Algoritma & Struktur Data
~ Ujian Tengah Semester ~
| Kontak | : \(\downarrow\) |
| e7ilausdi@gmail.com | |
| https://www.instagram.com/jeremyheriyand/ | |
| RPubs | https://rpubs.com/jeremyheriyandi23/ |
Kasus 1
Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property seperti yang dapat kita lihat pada tabel berikut:
Id <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
"Peronia","Lavesh","Alindra","Sweethome", "Asera",
"Teradamai","Albasia", "Adara","Neon","Arana",
"Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price <- sample(c(7000:15000),10000, replace = T)
Date_Sales <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement <- sample(c(1:20), 10000, replace = T)
Data <- data.frame(Id,
Marketing_Name,
Work_Exp,
City,
Cluster,
Price,
Date_Sales,
Advertisement)
library(DT)
datatable(Data)write.csv(Data,"C:\\Users\\Public\\Data.csv", row.names = FALSE)Soal 1
Kategorikan variabel Harga pada dataset di atas menjadi tiga kelompok sebagai berikut:
- \(\text{High} > 12000\)
- \(10000 \le \text{Medium} \le 12000\)
- \(\text{Low} < 10000\)
Tetapkan ke dalam variabel baru yang disebut Kelas dengan menggunakan fungsi kontrol If, else if, dan else.
R
Data$Kelas<-ifelse(Data$Price >12000,
"high",
ifelse(Data$Price >=10000 & Data$ Price <=12000,
"medium",
ifelse(Data$Price < 10000,
"low",0)))
DataSoal 2
Kategorikan variabel Harga pada dataset di atas menjadi enam kelompok sebagai berikut:
- Booking_fee nya 5 % jika \(\text{Price} < 8000\)
- Booking_fee nya 6 % jika \(8000 \le \text{Price} < 9000\)
- Booking_fee nya 7 % jika \(9000 \le \text{Price} < 10000\)
- Booking_fee nya 8 % jika \(10000 \le \text{Price} < 11000\)
- Booking_fee nya 9 % jika \(11000 \le \text{Price} < 13000\)
- Booking_fee nya 10 % jika \(13000 \le \text{Price} \le 15000\)
Tetapkan ke dalam variabel baru yang disebut Booking_fee dengan menggunakan fungsi kontrol If, else if, dan else.
R
x <- Data$Price
Data$Booking_fee<-ifelse(x < 8000,
x * 5/100,
ifelse(x >= 8000 & x < 9000,
x * 6/100,
ifelse(x >= 9000 & x < 10000,
x*7/10000,
ifelse(x >= 10000 & x < 11000,
x* 8/100,
ifelse(x >= 11000 & x < 13000,
x*9/100,
ifelse(x >= 13000 & x <= 15000,
x*10/100,0))))))
DataSoal 3
Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for.
R
sales ="Nikita"
z=for(i in sales){
print(subset(Data,
subset =(Marketing_Name==i)))
}## Id Marketing_Name Work_Exp City Cluster Price Date_Sales
## 7 7 Nikita 5.7 Jakarta Alamanda 7861 2019-04-26
## 57 57 Nikita 5.7 Depok Asera 11077 2018-10-04
## 107 107 Nikita 5.7 Bekasi Teradamai 10801 2019-05-18
## 157 157 Nikita 5.7 Bogor Victoria 14467 2019-06-06
## 207 207 Nikita 5.7 Jakarta Asoka 13558 2018-08-13
## 257 257 Nikita 5.7 Bekasi Narada 11298 2020-09-15
## 307 307 Nikita 5.7 Tengerang Adara 10837 2019-05-18
## 357 357 Nikita 5.7 Bekasi Palmyra 8305 2020-01-25
## 407 407 Nikita 5.7 Tengerang Tiara 12814 2020-09-14
## 457 457 Nikita 5.7 Bogor Albasia 10397 2020-02-05
## 507 507 Nikita 5.7 Bekasi Tiara 12068 2018-10-21
## 557 557 Nikita 5.7 Bogor Albasia 7118 2018-11-21
## 607 607 