs. of  5 variables:
##  $ X     : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ edad  : int  21 18 30 23 47 38 63 56 30 54 ...
##  $ genero: Factor w/ 2 levels "FEMENINO","MASCULINO": 1 1 1 1 2 1 1 2 1 2 ...
##  $ estado: Factor w/ 8 levels "BAJA CALIFORNIA",..: 1 6 8 6 8 5 2 1 4 3 ...
##  $ feliz : Factor w/ 2 levels "FELIZ","NO FELIZ": 2 2 1 2 1 2 1 1 2 1 ...

Mostrar datos

head(personas)
##   X edad    genero          estado    feliz
## 1 1   21  FEMENINO BAJA CALIFORNIA NO FELIZ
## 2 2   18  FEMENINO      NUEVO LEÓN NO FELIZ
## 3 3   30  FEMENINO      TAMAULIPAS    FELIZ
## 4 4   23  FEMENINO      NUEVO LEÓN NO FELIZ
## 5 5   47 MASCULINO      TAMAULIPAS    FELIZ
## 6 6   38  FEMENINO         DURANGO NO FELIZ
tail(personas)
##           X edad    genero          estado    feliz
## 9995   9995   28  FEMENINO BAJA CALIFORNIA    FELIZ
## 9996   9996   58 MASCULINO BAJA CALIFORNIA NO FELIZ
## 9997   9997   44  FEMENINO          SONORA    FELIZ
## 9998   9998   23  FEMENINO        COAHUILA NO FELIZ
## 9999   9999   23  FEMENINO          SONORA NO FELIZ
## 10000 10000   39 MASCULINO      NUEVO LEÓN    FELIZ

¿Cuáles y cuántas personas son del genero FEMENINO del estado de BAJA CALIFORNIA que sean FELIZ?

Se utiliza operador and &

filtro <- filter(personas, genero == 'FEMENINO' & estado == 'BAJA CALIFORNIA' & feliz =='FELIZ' ) %>%
  select(genero, estado, feliz)

summary(filtro)
##        genero                    estado         feliz    
##  FEMENINO :320   BAJA CALIFORNIA    :320   FELIZ   :320  
##  MASCULINO:  0   BAJA CALIFORNIA SUR:  0   NO FELIZ:  0  
##                  CHIHUAHUA          :  0                 
##                  COAHUILA           :  0                 
##                  DURANGO            :  0                 
##                  NUEVO LEÓN         :  0                 
##                  (Other)            :  0