DANE

https://www.kaggle.com/zynicide/wine-reviews

BIBLIOTEKI

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
library(tidyverse)
## -- Attaching packages ------------------------------------------------------------------------------------ tidyverse 1.3.0 --
## <U+221A> ggplot2 3.3.3     <U+221A> purrr   0.3.4
## <U+221A> tibble  3.0.0     <U+221A> stringr 1.4.0
## <U+221A> tidyr   1.0.2     <U+221A> forcats 0.4.0
## -- Conflicts --------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ggplot2)
library(rpivotTable)

WCZYTANIE DANYCH

wines <- read_csv("winemag-data-130k-v2.csv")
wines
## # A tibble: 129,971 x 14
##       X1 country description designation points price province region_1
##    <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1     0 Italy   Aromas inc~ Vulka Bian~     87    NA Sicily ~ Etna    
##  2     1 Portug~ This is ri~ Avidagos        87    15 Douro    <NA>    
##  3     2 US      Tart and s~ <NA>            87    14 Oregon   Willame~
##  4     3 US      Pineapple ~ Reserve La~     87    13 Michigan Lake Mi~
##  5     4 US      Much like ~ Vintner's ~     87    65 Oregon   Willame~
##  6     5 Spain   Blackberry~ Ars In Vit~     87    15 Norther~ Navarra 
##  7     6 Italy   Here's a b~ Belsito         87    16 Sicily ~ Vittoria
##  8     7 France  This dry a~ <NA>            87    24 Alsace   Alsace  
##  9     8 Germany Savory dri~ Shine           87    12 Rheinhe~ <NA>    
## 10     9 France  This has g~ Les Natures     87    27 Alsace   Alsace  
## # ... with 129,961 more rows, and 6 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>

WIDOK DANYCH

glimpse(wines)
## Rows: 129,971
## Columns: 14
## $ X1                    <dbl> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
## $ country               <chr> "Italy", "Portugal", "US", "US", "US", "...
## $ description           <chr> "Aromas include tropical fruit, broom, b...
## $ designation           <chr> "Vulka Bianco", "Avidagos", NA, "Reserve...
## $ points                <dbl> 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, ...
## $ price                 <dbl> NA, 15, 14, 13, 65, 15, 16, 24, 12, 27, ...
## $ province              <chr> "Sicily & Sardinia", "Douro", "Oregon", ...
## $ region_1              <chr> "Etna", NA, "Willamette Valley", "Lake M...
## $ region_2              <chr> NA, NA, "Willamette Valley", NA, "Willam...
## $ taster_name           <chr> "Kerin O’Keefe", "Roger Voss", "Paul Gre...
## $ taster_twitter_handle <chr> "@kerinokeefe", "@vossroger", "@paulgwin...
## $ title                 <chr> "Nicosia 2013 Vulka Bianco  (Etna)", "Qu...
## $ variety               <chr> "White Blend", "Portuguese Red", "Pinot ...
## $ winery                <chr> "Nicosia", "Quinta dos Avidagos", "Rains...

TBALICE

table(wines$country)
## 
##              Argentina                Armenia              Australia 
##                   3800                      2                   2329 
##                Austria Bosnia and Herzegovina                 Brazil 
##                   3345                      2                     52 
##               Bulgaria                 Canada                  Chile 
##                    141                    257                   4472 
##                  China                Croatia                 Cyprus 
##                      1                     73                     11 
##         Czech Republic                  Egypt                England 
##                     12                      1                     74 
##                 France                Georgia                Germany 
##                  22093                     86                   2165 
##                 Greece                Hungary                  India 
##                    466                    146                      9 
##                 Israel                  Italy                Lebanon 
##                    505                  19540                     35 
##             Luxembourg              Macedonia                 Mexico 
##                      6                     12                     70 
##                Moldova                Morocco            New Zealand 
##                     59                     28                   1419 
##                   Peru               Portugal                Romania 
##                     16                   5691                    120 
##                 Serbia               Slovakia               Slovenia 
##                     12                      1                     87 
##           South Africa                  Spain            Switzerland 
##                   1401                   6645                      7 
##                 Turkey                Ukraine                Uruguay 
##                     90                     14                    109 
##                     US 
##                  54504