Nikita 5.7 Depok Winona 12002 2018-05-24
## 657 657 Nikita 5.7 Bekasi Lavesh 14332 2018-11-01
## 707 707 Nikita 5.7 Jakarta Winona 9387 2018-01-21
## 757 757 Nikita 5.7 Bekasi Alamanda 12913 2018-12-26
## 807 807 Nikita 5.7 Depok Alamanda 12041 2018-09-06
## 857 857 Nikita 5.7 Jakarta Alamanda 14371 2019-04-20
## 907 907 Nikita 5.7 Tengerang Sweethome 12823 2019-05-27
## 957 957 Nikita 5.7 Jakarta Arana 14117 2020-04-11
## 1007 1007 Nikita 5.7 Depok Asoka 9819 2019-06-01
## 1057 1057 Nikita 5.7 Depok Asoka 12532 2019-04-06
## 1107 1107 Nikita 5.7 Jakarta Palmyra 8488 2020-06-10
## 1157 1157 Nikita 5.7 Bekasi Victoria 8778 2019-01-28
## 1207 1207 Nikita 5.7 Jakarta Permata 7546 2020-07-20
## 1257 1257 Nikita 5.7 Bekasi Narada 9036 2019-06-11
## 1307 1307 Nikita 5.7 Jakarta Lavesh 11117 2018-11-01
## 1357 1357 Nikita 5.7 Tengerang Victoria 14562 2019-02-03
## 1407 1407 Nikita 5.7 Jakarta Alindra 12980 2018-06-20
## 1457 1457 Nikita 5.7 Tengerang Narada 10411 2019-07-27
## 1507 1507 Nikita 5.7 Tengerang Mutiara 13744 2020-01-04
## 1557 1557 Nikita 5.7 Jakarta Lavesh 9446 2018-04-24
## 1607 1607 Nikita 5.7 Tengerang Tiara 14133 2019-05-29
## 1657 1657 Nikita 5.7 Depok Winona 9259 2020-07-08
## 1707 1707 Nikita 5.7 Jakarta Peronia 9409 2018-08-01
## 1757 1757 Nikita 5.7 Bogor Tiara 7548 2020-04-03
## 1807 1807 Nikita 5.7 Depok Peronia 14649 2020-06-26
## 1857 1857 Nikita 5.7 Depok Permata 10444 2020-09-03
## 1907 1907 Nikita 5.7 Depok Alindra 9897 2018-10-27
## 1957 1957 Nikita 5.7 Jakarta Permata 7357 2018-06-18
## 2007 2007 Nikita 5.7 Bekasi Arana 8666 2018-12-27
## 2057 2057 Nikita 5.7 Bekasi Sweethome 8652 2019-02-19
## 2107 2107 Nikita 5.7 Depok Winona 14378 2018-06-21
## 2157 2157 Nikita 5.7 Bekasi Asoka 14968 2018-10-14
## 2207 2207 Nikita 5.7 Tengerang Permata 8582 2018-05-15
## 2257 2257 Nikita 5.7 Tengerang Permata 11481 2019-06-17
## 2307 2307 Nikita 5.7 Bogor Tiara 8718 2018-12-27
## 2357 2357 Nikita 5.7 Depok Teradamai 9640 2018-04-03
## 2407 2407 Nikita 5.7 Bogor Adara 7360 2019-11-23
## 2457 2457 Nikita 5.7 Depok Neon 13929 2018-05-06
## 2507 2507 Nikita 5.7 Tengerang Permata 9205 2019-10-21
## 2557 2557 Nikita 5.7 Jakarta Albasia 9874 2019-09-23
## 2607 2607 Nikita 5.7 Tengerang Arana 8937 2018-04-02
## 2657 2657 Nikita 5.7 Bekasi Alamanda 10122 2020-07-31
## 2707 2707 Nikita 5.7 Bekasi Permata 8990 2020-04-27
## 2757 2757 Nikita 5.7 Bogor Victoria 12226 2018-12-27
## 2807 2807 Nikita 5.7 Jakarta Teradamai 8525 2018-11-12
## 2857 2857 Nikita 5.7 Depok Peronia 10553 2020-07-11
## 2907 2907 Nikita 5.7 Jakarta Lavesh 7962 2019-12-02
## 2957 2957 Nikita 5.7 Bekasi Peronia 7921 2020-06-30
## 3007 3007 Nikita 5.7 Tengerang Alindra 7954 2020-06-12
## 3057 3057 Nikita 5.7 Depok Palmyra 7570 2018-07-02
## 3107 3107 Nikita 5.7 Bekasi Adara 8188 2019-02-27
## 3157 3157 Nikita 5.7 Tengerang Neon 10214 2020-05-01
## 3207 3207 Nikita 5.7 Tengerang Alindra 10225 2020-09-23
## 3257 3257 Nikita 5.7 Depok Permata 9278 2019-06-10
## 3307 3307 Nikita 5.7 Bogor Narada 14653 2018-05-04
## 3357 