Algoritma & Struktur Data
~ Ujian Tengah Semester ~
| Kontak | : \(\downarrow\) |
| sharon.edward@student.matanauniversity.ac.id | |
| Jurusan | Fisika Medis |
| RPubs | https://rpubs.com/sharongracia/ |
Kasus 1
Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property seperti yang dapat kita lihat pada tabel berikut:
Id <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
"Peronia","Lavesh","Alindra","Sweethome", "Asera",
"Teradamai","Albasia", "Adara","Neon","Arana",
"Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price <- sample(c(7000:15000),10000, replace = T)
Date_Sales <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement <- sample(c(1:20), 10000, replace = T)
Data <- data.frame(Id,
Marketing_Name,
Work_Exp,
City,
Cluster,
Price,
Date_Sales,
Advertisement)
library(DT)
datatable(Data)write.csv(Data,"C:\\Users\\YEPRI\\Data.csv",row.names = FALSE)Soal 1
Kategorikan variabel Harga pada dataset di atas menjadi tiga kelompok sebagai berikut:
- \(\text{High} > 12000\)
- \(10000 \le \text{Medium} \le 12000\)
- \(\text{Low} < 10000\)
Tetapkan ke dalam variabel baru yang disebut Kelas dengan menggunakan fungsi kontrol If, else if, dan else.
R
harga<- function(Data){
if (Data$Price[i] > 12000){
Data$Kelas[i] <- "High"}
else if (Data$Price[i] >= 10000 & Data$Price[i] <= 12000){
Data$Kelas[i] <- "Medium" }
else{
Data$Kelas[i] <- "Low"}
}
library(DT)
datatable(Data)Soal 2
Kategorikan variabel Harga pada dataset di atas menjadi enam kelompok sebagai berikut:
- Booking_fee nya 5 % jika \(\text{Price} < 8000\)
- Booking_fee nya 6 % jika \(8000 \le \text{Price} < 9000\)
- Booking_fee nya 7 % jika \(9000 \le \text{Price} < 10000\)
- Booking_fee nya 8 % jika \(10000 \le \text{Price} < 11000\)
- Booking_fee nya 9 % jika \(11000 \le \text{Price} < 13000\)
- Booking_fee nya 10 % jika \(13000 \le \text{Price} \le 15000\)
Tetapkan ke dalam variabel baru yang disebut Booking_fee dengan menggunakan fungsi kontrol If, else if, dan else.
R
for (i in 1:nrow(Data)){
if (Data$Price[i] < 8000){
Data$Booking_fee[i] <- ((Data$Price[i]) * (5/100))
}
else if (Data$Price[i] >= 8000 & Data$Price[i] < 9000){
Data$Booking_fee[i] <- ((Data$Price[i]) * (6/100))
}
else if (Data$Price[i] >= 9000 & Data$Price[i] < 10000){
Data$Booking_fee[i] <- ((Data$Price[i]) * (7/100))
}
else if (Data$Price[i] >= 10000 & Data$Price[i] < 11000){
Data$Booking_fee[i] <- ((Data$Price[i]) * (8/100))
}
else if (Data$Price[i] >= 11000 & Data$Price[i] < 13000){
Data$Booking_fee[i] <- ((Data$Price[i])* (9/100))
}
else {
Data$Booking_fee[i] <- ((Data$Price[i])* (10/100))
}
}
transform(Data, Booking_fee = as.numeric(Booking_fee))typeof(Data$Booking_fee)## [1] "double"
library(DT)
datatable(Data)Soal 3
Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for.