FILTROWANIE

Skrót klawiszowy: ctrl+shift+m -> %>%

wines%>%
  filter( points >= 94, price < 25)
## # A tibble: 66 x 14
##       X1 country description designation points price province region_1
##    <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1  5011 US      Truly stun~ Lewis Esta~     95    20 Washing~ Columbi~
##  2  6267 US      This taste~ Lucille La~     94    18 Washing~ Yakima ~
##  3 10763 Portug~ His skills~ Rapariga d~     94    23 Alentej~ <NA>    
##  4 12944 France  The Côte d~ Côte du Py~     94    24 Beaujol~ Morgon  
##  5 12945 France  Be gratefu~ Vieilles V~     94    24 Beaujol~ Moulin-~
##  6 12967 France  A firm and~ <NA>            94    24 Beaujol~ Moulin-~
##  7 15196 France  The home v~ Château Bo~     95    20 Southwe~ Madiran 
##  8 15211 US      The deep g~ <NA>            94    22 Oregon   Willame~
##  9 17294 US      Opulento i~ Opulento D~     94    20 Washing~ Yakima ~
## 10 17983 France  This is on~ <NA>            94    20 Provence Coteaux~
## # ... with 56 more rows, and 6 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>

LOSOWANIE

Losowanie próbki 15% obserwacji ze zbioru.

wines%>%
sample_frac( 0.15)
## # A tibble: 19,496 x 14
##        X1 country description designation points price province region_1
##     <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1  68617 France  An impress~ Le Bouissel     90    20 Southwe~ Fronton 
##  2  13109 Italy   Here's a R~ Sotto Cast~     89    50 Piedmont Barolo  
##  3  79392 US      Earthy cra~ <NA>            90    27 Califor~ Carneros
##  4   9481 US      Shows the ~ <NA>            87    23 Califor~ Carneros
##  5 108921 US      As soon as~ Roseum Hue~     84    13 Califor~ Paso Ro~
##  6 124713 Portug~ Aged for s~ MR Premium      90    NA Alentej~ <NA>    
##  7  25399 France  The highes~ Clos Trigu~     94    30 Southwe~ Cahors  
##  8  60906 US      This is a ~ Fox Family~     89    45 Califor~ Santa B~
##  9  11859 Italy   Passoro op~ Passoro 50~     84    23 Sicily ~ Sicilia 
## 10  46010 Portug~ One of a s~ Single Har~     95   300 Port     <NA>    
## # ... with 19,486 more rows, and 6 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>

WYŚWIETLENIE TOPOWYCH OBSERWACJI ZE WZGLEDU NA ZMIENNĄ

wines%>%
top_n( 3, points)
## # A tibble: 19 x 14
##        X1 country description designation points price province region_1
##     <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1    345 Austra~ This wine ~ Rare           100   350 Victoria Rutherg~
##  2   7335 Italy   Thick as m~ Occhio di ~    100   210 Tuscany  Vin San~
##  3  36528 France  This is a ~ Brut           100   259 Champag~ Champag~
##  4  39286 Italy   A perfect ~ Masseto        100   460 Tuscany  Toscana 
##  5  42197 Portug~ This is th~ Barca-Velha    100   450 Douro    <NA>    
##  6  45781 Italy   This gorge~ Riserva        100   550 Tuscany  Brunell~
##  7  45798 US      Tasted in ~ <NA>           100   200 Califor~ Napa Va~
##  8  58352 France  This is a ~ <NA>           100   150 Bordeaux Saint-J~
##  9  89728 France  This lates~ Cristal Vi~    100   250 Champag~ Champag~
## 10  89729 France  This new r~ Le Mesnil ~    100   617 Champag~ Champag~
## 11 111753 France  Almost bla~ <NA>           100  1500 Bordeaux Pauillac
## 12 111754 Italy   It takes o~ Cerretalto     100   270 Tuscany  Brunell~
## 13 111755 France  This is th~ <NA>           100  1500 Bordeaux Saint-É~
## 14 111756 France  A hugely p~ <NA>           100   359 Bordeaux Saint-J~
## 15 113929 US      In 2005 Ch~ Royal City     100    80 Washing~ Columbi~
## 16 114972 Portug~ A powerful~ Nacional V~    100   650 Port     <NA>    
## 17 118058 US      This wine ~ La Muse        100   450 Califor~ Sonoma ~
## 18 122935 France  Full of ri~ <NA>           100   848 Bordeaux Pessac-~
## 19 123545 US      Initially ~ Bionic Frog    100    80 Washing~ Walla W~
## # ... with 6 more variables: region_2 <chr>, taster_name <chr>,
## #   taster_twitter_handle <chr>, title <chr>, variety <chr>, winery <chr>