3357 Nikita 5.7 Depok Arana 11202 2020-01-31
## 3407 3407 Nikita 5.7 Depok Lavesh 11610 2018-10-27
## 3457 3457 Nikita 5.7 Bekasi Winona 12516 2018-10-22
## 3507 3507 Nikita 5.7 Depok Mutiara 13485 2019-04-19
## 3557 3557 Nikita 5.7 Tengerang Victoria 10152 2019-09-24
## 3607 3607 Nikita 5.7 Depok Arana 11624 2018-04-27
## 3657 3657 Nikita 5.7 Bekasi Asera 10682 2019-10-20
## 3707 3707 Nikita 5.7 Depok Peronia 10437 2020-05-22
## 3757 3757 Nikita 5.7 Bekasi Narada 7143 2020-04-20
## 3807 3807 Nikita 5.7 Bekasi Sweethome 8598 2020-03-19
## 3857 3857 Nikita 5.7 Bogor Alindra 10430 2018-07-04
## 3907 3907 Nikita 5.7 Jakarta Neon 13936 2019-06-18
## 3957 3957 Nikita 5.7 Bogor Neon 14935 2018-11-12
## 4007 4007 Nikita 5.7 Bogor Tiara 7303 2018-03-04
## 4057 4057 Nikita 5.7 Tengerang Adara 13268 2018-09-18
## 4107 4107 Nikita 5.7 Jakarta Narada 11010 2018-04-04
## 4157 4157 Nikita 5.7 Tengerang Tiara 12879 2019-02-27
## 4207 4207 Nikita 5.7 Depok Sweethome 9589 2018-07-12
## 4257 4257 Nikita 5.7 Bekasi Winona 8861 2018-02-07
## 4307 4307 Nikita 5.7 Bekasi Winona 13079 2018-02-25
## 4357 4357 Nikita 5.7 Depok Palmyra 12549 2018-01-04
## 4407 4407 Nikita 5.7 Bogor Teradamai 14866 2020-01-17
## 4457 4457 Nikita 5.7 Depok Alindra 12783 2020-02-19
## 4507 4507 Nikita 5.7 Bekasi Peronia 10115 2019-04-26
## 4557 4557 Nikita 5.7 Bogor Arana 7806 2019-08-15
## 4607 4607 Nikita 5.7 Depok Alamanda 10091 2018-08-05
## 4657 4657 Nikita 5.7 Depok Asoka 7069 2019-11-26
## 4707 4707 Nikita 5.7 Bekasi Arana 12012 2018-10-19
## 4757 4757 Nikita 5.7 Jakarta Lavesh 8003 2018-03-13
## 4807 4807 Nikita 5.7 Depok Primadona 14508 2020-07-15
## 4857 4857 Nikita 5.7 Bogor Alamanda 10533 2020-04-09
## 4907 4907 Nikita 5.7 Depok Alindra 11394 2018-03-17
## 4957 4957 Nikita 5.7 Bogor Peronia 7454 2018-12-31
## 5007 5007 Nikita 5.7 Depok Alamanda 7076 2019-10-19
## 5057 5057 Nikita 5.7 Depok Primadona 14925 2018-09-15
## 5107 5107 Nikita 5.7 Depok Alindra 11682 2018-11-02
## 5157 5157 Nikita 5.7 Bekasi Adara 7848 2020-02-28
## 5207 5207 Nikita 5.7 Jakarta Arana 13028 2018-02-13
## 5257 5257 Nikita 5.7 Jakarta Teradamai 8288 2018-03-21
## 5307 5307 Nikita 5.7 Jakarta Alindra 10962 2019-05-05
## 5357 5357 Nikita 5.7 Tengerang Primadona 11098 2018-02-27
## 5407 5407 Nikita 5.7 Bogor Arana 10144 2018-04-12
## 5457 5457 Nikita 5.7 Bekasi Sweethome 14817 2018-06-01
## 5507 5507 Nikita 5.7 Bekasi Adara 12860 2018-03-21
## 5557 5557 Nikita 5.7 Bogor Alamanda 10092 2020-06-15
## 5607 5607 Nikita 5.7 Tengerang Lavesh 10340 2020-01-25
## 5657 5657 Nikita 5.7 Tengerang Lavesh 13191 2018-05-10
## 5707 5707 Nikita 5.7 Tengerang Teradamai 7511 2020-06-17
## 5757 5757 Nikita 5.7 Bogor Narada 12274 2018-10-13
## 5807 5807 Nikita 5.7 Tengerang Victoria 11280 2019-08-25
## 5857 5857 Nikita 5.7 Tengerang Alindra 8384 2018-09-19
## 5907 5907 Nikita 5.7 Bekasi Peronia 12714 2019-12-06
## 5957 5957 Nikita 5.7 Jakarta Lavesh 9948 2018-11-25
## 6007 6007 Nikita 5.7 Depok Arana 11956 2020-09-12
## 6057 6057 Nikita 5.7 Bekasi Arana 8974 2020-09-04
