Dr. Kubra Atalay Kabasakal
Kasim 2021
Liste cok esnek ve karmasik bir veri yapisidir. list() fonksiyonu ile olusturulur. Listelerde farkli turden yeri yapilari, farkli uzunlukta yer alabilir.
ad <- c("Ali","Elif","Su","Deniz","Aras","Berk","Can","Ece","Efe","Arda")
boy <- c(160,165,170,155,167,162,169,158,160,164)
kilo <- c(55,55,57,50,48,65,58,62,45,47)
# ad, boy ve kilo vektorleri ile liste olusturulmasi
liste <- list(ad,boy,kilo)
liste## [[1]]
## [1] "Ali" "Elif" "Su" "Deniz" "Aras" "Berk" "Can" "Ece" "Efe"
## [10] "Arda"
##
## [[2]]
## [1] 160 165 170 155 167 162 169 158 160 164
##
## [[3]]
## [1] 55 55 57 50 48 65 58 62 45 47
Bir listedeki tum bilesenleri ve turleri gormek icin str() fonksiyonu kullanilabilir.
## List of 3
## $ : chr [1:10] "Ali" "Elif" "Su" "Deniz" ...
## $ : num [1:10] 160 165 170 155 167 162 169 158 160 164
## $ : num [1:10] 55 55 57 50 48 65 58 62 45 47
Listeler kendi icinde de farklı listeler barindirabilir. 4 bilesenli liste
## List of 4
## $ :List of 3
## ..$ : chr [1:10] "Ali" "Elif" "Su" "Deniz" ...
## ..$ : num [1:10] 160 165 170 155 167 162 169 158 160 164
## ..$ : num [1:10] 55 55 57 50 48 65 58 62 45 47
## $ : num 1
## $ : num 2
## $ : num 3
Listeler kendi icinde de farklı listeler barindirabilir. 3 bilesenli liste
## List of 3
## $ :List of 3
## ..$ : chr [1:10] "Ali" "Elif" "Su" "Deniz" ...
## ..$ : num [1:10] 160 165 170 155 167 162 169 158 160 164
## ..$ : num [1:10] 55 55 57 50 48 65 58 62 45 47
## $ : num [1:3] 1 2 3
## $ : logi [1:2] TRUE FALSE
Liste bilesenleri isimlendirilebilir. Listelerde bilesenler numara [[1]] ya da $ ile eleman secilir.
## [[1]]
## [1] "Ali" "Elif" "Su" "Deniz" "Aras" "Berk" "Can" "Ece" "Efe"
## [10] "Arda"
##
## [[2]]
## [1] 160 165 170 155 167 162 169 158 160 164
##
## [[3]]
## [1] 55 55 57 50 48 65 58 62 45 47
## [1] 55 55 57 50 48 65 58 62 45 47
Isımlendirilmis listelerde ise bu islem $ operatoru ile yapilabilir.
## $isim
## [1] "Ali" "Elif" "Su" "Deniz" "Aras" "Berk" "Can" "Ece" "Efe"
## [10] "Arda"
##
## $boyolcum
## [1] 160 165 170 155 167 162 169 158 160 164
##
## $kiloolcum
## [1] 55 55 57 50 48 65 58 62 45 47
## [1] 55 55 57 50 48 65 58 62 45 47
Liste bilesenlerin icinden eleman secimi ise bilesenin turune gore yapilabilir. Ornegin bilesen vektor ise icinden eleman secmek "[]" operatoru ya da c() fonksiyonu ile yapilir.
liste isimli listeye, cinsiyet adi ile yeni bir bilesen eklenmesi $ operatoru ile
cinsiyet <- c("erkek","kadin","kadin","kadin","erkek","erkek","erkek","kadin","erkek","erkek")
liste_isim$cinsiyet <- c("erkek","kadin","kadin","kadin","erkek","erkek","erkek","kadin","erkek","erkek")liste isimli listeye, cinsiyet2 adi ile yeni bir bilesen eklenmesi [[]] operatoru ile
Listeler, verileri organize etmenin ve mumkun oldugunca az sayida degisken adina sahip olmanin kullanisli bir yoludur. Listeler genellikle R’da istatistiksel analizlerin ciktisinda kullanilmaktadir. Ornegin regresyon analizinin ciktisinda yer alan nesne parametre kestirimlerini, artiklari, yordanan degerleri liste seklinde tutmaktadir.