TOP NAJTAŃSZYCH WIN

wines%>%
top_n( 100, -price)
## # A tibble: 177 x 14
##       X1 country description designation points price province region_1
##    <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1  1620 Portug~ The very l~ Brado Bran~     85     6 Alentej~ <NA>    
##  2  1987 Spain   Berry and ~ Flirty Bird     85     4 Central~ Vino de~
##  3  2335 US      Reserved a~ <NA>            85     6 Washing~ Washing~
##  4  2618 Argent~ Lightly br~ <NA>            83     6 Mendoza~ Mendoza 
##  5  2780 Portug~ This feels~ Morgado da~     84     5 Alentej~ <NA>    
##  6  3167 Italy   Packaged i~ Mini            86     5 Veneto   Prosecco
##  7  3948 Portug~ Soft, swee~ Coreto          83     6 Lisboa   <NA>    
##  8  3950 Portug~ On the dry~ Escolha         83     5 Vinho V~ <NA>    
##  9  5152 Spain   A steal fo~ Vina Borgia     87     6 Norther~ Campo d~
## 10  5789 France  This is a ~ <NA>            83     5 France ~ Vin de ~
## # ... with 167 more rows, and 6 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>

SORTOWANIE

wines%>%
  arrange( desc(points))
## # A tibble: 129,971 x 14
##       X1 country description designation points price province region_1
##    <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1   345 Austra~ This wine ~ Rare           100   350 Victoria Rutherg~
##  2  7335 Italy   Thick as m~ Occhio di ~    100   210 Tuscany  Vin San~
##  3 36528 France  This is a ~ Brut           100   259 Champag~ Champag~
##  4 39286 Italy   A perfect ~ Masseto        100   460 Tuscany  Toscana 
##  5 42197 Portug~ This is th~ Barca-Velha    100   450 Douro    <NA>    
##  6 45781 Italy   This gorge~ Riserva        100   550 Tuscany  Brunell~
##  7 45798 US      Tasted in ~ <NA>           100   200 Califor~ Napa Va~
##  8 58352 France  This is a ~ <NA>           100   150 Bordeaux Saint-J~
##  9 89728 France  This lates~ Cristal Vi~    100   250 Champag~ Champag~
## 10 89729 France  This new r~ Le Mesnil ~    100   617 Champag~ Champag~
## # ... with 129,961 more rows, and 6 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>
wines%>%
  arrange( -points)
## # A tibble: 129,971 x 14
##       X1 country description designation points price province region_1
##    <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1   345 Austra~ This wine ~ Rare           100   350 Victoria Rutherg~
##  2  7335 Italy   Thick as m~ Occhio di ~    100   210 Tuscany  Vin San~
##  3 36528 France  This is a ~ Brut           100   259 Champag~ Champag~
##  4 39286 Italy   A perfect ~ Masseto        100   460 Tuscany  Toscana 
##  5 42197 Portug~ This is th~ Barca-Velha    100   450 Douro    <NA>    
##  6 45781 Italy   This gorge~ Riserva        100   550 Tuscany  Brunell~
##  7 45798 US      Tasted in ~ <NA>           100   200 Califor~ Napa Va~
##  8 58352 France  This is a ~ <NA>           100   150 Bordeaux Saint-J~
##  9 89728 France  This lates~ Cristal Vi~    100   250 Champag~ Champag~
## 10 89729 France  This new r~ Le Mesnil ~    100   617 Champag~ Champag~
## # ... with 129,961 more rows, and 6 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>