## 6107 6107 Nikita 5.7 Tengerang Alamanda 10905 2018-06-12
## 6157 6157 Nikita 5.7 Bogor Alindra 9730 2019-01-25
## 6207 6207 Nikita 5.7 Depok Asoka 14671 2018-08-25
## 6257 6257 Nikita 5.7 Bogor Palmyra 11207 2019-10-11
## 6307 6307 Nikita 5.7 Bogor Mutiara 10397 2020-06-12
## 6357 6357 Nikita 5.7 Jakarta Alindra 12521 2019-06-10
## 6407 6407 Nikita 5.7 Bekasi Adara 12262 2020-04-04
## 6457 6457 Nikita 5.7 Tengerang Alindra 14535 2020-03-19
## 6507 6507 Nikita 5.7 Bekasi Lavesh 14553 2019-04-25
## 6557 6557 Nikita 5.7 Depok Peronia 12337 2018-07-07
## 6607 6607 Nikita 5.7 Jakarta Sweethome 14069 2020-01-16
## 6657 6657 Nikita 5.7 Tengerang Sweethome 9222 2018-12-09
## 6707 6707 Nikita 5.7 Jakarta Lavesh 13809 2018-01-28
## 6757 6757 Nikita 5.7 Bekasi Winona 9685 2020-02-26
## 6807 6807 Nikita 5.7 Jakarta Asera 11234 2018-08-16
## 6857 6857 Nikita 5.7 Tengerang Winona 14743 2018-03-29
## 6907 6907 Nikita 5.7 Bogor Tiara 9409 2018-10-15
## 6957 6957 Nikita 5.7 Bogor Tiara 14532 2020-04-09
## 7007 7007 Nikita 5.7 Jakarta Teradamai 10837 2020-09-08
## 7057 7057 Nikita 5.7 Bogor Alindra 13961 2019-11-21
## 7107 7107 Nikita 5.7 Bogor Adara 13972 2019-08-07
## 7157 7157 Nikita 5.7 Jakarta Permata 7026 2020-02-19
## 7207 7207 Nikita 5.7 Depok Adara 12358 2018-04-10
## 7257 7257 Nikita 5.7 Bekasi Narada 13665 2020-02-23
## 7307 7307 Nikita 5.7 Bogor Narada 9004 2019-10-11
## 7357 7357 Nikita 5.7 Jakarta Sweethome 7754 2020-08-20
## 7407 7407 Nikita 5.7 Tengerang Mutiara 11815 2019-03-25
## 7457 7457 Nikita 5.7 Depok Albasia 7536 2018-06-24
## 7507 7507 Nikita 5.7 Jakarta Narada 11699 2018-09-15
## 7557 7557 Nikita 5.7 Bogor Lavesh 11070 2019-04-07
## 7607 7607 Nikita 5.7 Bekasi Narada 9813 2018-05-23
## 7657 7657 Nikita 5.7 Bekasi Permata 12252 2020-02-22
## 7707 7707 Nikita 5.7 Tengerang Victoria 11832 2019-03-13
## 7757 7757 Nikita 5.7 Tengerang Tiara 10318 2019-09-16
## 7807 7807 Nikita 5.7 Depok Asoka 11271 2019-10-18
## 7857 7857 Nikita 5.7 Jakarta Peronia 13740 2020-07-19
## 7907 7907 Nikita 5.7 Tengerang Adara 14536 2020-06-24
## 7957 7957 Nikita 5.7 Depok Adara 12367 2020-04-08
## 8007 8007 Nikita 5.7 Bogor Lavesh 7775 2020-01-30
## 8057 8057 Nikita 5.7 Depok Palmyra 8144 2019-05-08
## 8107 8107 Nikita 5.7 Depok Asoka 8973 2020-06-04
## 8157 8157 Nikita 5.7 Jakarta Mutiara 10306 2020-02-04
## 8207 8207 Nikita 5.7 Jakarta Victoria 9557 2018-06-23
## 8257 8257 Nikita 5.7 Bekasi Alindra 9193 2020-01-17
## 8307 8307 Nikita 5.7 Jakarta Mutiara 10684 2020-05-30
## 8357 8357 Nikita 5.7 Depok Narada 14913 2018-05-31
## 8407 8407 Nikita 5.7 Depok Mutiara 12582 2018-03-19
## 8457 8457 Nikita 5.7 Tengerang Asoka 13463 2018-03-22
## 8507 8507 Nikita 5.7 Depok Arana 7236 2018-04-06
## 8557 8557 Nikita 5.7 Tengerang Sweethome 11614 2018-09-04
## 8607 8607 Nikita 5.7 Depok Asera 9550 2019-04-05
## 8657 8657 Nikita 5.7 Tengerang Narada 9204 2018-01-22
## 8707 8707 Nikita 5.7 Bogor Arana 8692 2019-01-01
## 8757 8757 Nikita 5.7 Jakarta Asoka 7221 2020-01-16
## 8807 8807 Nikita 5.7 Jakarta