R
for (i in "Jeffry"){
print(subset(Data, subset = (Marketing_Name ==i)))
}## Id Marketing_Name Work_Exp City Cluster Price Date_Sales
## 6 6 Jeffry 4.7 Depok Mutiara 12058 2018-02-16
## 56 56 Jeffry 4.7 Jakarta Lavesh 12825 2019-03-17
## 106 106 Jeffry 4.7 Depok Peronia 11521 2020-05-10
## 156 156 Jeffry 4.7 Tengerang Asoka 11611 2020-05-23
## 206 206 Jeffry 4.7 Bogor Asoka 11316 2018-08-31
## 256 256 Jeffry 4.7 Depok Primadona 14055 2020-06-12
## 306 306 Jeffry 4.7 Bogor Alindra 12752 2018-12-16
## 356 356 Jeffry 4.7 Depok Palmyra 8309 2019-11-14
## 406 406 Jeffry 4.7 Bekasi Adara 11887 2019-07-02
## 456 456 Jeffry 4.7 Depok Alamanda 13036 2019-01-07
## 506 506 Jeffry 4.7 Jakarta Sweethome 12902 2018-08-27
## 556 556 Jeffry 4.7 Depok Neon 7178 2018-09-15
## 606 606 Jeffry 4.7 Depok Alamanda 8720 2019-12-31
## 656 656 Jeffry 4.7 Depok Sweethome 13947 2019-07-08
## 706 706 Jeffry 4.7 Bekasi Arana 8950 2019-03-17
## 756 756 Jeffry 4.7 Depok Peronia 11257 2018-07-23
## 806 806 Jeffry 4.7 Tengerang Asoka 10139 2018-02-22
## 856 856 Jeffry 4.7 Bekasi Albasia 7802 2018-02-22
## 906 906 Jeffry 4.7 Tengerang Teradamai 7797 2018-12-23
## 956 956 Jeffry 4.7 Depok Albasia 10201 2020-01-21
## 1006 1006 Jeffry 4.7 Bogor Tiara 14409 2019-10-06
## 1056 1056 Jeffry 4.7 Depok Asoka 13239 2019-10-03
## 1106 1106 Jeffry 4.7 Bekasi Teradamai 9005 2018-04-11
## 1156 1156 Jeffry 4.7 Depok Permata 7879 2018-07-13
## 1206 1206 Jeffry 4.7 Depok Peronia 7098 2020-08-04
## 1256 1256 Jeffry 4.7 Jakarta Permata 14442 2019-05-02
## 1306 1306 Jeffry 4.7 Bekasi Palmyra 12413 2019-11-13
## 1356 1356 Jeffry 4.7 Jakarta Asoka 9176 2019-06-16
## 1406 1406 Jeffry 4.7 Depok Peronia 9597 2019-11-20
## 1456 1456 Jeffry 4.7 Jakarta Alamanda 13183 2018-08-14
## 1506 1506 Jeffry 4.7 Bekasi Tiara 11969 2019-07-11
## 1556 1556 Jeffry 4.7 Bogor Victoria 14212 2019-08-28
## 1606 1606 Jeffry 4.7 Jakarta Victoria 13581 2019-10-23
## 1656 1656 Jeffry 4.7 Depok Alindra 8649 2018-08-02
## 1706 1706 Jeffry 4.7 Bekasi Asera 11163 2018-05-16
## 1756 1756 Jeffry 4.7 Bogor Mutiara 12881 2019-03-20
## 1806 1806 Jeffry 4.7 Jakarta Asoka 12910 2018-10-24
## 1856 1856 Jeffry 4.7 Bekasi Sweethome 8429 2019-01-05
## 1906 1906 Jeffry 4.7 Depok Alamanda 13265 2019-02-19
## 1956 1956 Jeffry 4.7 Bekasi Sweethome 9919 2018-05-04
## 2006 2006 Jeffry 4.7 Depok Albasia 7230 2020-08-22
## 2056 2056 Jeffry 4.7 Depok Adara 11151 2019-03-21
## 2106 2106 Jeffry 4.7 Tengerang Mutiara 10501 2019-02-17
## 2156 2156 Jeffry 4.7 Depok Alamanda 14730 2018-07-10
## 2206 2206 Jeffry 4.7 Bogor Alindra 8771 2020-02-24
## 2256 2256 Jeffry 4.7 Jakarta Victoria 9239 2018-07-22
## 2306 2306 Jeffry 4.7 Bekasi Winona 9033 2019-04-03