WYŚWIETLANIE ZMIENNYCH

wines%>%
  select( country, province:region_2)
## # A tibble: 129,971 x 4
##    country  province          region_1            region_2         
##    <chr>    <chr>             <chr>               <chr>            
##  1 Italy    Sicily & Sardinia Etna                <NA>             
##  2 Portugal Douro             <NA>                <NA>             
##  3 US       Oregon            Willamette Valley   Willamette Valley
##  4 US       Michigan          Lake Michigan Shore <NA>             
##  5 US       Oregon            Willamette Valley   Willamette Valley
##  6 Spain    Northern Spain    Navarra             <NA>             
##  7 Italy    Sicily & Sardinia Vittoria            <NA>             
##  8 France   Alsace            Alsace              <NA>             
##  9 Germany  Rheinhessen       <NA>                <NA>             
## 10 France   Alsace            Alsace              <NA>             
## # ... with 129,961 more rows

ZMIANA NAZWY ZMIENNYCH

wines%>%
  rename( punkty = points)
## # A tibble: 129,971 x 14
##       X1 country description designation punkty price province region_1
##    <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1     0 Italy   Aromas inc~ Vulka Bian~     87    NA Sicily ~ Etna    
##  2     1 Portug~ This is ri~ Avidagos        87    15 Douro    <NA>    
##  3     2 US      Tart and s~ <NA>            87    14 Oregon   Willame~
##  4     3 US      Pineapple ~ Reserve La~     87    13 Michigan Lake Mi~
##  5     4 US      Much like ~ Vintner's ~     87    65 Oregon   Willame~
##  6     5 Spain   Blackberry~ Ars In Vit~     87    15 Norther~ Navarra 
##  7     6 Italy   Here's a b~ Belsito         87    16 Sicily ~ Vittoria
##  8     7 France  This dry a~ <NA>            87    24 Alsace   Alsace  
##  9     8 Germany Savory dri~ Shine           87    12 Rheinhe~ <NA>    
## 10     9 France  This has g~ Les Natures     87    27 Alsace   Alsace  
## # ... with 129,961 more rows, and 6 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>

DODANIE KOLUMNY Z CENĄ WINA W ZŁOTÓWKACH

usd_to_pln = 3.95
wines<-wines%>%
  mutate( price_pln = price * usd_to_pln)
wines
## # A tibble: 129,971 x 15
##       X1 country description designation points price province region_1
##    <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1     0 Italy   Aromas inc~ Vulka Bian~     87    NA Sicily ~ Etna    
##  2     1 Portug~ This is ri~ Avidagos        87    15 Douro    <NA>    
##  3     2 US      Tart and s~ <NA>            87    14 Oregon   Willame~
##  4     3 US      Pineapple ~ Reserve La~     87    13 Michigan Lake Mi~
##  5     4 US      Much like ~ Vintner's ~     87    65 Oregon   Willame~
##  6     5 Spain   Blackberry~ Ars In Vit~     87    15 Norther~ Navarra 
##  7     6 Italy   Here's a b~ Belsito         87    16 Sicily ~ Vittoria
##  8     7 France  This dry a~ <NA>            87    24 Alsace   Alsace  
##  9     8 Germany Savory dri~ Shine           87    12 Rheinhe~ <NA>    
## 10     9 France  This has g~ Les Natures     87    27 Alsace   Alsace  
## # ... with 129,961 more rows, and 7 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>, price_pln <dbl>

STATYSTYKI

wines%>%
  summarise(mean_price = mean(price, na.rm = T),
          std_price = sd(price, na.rm = T))
## # A tibble: 1 x 2
##   mean_price std_price
##        <dbl>     <dbl>
## 1       35.4      41.0

KWANTYLE

quantile(wines$price, na.rm = T, probs = c(0, 0.1, 0.25, 0.50, 0.75, 0.9, 1))
##   0%  10%  25%  50%  75%  90% 100% 
##    4   12   17   25   42   65 3300

MEDIANA

wines%>%
  summarise(median_price = median(price, na.rm = T))
## # A tibble: 1 x 1
##   median_price
##          <dbl>
## 1           25