Victoria 9221 2019-11-11
## 8857 8857 Nikita 5.7 Depok Primadona 11374 2020-01-04
## 8907 8907 Nikita 5.7 Depok Victoria 8527 2018-12-09
## 8957 8957 Nikita 5.7 Jakarta Asoka 14459 2019-10-02
## 9007 9007 Nikita 5.7 Bekasi Alindra 9474 2020-01-09
## 9057 9057 Nikita 5.7 Tengerang Sweethome 14755 2019-09-06
## 9107 9107 Nikita 5.7 Bekasi Albasia 8737 2020-02-01
## 9157 9157 Nikita 5.7 Tengerang Palmyra 14382 2019-05-28
## 9207 9207 Nikita 5.7 Jakarta Narada 9591 2019-06-12
## 9257 9257 Nikita 5.7 Jakarta Alindra 13015 2019-12-11
## 9307 9307 Nikita 5.7 Tengerang Permata 11894 2020-02-20
## 9357 9357 Nikita 5.7 Depok Neon 7797 2018-02-23
## 9407 9407 Nikita 5.7 Depok Lavesh 10182 2018-02-20
## 9457 9457 Nikita 5.7 Jakarta Neon 13934 2020-09-03
## 9507 9507 Nikita 5.7 Jakarta Asera 11863 2020-09-03
## 9557 9557 Nikita 5.7 Bekasi Narada 13818 2020-09-07
## 9607 9607 Nikita 5.7 Bekasi Adara 14818 2018-02-07
## 9657 9657 Nikita 5.7 Depok Albasia 10302 2019-10-04
## 9707 9707 Nikita 5.7 Tengerang Asoka 8604 2019-03-29
## 9757 9757 Nikita 5.7 Bogor Sweethome 14355 2018-10-18
## 9807 9807 Nikita 5.7 Tengerang Victoria 13277 2019-07-27
## 9857 9857 Nikita 5.7 Jakarta Sweethome 12424 2018-04-01
## 9907 9907 Nikita 5.7 Depok Permata 7007 2020-03-18
## 9957 9957 Nikita 5.7 Bogor Victoria 13953 2020-04-06
## Advertisement Kelas Booking_fee
## 7 18 low 393.0500
## 57 3 medium 996.9300
## 107 11 medium 864.0800
## 157 20 high 1446.7000
## 207 7 high 1355.8000
## 257 2 medium 1016.8200
## 307 6 medium 866.9600
## 357 2 low 498.3000
## 407 13 high 1153.2600
## 457 5 medium 831.7600
## 507 8 high 1086.1200
## 557 17 low 355.9000
## 607 10 high 1080.1800
## 657 6 high 1433.2000
## 707 14 low 6.5709
## 757 6 high 1162.1700
## 807 10 high 1083.6900
## 857 15 high 1437.1000
## 907 10 high 1154.0700
## 957 7 high 1411.7000
## 1007 15 low 6.8733
## 1057 14 high 1127.8800
## 1107 19 low 509.2800
## 1157 16 low 526.6800
## 1207 18 low 377.3000
## 1257 3 low 6.3252
## 1307 2 medium 1000.5300
## 1357 15 high 1456.2000
## 1407 15 high 1168.2000
## 1457 16 medium 832.8800
## 1507 14 high 1374.4000
## 1557 17 low 6.6122
## 1607 1 high 1413.3000
## 1657 7 low 6.4813
## 1707 3 low 6.5863
## 1757 20 low 377.4000
## 1807 10 high 1464.9000
## 1857 9 medium 835.5200
## 1907 8 low 6.9279
## 1957 4 low 367.8500
## 2007 2 low 519.9600
## 2057 16 low 519.1200
## 2107 6 high 1437.8000
## 2157 3 high 1496.8000
## 2207 2 low 514.9200
## 2257 17 medium 1033.2900
## 2307 7 low 523.0800
## 2357 16 low 6.7480
## 2407 10 low 368.0000
## 2457 16 high 1392.9000
## 2507 8 low 6.4435
## 2557 12 low 6.9118
## 2607 8 low 536.2200
## 2657 10 medium 809.7600
## 2707 15 low 539.4000
## 2757 6 high 1100.3400
## 2807 9 low 511.5000
## 2857 4 medium 844.2400
## 2907 20 low 398.1000
## 2957 6 low 396.0500
## 3007 6 low 397.7000
## 3057 14 low 378.5000
## 3107 6 low 491.2800
## 3157 3 medium 817.1200
## 3207 17 medium 818.0000
## 3257 9 low 6.4946
## 3307 5 high 1465.3000
## 3357 3 medium 1008.1800
## 3407 15 medium 1044.9000
## 3457 15 high 1126.4400