## 2356 2356 Jeffry 4.7 Bogor Alamanda 9271 2019-06-10
## 2406 2406 Jeffry 4.7 Bogor Winona 11379 2020-02-19
## 2456 2456 Jeffry 4.7 Tengerang Narada 8770 2020-05-04
## 2506 2506 Jeffry 4.7 Jakarta Narada 11326 2019-03-02
## 2556 2556 Jeffry 4.7 Bekasi Peronia 9995 2018-08-01
## 2606 2606 Jeffry 4.7 Tengerang Victoria 14923 2019-04-13
## 2656 2656 Jeffry 4.7 Jakarta Peronia 14185 2019-07-17
## 2706 2706 Jeffry 4.7 Tengerang Tiara 8208 2019-02-13
## 2756 2756 Jeffry 4.7 Bogor Narada 10215 2020-01-21
## 2806 2806 Jeffry 4.7 Bekasi Permata 9253 2018-08-21
## 2856 2856 Jeffry 4.7 Jakarta Adara 7067 2018-08-31
## 2906 2906 Jeffry 4.7 Bogor Lavesh 11684 2020-09-22
## 2956 2956 Jeffry 4.7 Bekasi Teradamai 8251 2019-10-07
## 3006 3006 Jeffry 4.7 Jakarta Permata 7472 2019-01-22
## 3056 3056 Jeffry 4.7 Tengerang Neon 7546 2019-07-05
## 3106 3106 Jeffry 4.7 Depok Primadona 10246 2020-02-17
## 3156 3156 Jeffry 4.7 Jakarta Mutiara 8305 2019-04-23
## 3206 3206 Jeffry 4.7 Bogor Alamanda 8127 2020-01-21
## 3256 3256 Jeffry 4.7 Jakarta Lavesh 14179 2018-03-09
## 3306 3306 Jeffry 4.7 Jakarta Narada 14330 2019-06-19
## 3356 3356 Jeffry 4.7 Bogor Asoka 11837 2018-07-05
## 3406 3406 Jeffry 4.7 Bogor Arana 9671 2018-07-05
## 3456 3456 Jeffry 4.7 Jakarta Victoria 9460 2019-11-29
## 3506 3506 Jeffry 4.7 Depok Asoka 9599 2018-07-02
## 3556 3556 Jeffry 4.7 Bekasi Alamanda 9172 2020-05-12
## 3606 3606 Jeffry 4.7 Bogor Arana 9050 2018-10-24
## 3656 3656 Jeffry 4.7 Bekasi Narada 8799 2019-02-25
## 3706 3706 Jeffry 4.7 Jakarta Albasia 10217 2018-02-27
## 3756 3756 Jeffry 4.7 Jakarta Sweethome 12286 2018-06-17
## 3806 3806 Jeffry 4.7 Bogor Arana 12687 2019-11-29
## 3856 3856 Jeffry 4.7 Depok Permata 13920 2020-08-14
## 3906 3906 Jeffry 4.7 Bekasi Peronia 12857 2020-01-29
## 3956 3956 Jeffry 4.7 Depok Narada 7803 2018-06-16
## 4006 4006 Jeffry 4.7 Jakarta Alindra 11133 2020-06-21
## 4056 4056 Jeffry 4.7 Tengerang Primadona 14783 2019-05-13
## 4106 4106 Jeffry 4.7 Jakarta Asoka 13013 2018-09-15
## 4156 4156 Jeffry 4.7 Depok Asera 9519 2018-06-05
## 4206 4206 Jeffry 4.7 Jakarta Albasia 12785 2018-05-26
## 4256 4256 Jeffry 4.7 Tengerang Primadona 7085 2020-01-13
## 4306 4306 Jeffry 4.7 Jakarta Tiara 7085 2019-03-06
## 4356 4356 Jeffry 4.7 Depok Mutiara 8034 2019-06-01
## 4406 4406 Jeffry 4.7 Bekasi Arana 7132 2019-11-01
## 4456 4456 Jeffry 4.7 Bogor Palmyra 8563 2019-02-02
## 4506 4506 Jeffry 4.7 Bekasi Mutiara 10495 2019-04-12
## 4556 4556 Jeffry 4.7 Tengerang Sweethome 10781 2018-10-15
## 4606 4606 Jeffry 4.7 Tengerang Arana 14052 2018-12-30
## 4656 4656 Jeffry 4.7 Bogor Peronia 14343 2018-01-13
## 4706 4706 Jeffry 4.7 Tengerang Asoka 8501 2019-09-09
## 4756 4756 Jeffry 4.7 