SPRAWDZENIE STOSUNKU CENY DO JAKOŚCI

Czy drogie wino oznacza dobre?

wines %>% 
  mutate(price_score_ratio = price_pln/points) %>% 
  select(title, price_pln, points, price_score_ratio) %>% 
  arrange(price_score_ratio)
## # A tibble: 129,971 x 4
##    title                                  price_pln points price_score_rat~
##    <chr>                                      <dbl>  <dbl>            <dbl>
##  1 Bandit NV Merlot (California)               15.8     86            0.184
##  2 Cramele Recas 2011 UnWineD Pinot Grig~      15.8     86            0.184
##  3 Felix Solis 2013 Flirty Bird Syrah (V~      15.8     85            0.186
##  4 Dancing Coyote 2015 White (Clarksburg)      15.8     85            0.186
##  5 Broke Ass 2009 Red Malbec-Syrah (Mend~      15.8     84            0.188
##  6 Bandit NV Chardonnay (California)           15.8     84            0.188
##  7 Terrenal 2010 Cabernet Sauvignon (Yec~      15.8     84            0.188
##  8 Bandit NV Merlot (California)               15.8     84            0.188
##  9 Terrenal 2010 Estate Bottled Temprani~      15.8     84            0.188
## 10 Pam's Cuties NV Unoaked Chardonnay (C~      15.8     83            0.190
## # ... with 129,961 more rows

SPRAWDZENIE OBSERWACJI, KTÓRE UZYSKAŁY POWYŻEJ 90 PUNKTÓW

wines %>% 
  mutate(price_score_ratio = price_pln/points) %>% 
  select(title, price_pln, points, price_score_ratio) %>% 
  filter(points >= 90) %>% 
  arrange(price_score_ratio) 
## # A tibble: 49,045 x 4
##    title                                  price_pln points price_score_rat~
##    <chr>                                      <dbl>  <dbl>            <dbl>
##  1 Herdade dos Machados 2012 Toutalga Re~      27.6     91            0.304
##  2 Snoqualmie 2006 Winemaker's Select Ri~      31.6     91            0.347
##  3 Esser Cellars 2001 Chardonnay (Califo~      31.6     90            0.351
##  4 Aveleda 2013 Quinta da Aveleda Estate~      31.6     90            0.351
##  5 Rothbury Estate 2001 Chardonnay (Sout~      31.6     90            0.351
##  6 Chateau Ste. Michelle 2011 Riesling (~      35.6     91            0.391
##  7 Chateau Ste. Michelle 2010 Dry Riesli~      35.6     91            0.391
##  8 Barnard Griffin 2012 Fumé Blanc Sauvi~      35.6     91            0.391
##  9 Mano A Mano 2011 Tempranillo (Vino de~      35.6     90            0.395
## 10 Aveleda 2014 Quinta da Aveleda Estate~      35.6     90            0.395
## # ... with 49,035 more rows

MEDIANA - GRUPOWANIE

Mediana ze względu na wartośc zmiennej coutry.

wines %>% 
  group_by(country) %>% 
  summarise(median_price_pln = median(price_pln, na.rm = T))
## # A tibble: 44 x 2
##    country                median_price_pln
##    <chr>                             <dbl>
##  1 Argentina                          67.2
##  2 Armenia                            57.3
##  3 Australia                          83.0
##  4 Austria                            98.8
##  5 Bosnia and Herzegovina             49.4
##  6 Brazil                             79  
##  7 Bulgaria                           51.4
##  8 Canada                            118. 
##  9 Chile                              59.2
## 10 China                              71.1
## # ... with 34 more rows
wines %>% 
  group_by(country) %>% 
  summarise(median_price_pln = median(price_pln, na.rm = T),
            sred_punkty = mean(points, na.rm = T),
            liczba_of_wines = n()) %>% 
  arrange(median_price_pln) %>% 
  filter(liczba_of_wines >= 20)
## # A tibble: 30 x 4
##    country   median_price_pln sred_punkty liczba_of_wines
##    <chr>                <dbl>       <dbl>           <int>
##  1 Romania               35.6        86.4             120
##  2 Bulgaria              51.4        87.9             141
##  3 Moldova               51.4        87.2              59
##  4 Chile                 59.2        86.5            4472
##  5 Portugal              63.2        88.3            5691
##  6 Argentina             67.2        86.7            3800
##  7 Georgia               69.1        87.7              86
##  8 Morocco               71.1        88.6              28
##  9 Spain                 71.1        87.3            6645
## 10 Greece                75.0        87.3             466
## # ... with 20 more rows

ZADANIA

Ile jest w danych Hiszpańskich win droższych niż $100?