## 3507 4 high 1348.5000
## 3557 13 medium 812.1600
## 3607 10 medium 1046.1600
## 3657 17 medium 854.5600
## 3707 8 medium 834.9600
## 3757 13 low 357.1500
## 3807 10 low 515.8800
## 3857 17 medium 834.4000
## 3907 1 high 1393.6000
## 3957 6 high 1493.5000
## 4007 20 low 365.1500
## 4057 18 high 1326.8000
## 4107 8 medium 990.9000
## 4157 16 high 1159.1100
## 4207 11 low 6.7123
## 4257 4 low 531.6600
## 4307 10 high 1307.9000
## 4357 8 high 1129.4100
## 4407 5 high 1486.6000
## 4457 19 high 1150.4700
## 4507 15 medium 809.2000
## 4557 9 low 390.3000
## 4607 12 medium 807.2800
## 4657 1 low 353.4500
## 4707 3 high 1081.0800
## 4757 17 low 480.1800
## 4807 20 high 1450.8000
## 4857 17 medium 842.6400
## 4907 18 medium 1025.4600
## 4957 12 low 372.7000
## 5007 15 low 353.8000
## 5057 2 high 1492.5000
## 5107 2 medium 1051.3800
## 5157 4 low 392.4000
## 5207 7 high 1302.8000
## 5257 14 low 497.2800
## 5307 15 medium 876.9600
## 5357 20 medium 998.8200
## 5407 9 medium 811.5200
## 5457 11 high 1481.7000
## 5507 13 high 1157.4000
## 5557 12 medium 807.3600
## 5607 6 medium 827.2000
## 5657 19 high 1319.1000
## 5707 9 low 375.5500
## 5757 15 high 1104.6600
## 5807 11 medium 1015.2000
## 5857 4 low 503.0400
## 5907 14 high 1144.2600
## 5957 5 low 6.9636
## 6007 2 medium 1076.0400
## 6057 6 low 538.4400
## 6107 17 medium 872.4000
## 6157 9 low 6.8110
## 6207 16 high 1467.1000
## 6257 18 medium 1008.6300
## 6307 17 medium 831.7600
## 6357 7 high 1126.8900
## 6407 18 high 1103.5800
## 6457 16 high 1453.5000
## 6507 2 high 1455.3000
## 6557 9 high 1110.3300
## 6607 12 high 1406.9000
## 6657 11 low 6.4554
## 6707 6 high 1380.9000
## 6757 15 low 6.7795
## 6807 8 medium 1011.0600
## 6857 8 high 1474.3000
## 6907 15 low 6.5863
## 6957 7 high 1453.2000
## 7007 2 medium 866.9600
## 7057 12 high 1396.1000
## 7107 18 high 1397.2000
## 7157 2 low 351.3000
## 7207 20 high 1112.2200
## 7257 4 high 1366.5000
## 7307 12 low 6.3028
## 7357 18 low 387.7000
## 7407 1 medium 1063.3500
## 7457 2 low 376.8000
## 7507 12 medium 1052.9100
## 7557 17 medium 996.3000
## 7607 8 low 6.8691
## 7657 4 high 1102.6800
## 7707 7 medium 1064.8800
## 7757 15 medium 825.4400
## 7807 8 medium 1014.3900
## 7857 1 high 1374.0000
## 7907 12 high 1453.6000
## 7957 1 high 1113.0300
## 8007 20 low 388.7500
## 8057 14 low 488.6400
## 8107 18 low 538.3800
## 8157 2 medium 824.4800
## 8207 2 low 6.6899
## 8257 7 low 6.4351
## 8307 12 medium 854.7200
## 8357 2 high 1491.3000
## 8407 19 high 1132.3800
## 8457 5 high 1346.3000
## 8507 13 low 361.8000
## 8557 14 medium 1045.2600
## 8607 8 low 6.6850
## 8657 12 low 6.4428
## 8707 16 low 521.5200
## 8757 1 low 361.0500
## 8807 20 low 6.4547
## 8857 18 medium 1023.6600
## 8907 13 low 511.6200
## 8957 17 high 1445.9000
## 9007 3 low 6.6318
## 9057 20 high 1475.5000
## 9107 7 low 524.2200
## 9157 16 high 1438.2000
## 9207 19 low 6.7137
## 9257 2 high 1301.5000
## 9307 8 medium 1070.4600
## 9357 9 low 389.8500
## 9407 11 medium 814.5600
## 9457 14 high 1393.4000
## 9507 12 medium 1067.6700
## 9557 8 high 1381.8000
## 9607 12 high 1481.8000
## 9657 17 medium 824.1600
## 9707 1 low 516.2400
## 9757 17 high 1435.5000
## 9807 3 high 1327.7000
## 9857 6 high 1118.1600
## 9907 16 low 350.3500
## 9957 8 high 1395.3000
Soal 4