Jakarta Peronia 10039 2020-02-14
## 4806 4806 Jeffry 4.7 Bogor Albasia 10553 2019-03-01
## 4856 4856 Jeffry 4.7 Bogor Teradamai 8829 2019-10-07
## 4906 4906 Jeffry 4.7 Jakarta Permata 12122 2018-01-30
## 4956 4956 Jeffry 4.7 Jakarta Narada 7688 2018-04-14
## 5006 5006 Jeffry 4.7 Tengerang Primadona 14201 2018-11-08
## 5056 5056 Jeffry 4.7 Depok Teradamai 9597 2018-10-26
## 5106 5106 Jeffry 4.7 Bekasi Albasia 13010 2018-10-12
## 5156 5156 Jeffry 4.7 Depok Peronia 7027 2020-07-26
## 5206 5206 Jeffry 4.7 Depok Neon 10495 2020-07-11
## 5256 5256 Jeffry 4.7 Tengerang Palmyra 10875 2019-05-11
## 5306 5306 Jeffry 4.7 Tengerang Narada 14505 2020-08-06
## 5356 5356 Jeffry 4.7 Bogor Narada 7545 2020-02-05
## 5406 5406 Jeffry 4.7 Tengerang Asoka 14877 2020-03-17
## 5456 5456 Jeffry 4.7 Bekasi Alindra 14577 2020-09-20
## 5506 5506 Jeffry 4.7 Bogor Winona 9571 2019-03-03
## 5556 5556 Jeffry 4.7 Bogor Teradamai 10075 2018-01-15
## 5606 5606 Jeffry 4.7 Tengerang Arana 11146 2019-10-23
## 5656 5656 Jeffry 4.7 Bekasi Narada 7613 2020-06-07
## 5706 5706 Jeffry 4.7 Bekasi Winona 10875 2019-08-19
## 5756 5756 Jeffry 4.7 Bogor Primadona 7712 2018-11-25
## 5806 5806 Jeffry 4.7 Depok Asera 11748 2018-06-14
## 5856 5856 Jeffry 4.7 Depok Teradamai 14991 2019-12-20
## 5906 5906 Jeffry 4.7 Tengerang Tiara 9987 2018-08-07
## 5956 5956 Jeffry 4.7 Bekasi Albasia 14014 2019-07-20
## 6006 6006 Jeffry 4.7 Depok Palmyra 13222 2018-07-09
## 6056 6056 Jeffry 4.7 Tengerang Victoria 11631 2018-11-05
## 6106 6106 Jeffry 4.7 Bogor Adara 8551 2020-03-25
## 6156 6156 Jeffry 4.7 Bekasi Adara 10452 2018-08-16
## 6206 6206 Jeffry 4.7 Bogor Mutiara 14738 2018-05-29
## 6256 6256 Jeffry 4.7 Bogor Arana 13418 2018-03-28
## 6306 6306 Jeffry 4.7 Jakarta Alindra 13780 2018-11-16
## 6356 6356 Jeffry 4.7 Bogor Primadona 7770 2018-10-02
## 6406 6406 Jeffry 4.7 Depok Sweethome 10067 2018-06-02
## 6456 6456 Jeffry 4.7 Tengerang Neon 9167 2018-04-15
## 6506 6506 Jeffry 4.7 Jakarta Lavesh 8929 2019-08-21
## 6556 6556 Jeffry 4.7 Jakarta Palmyra 8558 2019-04-11
## 6606 6606 Jeffry 4.7 Bogor Sweethome 14975 2018-01-28
## 6656 6656 Jeffry 4.7 Jakarta Arana 12971 2020-07-27
## 6706 6706 Jeffry 4.7 Bekasi Primadona 8923 2018-02-14
## 6756 6756 Jeffry 4.7 Bogor Palmyra 9915 2020-01-18
## 6806 6806 Jeffry 4.7 Depok Primadona 14271 2019-04-26
## 6856 6856 Jeffry 4.7 Bekasi Asera 11941 2019-04-26
## 6906 6906 Jeffry 4.7 Bekasi Permata 14735 2018-08-30
## 6956 6956 Jeffry 4.7 Tengerang Tiara 13167 2018-08-28
## 7006 7006 Jeffry 4.7 Jakarta Teradamai 11476 2019-08-07
## 7056 7056 Jeffry 4.7 Bogor Teradamai 10886 2018-03-15
## 7106 7106 Jeffry 4.7 Bogor Tiara 13445 2019-05-17
## 7156 7156 Jeffry 4.7 Bogor Palmyra 13613 