Który szczep wingoron (variety) jest najbardziej popularny?

Mając budżet $8 po wino jakiego szczepu (variety) najlepiej sięgnąć? Odrzuć szczepy dla których jest mniej niż 20 obserwacji

USUWANIE OBSERWACJI Z BRAKAMI DANYCH

Usunięcie wszystkich z brakami

wines %>% drop_na()
## # A tibble: 22,387 x 15
##       X1 country description designation points price province region_1
##    <dbl> <chr>   <chr>       <chr>        <dbl> <dbl> <chr>    <chr>   
##  1     4 US      Much like ~ Vintner's ~     87    65 Oregon   Willame~
##  2    10 US      Soft, supp~ Mountain C~     87    19 Califor~ Napa Va~
##  3    23 US      This wine ~ Signature ~     87    22 Califor~ Paso Ro~
##  4    25 US      Oak and ea~ King Ridge~     87    69 Califor~ Sonoma ~
##  5    35 US      As with ma~ Hyland          86    50 Oregon   McMinnv~
##  6    60 US      Syrupy and~ Estate          86   100 Califor~ Napa Va~
##  7    62 US      The aromas~ Alder Ridg~     86    25 Washing~ Columbi~
##  8    64 US      There are ~ Golden Horn     86    26 Califor~ Santa Y~
##  9    67 US      A blend of~ Inspired        86    46 Washing~ Columbi~
## 10    71 US      Big oak de~ Old Vine        86    40 Califor~ Alexand~
## # ... with 22,377 more rows, and 7 more variables: region_2 <chr>,
## #   taster_name <chr>, taster_twitter_handle <chr>, title <chr>,
## #   variety <chr>, winery <chr>, price_pln <dbl>

Usunięcie wszystkich obserwacji, gdzie wystepują braki w danej kolumnie

wines2<-wines %>% drop_na(price)

TWORZENIE SZEREGÓW ROZDZIELCZYCH

n = length(wines2$price)
y1=cut(wines2$price, sqrt(n))
# y1
head(table(y1),30)
## y1
##  (0.704,13.5]     (13.5,23]     (23,32.5]  (32.5,41.99] (41.99,51.49] 
##         15821         35109         24764         14175         11411 
## (51.49,60.99] (60.99,70.49] (70.49,79.99] (79.99,89.49] (89.49,98.99] 
##          6457          3934          2063          1898          1308 
## (98.99,108.5]   (108.5,118]   (118,127.5]   (127.5,137]   (137,146.5] 
##           941           418           647           304           229 
##   (146.5,156]   (156,165.5]   (165.5,175]   (175,184.5]   (184.5,194] 
##           313           121            63           129            53 
##   (194,203.5]   (203.5,213]   (213,222.5]   (222.5,232]   (232,241.5] 
##           137            30            27            64            39 
##   (241.5,251]   (251,260.5]   (260.5,270]   (270,279.5]   (279.5,289] 
##            66            30             7            28            13
y2=cut(wines2$price,breaks=c(1,20,100,300,500))
head(y2, 10)
##  [1] (1,20]   (1,20]   (1,20]   (20,100] (1,20]   (1,20]   (20,100]
##  [8] (1,20]   (20,100] (1,20]  
## Levels: (1,20] (20,100] (100,300] (300,500]
levels(y2)=c("bardzo tanie", "tanie", "drogie", "bardzo drogie")
table(y2)
## y2
##  bardzo tanie         tanie        drogie bardzo drogie 
##         46341         71268          3050           225

TABELA PRZESTAWNA

rpivotTable(diamonds, subtotals=TRUE)
                                                                 Made by: 
                                                                  Majkowska Agata
                                                                  agata.majkowska@ug.edu.pl