~ isareti oncesine bagimli degiskenler, sonrasina ise bagimsiz degiskenler eklenerek model kurulur.
require(stats); require(graphics)
fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
summary(fm1)##
## Call:
## lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.2422 -2.6857 -0.2488 2.4280 9.7509
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
## pop15 -0.4611931 0.1446422 -3.189 0.002603 **
## pop75 -1.6914977 1.0835989 -1.561 0.125530
## dpi -0.0003369 0.0009311 -0.362 0.719173
## ddpi 0.4096949 0.1961971 2.088 0.042471 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.803 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
Regresyon sonuclain yer aldigi fm nesnesi bilesenleri
## List of 12
## $ coefficients : Named num [1:5] 28.566087 -0.461193 -1.691498 -0.000337 0.409695
## ..- attr(*, "names")= chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## $ residuals : Named num [1:50] 0.864 0.616 2.219 -0.698 3.553 ...
## ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## $ effects : Named num [1:50] -68.38 -14.29 7.3 -3.52 -7.94 ...
## ..- attr(*, "names")= chr [1:50] "(Intercept)" "pop15" "pop75" "dpi" ...
## $ rank : int 5
## $ fitted.values: Named num [1:50] 10.57 11.45 10.95 6.45 9.33 ...
## ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## $ assign : int [1:5] 0 1 2 3 4
## $ qr :List of 5
## ..$ qr : num [1:50, 1:5] -7.071 0.141 0.141 0.141 0.141 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## .. .. ..$ : chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## .. ..- attr(*, "assign")= int [1:5] 0 1 2 3 4