2018-10-12
## 7206 7206 Jeffry 4.7 Bogor Arana 14427 2019-10-14
## 7256 7256 Jeffry 4.7 Depok Neon 8765 2018-12-01
## 7306 7306 Jeffry 4.7 Bekasi Permata 12513 2019-07-06
## 7356 7356 Jeffry 4.7 Jakarta Mutiara 12940 2019-08-03
## 7406 7406 Jeffry 4.7 Jakarta Sweethome 7696 2018-07-03
## 7456 7456 Jeffry 4.7 Jakarta Peronia 10221 2019-10-27
## 7506 7506 Jeffry 4.7 Tengerang Asera 7304 2019-10-29
## 7556 7556 Jeffry 4.7 Depok Tiara 11812 2018-04-13
## 7606 7606 Jeffry 4.7 Bogor Asoka 9068 2018-04-02
## 7656 7656 Jeffry 4.7 Bekasi Albasia 14290 2018-11-09
## 7706 7706 Jeffry 4.7 Jakarta Mutiara 8335 2018-06-21
## 7756 7756 Jeffry 4.7 Bekasi Palmyra 8931 2020-03-25
## 7806 7806 Jeffry 4.7 Tengerang Permata 8052 2019-06-04
## 7856 7856 Jeffry 4.7 Bogor Victoria 11838 2019-11-03
## 7906 7906 Jeffry 4.7 Tengerang Primadona 9071 2019-01-23
## 7956 7956 Jeffry 4.7 Depok Albasia 12595 2018-02-26
## 8006 8006 Jeffry 4.7 Bekasi Victoria 10462 2020-06-15
## 8056 8056 Jeffry 4.7 Depok Permata 7062 2019-06-08
## 8106 8106 Jeffry 4.7 Tengerang Albasia 12948 2018-07-30
## 8156 8156 Jeffry 4.7 Bogor Asera 8030 2018-01-10
## 8206 8206 Jeffry 4.7 Tengerang Primadona 7980 2019-02-05
## 8256 8256 Jeffry 4.7 Tengerang Arana 10370 2018-04-19
## 8306 8306 Jeffry 4.7 Tengerang Lavesh 11179 2019-04-21
## 8356 8356 Jeffry 4.7 Tengerang Alamanda 11992 2019-07-08
## 8406 8406 Jeffry 4.7 Bogor Arana 12402 2020-07-06
## 8456 8456 Jeffry 4.7 Bogor Palmyra 10802 2020-09-19
## 8506 8506 Jeffry 4.7 Bekasi Victoria 10791 2020-03-12
## 8556 8556 Jeffry 4.7 Bekasi Neon 10978 2018-11-19
## 8606 8606 Jeffry 4.7 Tengerang Victoria 13491 2018-01-06
## 8656 8656 Jeffry 4.7 Depok Asera 13605 2018-12-07
## 8706 8706 Jeffry 4.7 Jakarta Alamanda 12559 2020-01-30
## 8756 8756 Jeffry 4.7 Bekasi Peronia 14758 2019-08-13
## 8806 8806 Jeffry 4.7 Depok Adara 7753 2019-07-07
## 8856 8856 Jeffry 4.7 Bekasi Peronia 9915 2019-12-15
## 8906 8906 Jeffry 4.7 Depok Alindra 10283 2020-02-22
## 8956 8956 Jeffry 4.7 Bekasi Alindra 8091 2020-06-16
## 9006 9006 Jeffry 4.7 Bekasi Palmyra 13113 2018-04-25
## 9056 9056 Jeffry 4.7 Bogor Alindra 14719 2019-08-14
## 9106 9106 Jeffry 4.7 Tengerang Alamanda 12260 2019-08-20
## 9156 9156 Jeffry 4.7 Bogor Teradamai 8363 2020-09-12
## 9206 9206 Jeffry 4.7 Jakarta Teradamai 8161 2019-06-17
## 9256 9256 Jeffry 4.7 Bekasi Adara 14928 2020-09-07
## 9306 9306 Jeffry 4.7 Tengerang Mutiara 9553 2018-12-24
## 9356 9356 Jeffry 4.7 Bogor Asoka 9982 2020-03-06
## 9406 9406 Jeffry 4.7 Tengerang Albasia 12345 2020-08-02
## 9456 9456 Jeffry 4.7 Depok Albasia 8111 2019-10-13
## 9506 9506 Jeffry 4.7 Tengerang Winona 13276 2018-08-29
## 9556 9556 Jeffry 4.7 Depok Lavesh 7528 2019-12-07