Jika Anda akan mendapatkan bonus 2% dari Booking fee per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break.
R
Total_Bonus=subset(Data,
subset= Marketing_Name == "Nikita")
Data$Total_Bonus<-ifelse(Total_Bonus$Work_Exp >3,
Total_Bonus$Booking_fee*2/100+1/100, Total_Bonus$Booking_fee*2/100)
DataSoal 5
Pada bagian ini, Anda diharapkan dapa membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.
- Siapa nama marketing pemasaran terbaik?
- Kota dan Cluster mana yang paling menguntungkan?
- Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
- Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
- Hitung Total Pendapatan (dalam Bulanan)
R
Angel = subset (Data, subset=(Marketing_Name == "Angel"))
Sherly=subset (Data, subset=(Marketing_Name == "Sherly"))
Vanessa=subset(Data, subset=(Marketing_Name == "Vanessa" ))
Irene=subset(Data, subset=(Marketing_Name == "Irene"))
Julian=subset (Data, subset=(Marketing_Name == "Julian"))
Jeffry =subset (Data, subset=(Marketing_Name == "Jeffry"))
Nikita =subset (Data, subset=(Marketing_Name =="Nikita"))
Kefas =subset(Data, subset=(Marketing_Name == "Kefas"))
Siana =subset (Data, subset=(Marketing_Name == "Siana"))
Lala=subset (Data, subset=(Marketing_Name == "Lala"))
Fallen =subset (Data, subset=(Marketing_Name == "Fallen"))
Ardifo =subset (Data, subset=(Marketing_Name == "Ardifo"))
Kevin =subset (Data, subset=(Marketing_Name == "Kevin"))
Juen =subset (Data, subset=(Marketing_Name == "Juen"))
Jerrel =subset (Data, subset=(Marketing_Name == "Jerrel"))
Imelda =subset (Data, subset=(Marketing_Name == "Imelda"))
Widi =subset(Data, subset=(Marketing_Name == "Widi"))
Theodor = subset (Data, subset=(Marketing_Name == "Theodor"))
Elvani =subset (Data, subset=(Marketing_Name == "Elvani"))
Jonathan = subset (Data, subset=(Marketing_Name == "Jonathan"))
Sofia =subset (Data, subset=(Marketing_Name == "Sofia"))
Abraham = subset (Data, subset=(Marketing_Name == "Abraham"))
Siti =subset (Data, subset=(Marketing_Name == "Siti"))
Niko =subset(Data, subset=(Marketing_Name == "Niko"))
Sefli =subset (Data, subset=(Marketing_Name == "Selfi"))
Bene =subset(Data, subset=(Marketing_Name == "Bene"))
Diana =subset (Data, subset=(Marketing_Name == "Diana"))
Pupe =subset(Data, subset=(Marketing_Name == "Pupe"))
Andi =subset (Data, subset=(Marketing_Name == "Andi"))
Tatha =subset (Data, subset=(Marketing_Name == "Tatha"))
Endri=subset (Data, subset=(Marketing_Name == "Endri"))
Monika= subset(Data, subset=(Marketing_Name == "Monika"))
Hans =subset(Data, subset=(Marketing_Name == "Hans"))
Debora= subset (Data, subset=(Marketing_Name == "Debora"))
Hanifa= subset (Data, subset=(Marketing_Name == "Hanifa"))
James =subset (Data, subset=(Marketing_Name == "James"))
Jihan =subset (Data, subset=(Marketing_Name == "Jihan"))