## ..$ qraux: num [1:5] 1.14 1.17 1.16 1.15 1.05
## ..$ pivot: int [1:5] 1 2 3 4 5
## ..$ tol : num 1e-07
## ..$ rank : int 5
## ..- attr(*, "class")= chr "qr"
## $ df.residual : int 45
## $ xlevels : Named list()
## $ call : language lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
## $ terms :Classes 'terms', 'formula' language sr ~ pop15 + pop75 + dpi + ddpi
## .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
## .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. ..- attr(*, "order")= int [1:4] 1 1 1 1
## .. ..- attr(*, "intercept")= int 1
## .. ..- attr(*, "response")= int 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
## .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
## .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## $ model :'data.frame': 50 obs. of 5 variables:
## ..$ sr : num [1:50] 11.43 12.07 13.17 5.75 12.88 ...
## ..$ pop15: num [1:50] 29.4 23.3 23.8 41.9 42.2 ...
## ..$ pop75: num [1:50] 2.87 4.41 4.43 1.67 0.83 2.85 1.34 0.67 1.06 1.14 ...
## ..$ dpi : num [1:50] 2330 1508 2108 189 728 ...
## ..$ ddpi : num [1:50] 2.87 3.93 3.82 0.22 4.56 2.43 2.67 6.51 3.08 2.8 ...
## ..- attr(*, "terms")=Classes 'terms', 'formula' language sr ~ pop15 + pop75 + dpi + ddpi
## .. .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
## .. .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
## .. .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## .. .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. .. ..- attr(*, "order")= int [1:4] 1 1 1 1
## .. .. ..- attr(*, "intercept")= int 1
## .. .. ..- attr(*, "response")= int 1
## .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
## .. .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
## .. .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## - attr(*, "class")= chr "lm"
psych paketinde fa() fonksiyonu ile gerceklestirilen analiz sonuclari
## Loading required namespace: GPArotation
## List of 44
## $ residual : num [1:24, 1:24] 0.4452 -0.0348 -0.0152 0.0401 0.0145 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ dof : num 186
## $ ENull : num NA
## $ chi : num NA
## $ rms : num 0.0408
## $ nh : logi NA
## $ EPVAL : num NA
## $ crms : num 0.0497
## $ EBIC : num NA
## $ ESABIC : num NA
## $ fit : num 0.903
## $ fit.off : num 0.984
## $ sd : num 0.04
## $ factors : num 4
## $ complexity : Named num [1:24] 1.03 1.04 1.23 1.25 1.05 ...
## ..- attr(*, "names")= chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ n.obs : logi NA
## $ PVAL : logi NA
## $ objective : num 1.72
## $ criteria : Named num [1:3] 1.72 NA NA
## ..- attr(*, "names")= chr [1:3] "objective" "" ""
## $ Call : language fa(r = Harman74.cor$cov, nfactors = 4, fm = "wls")
## $ null.model : num 11.4
## $ null.dof : num 276
## $ r.scores : num [1:4, 1:4] 1 0.484 0.339 0.491 0.484 ...
## $ R2 : num [1:4] 0.918 0.815 0.859 0.766
## $ valid : num [1:4] 0.933 0.862 0.879 0.851
## $ score.cor : num [1:4, 1:4] 1 0.627 0.485 0.493 0.627 ...
## $ weights : num [1:24, 1:4] -0.02148 -0.00436 0.02699 0.00951 0.16055 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ rotation : chr "oblimin"
## $ communality : Named num [1:24] 0.555 0.227 0.344 0.349 0.642 ...
## ..- attr(*, "names")= chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ communalities: Named num [1:24] 0.561 0.22 0.356 0.349 0.648 ...
## ..- attr(*, "names")= chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ uniquenesses : Named num [1:24] 0.445 0.773 0.656 0.651 0.358 ...
## ..- attr(*, "names")= chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ values : num [1:24] 7.646 1.692 1.221 0.915 0.403 ...
## $ e.values : num [1:24] 8.14 2.1 1.69 1.5 1.03 ...
## $ loadings : 'loadings' num [1:24, 1:4] 0.0427 0.056 0.0874 0.1782 0.7639 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ model : num [1:24, 1:24] 0.555 0.353 0.418 0.428 0.306 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ fm : chr "wls"
## $ rot.mat : num [1:4, 1:4] 0.4887 -0.8531 -0.6178 -0.0472 0.2601 ...
## $ Phi : num [1:4, 1:4] 1 0.41 0.295 0.408 0.41 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ Structure : 'loadings' num [1:24, 1:4] 0.361 0.241 0.29 0.369 0.794 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ method : chr "regression"
## $ R2.scores : Named num [1:4] 0.918 0.815 0.859 0.766
## ..- attr(*, "names")= chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ r : num [1:24, 1:24] 1 0.318 0.403 0.468 0.321 0.335 0.304 0.332 0.326 0.116 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ fn : chr "fa"
## $ Vaccounted : num [1:5, 1:4] 3.996 0.166 0.166 0.348 0.348 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:5] "SS loadings" "Proportion Var" "Cumulative Var" "Proportion Explained" ...
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## - attr(*, "class")= chr [1:2] "psych" "fa"
Asagidaki bilesenlere sahip listeyi olusturunuz.
## $a
## [1] x x y y
## Levels: x y
##
## $b
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
##
## $c
## $c[[1]]
## [1] 1
##
## $c[[2]]
## [1] 2
##
## $c[[3]]
## [1] 3
Atar, B., Atalay Kabasakal, K, Ünsal Özberk, E. B., Özberk, E. H. Ve Kıbrıslıoğlu Uysal, N. (2020). R ile Veri Analizi ve Psikometri Uygulamaları, Editör, Pegem Akademi, Ankara.
Odev
Eklenecektir.