Friska =subset (Data, subset=(Marketing_Name == "Friska"))
Ardiwan = subset (Data, subset=(Marketing_Name == "Ardiwan"))
Bakti =subset (Data, subset=(Marketing_Name == "Bakti"))
Anthon =subset (Data, subset=(Marketing_Name == "Anthon"))
Amry =subset (Data, subset=(Marketing_Name == "Amry"))
Wiwik =subset (Data, subset=(Marketing_Name == "Wiwik"))
Bastian = subset (Data, subset=(Marketing_Name == "Bastian"))
Budi = subset (Data, subset=(Marketing_Name == "Budi"))
Leo = subset (Data, subset=(Marketing_Name == "Leo"))
Simon = subset (Data, subset=(Marketing_Name == "Simon"))
Matius = subset (Data, subset=(Marketing_Name == "Matius"))
Arry = subset (Data, subset=(Marketing_Name == "Arry"))
Eliando = subset (Data, subset=(Marketing_Name == "Eliando"))
Nama_Sales = c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando")
propertysold = c(sum(Angel$Price), sum(Sherly$Price), sum(Vanessa$Price), sum(Irene$Price),
sum(Julian$Price), sum (Jeffry$Price), sum(Nikita$Price), sum(Kefas$Price), sum(Siana$Price), sum(Lala$Price), sum(Fallen$Price), sum(Ardifo$Price), sum(Kevin$Price), sum (Juen$Price), sum(Jerrel$Price), sum(Imelda$Price), sum(Widi$Price), sum(Theodor$Price), sum(Elvani$Price), sum(Jonathan$Price), sum(Sofia$Price), sum(Abraham$Price), sum(Siti$Price), sum(Niko$Price), sum(Sefli$Price), sum(Bene$Price), sum( Diana$Price), sum (Pupe$Price), sum(Andi$Price), sum( Tatha$Price), sum(Endri$Price), sum( Monika$Price), sum( Hans$Price), sum( Debora$Price), sum(Hanifa$Price), sum (James$Price), sum( Jihan$Price), sum( Friska$Price), sum(Ardiwan$Price), sum(Bakti$Price), sum(Anthon$Price), sum(Amry$Price), sum( Wiwik$Price), sum( Bastian$Price), sum( Budi$Price), sum (Leo$Price), sum(Simon$Price), sum(Matius$Price), sum(Arry$Price), sum( Eliando$Price))
datamarketing= data.frame(Nama_Sales, propertysold)
datamarketingKasus 2
Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:
- Marital_Status : menetapkan status perkawinan acak (“Ya”, “Tidak”)
- Address : berikan alamat acak (JABODETABEK)
- Work_Location : menetapkan lokasi kerja secara acak (JABODETABEK)
- Age : menetapkan urutan angka acak (dari 19 hingga 60)
- Academic : menetapkan tingkat akademik acak (“J.School”, “H.School”, “Sarjana”, “Magister”, “Phd”)
- Job : 10 pekerjaan acak untuk setiap tingkat akademik
- Grade : 5 nilai acak untuk setiap Pekerjaan
- Income : tetapkan pendapatan yang mungkin untuk setiap Pekerjaan
- Spending : tetapkan kemungkinan pengeluaran untuk setiap Pekerjaan
- Number_of_children: menetapkan nomor acak di antara 0 dan 10 (sesuai dengan status perkawinan)
- Private_vehicle : menetapkan kemungkinan kendaraan pribadi untuk setiap orang (“Mobil”, “sepeda motor”, “Umum”)
- Home : “Sewa”, “Milik”, “Kredit”
Soal 1
Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!
R
# tuliskan koding R kalian disiniPython
Soal 2
Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?
R
# tuliskan koding R kalian disiniSoal 3
Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?
R
# tuliskan koding R kalian disiniReferensi
- ref 1
- ref 2
- ref 3