## 9606 9606 Jeffry 4.7 Bekasi Primadona 9562 2020-03-17
## 9656 9656 Jeffry 4.7 Tengerang Primadona 7266 2019-01-31
## 9706 9706 Jeffry 4.7 Jakarta Peronia 14552 2019-10-17
## 9756 9756 Jeffry 4.7 Bogor Primadona 13473 2020-03-08
## 9806 9806 Jeffry 4.7 Depok Neon 10387 2019-06-29
## 9856 9856 Jeffry 4.7 Jakarta Albasia 12484 2018-12-11
## 9906 9906 Jeffry 4.7 Tengerang Neon 9859 2019-10-13
## 9956 9956 Jeffry 4.7 Tengerang Primadona 9792 2020-02-04
## Advertisement Booking_fee
## 6 9 1085.22
## 56 17 1154.25
## 106 20 1036.89
## 156 15 1044.99
## 206 16 1018.44
## 256 3 1405.50
## 306 12 1147.68
## 356 19 498.54
## 406 5 1069.83
## 456 8 1303.60
## 506 8 1161.18
## 556 4 358.90
## 606 17 523.20
## 656 4 1394.70
## 706 16 537.00
## 756 16 1013.13
## 806 14 811.12
## 856 20 390.10
## 906 6 389.85
## 956 19 816.08
## 1006 8 1440.90
## 1056 10 1323.90
## 1106 16 630.35
## 1156 17 393.95
## 1206 1 354.90
## 1256 13 1444.20
## 1306 11 1117.17
## 1356 19 642.32
## 1406 14 671.79
## 1456 8 1318.30
## 1506 9 1077.21
## 1556 11 1421.20
## 1606 3 1358.10
## 1656 20 518.94
## 1706 10 1004.67
## 1756 4 1159.29
## 1806 8 1161.90
## 1856 9 505.74
## 1906 1 1326.50
## 1956 9 694.33
## 2006 18 361.50
## 2056 14 1003.59
## 2106 13 840.08
## 2156 9 1473.00
## 2206 10 526.26
## 2256 16 646.73
## 2306 6 632.31
## 2356 1 648.97
## 2406 14 1024.11
## 2456 8 526.20
## 2506 5 1019.34
## 2556 11 699.65
## 2606 8 1492.30
## 2656 10 1418.50
## 2706 4 492.48
## 2756 4 817.20
## 2806 11 647.71
## 2856 3 353.35
## 2906 13 1051.56
## 2956 13 495.06
## 3006 7 373.60
## 3056 7 377.30
## 3106 17 819.68
## 3156 9 498.30
## 3206 17 487.62
## 3256 1 1417.90
## 3306 17 1433.00
## 3356 17 1065.33
## 3406 17 676.97
## 3456 2 662.20
## 3506 6 671.93
## 3556 5 642.04
## 3606 6 633.50
## 3656 7 527.94
## 3706 17 817.36
## 3756 4 1105.74
## 3806 4 1141.83
## 3856 7 1392.00
## 3906 20 1157.13
## 3956 17 390.15
## 4006 6 1001.97
## 4056 3 1478.30
## 4106 11 1301.30
## 4156 12 666.33
## 4206 2 1150.65
## 4256 11 354.25
## 4306 13 354.25
## 4356 7 482.04
## 4406 9 356.60
## 4456 10 513.78
## 4506 19 839.60
## 4556 3 862.48
## 4606 4 1405.20
## 4656 11 1434.30
## 4706 8 510.06
## 4756 5 803.12
## 4806 17 844.24
## 4856 8 529.74
## 4906 16 1090.98
## 4956 11 384.40
## 5006 3 1420.10
## 5056 19 671.79
## 5106 13 1301.00
## 5156 19 351.35
## 5206 16 839.60
## 5256 6 870.00
## 5306 8 1450.50
## 5356 9 377.25
## 5406 12 1487.70
## 5456 11 1457.70
## 5506 20 669.97
## 5556 3 806.00
## 5606 18 1003.14
## 5656 17 380.65
## 5706 9 870.00
## 5756 2 385.60
## 5806 19 1057.32
## 5856 13 1499.10
## 5906 15 699.09
## 5956 5 1401.40
## 6006 9 1322.20
## 6056 8 1046.79
## 6106 2 513.06
## 6156 6 836.16
## 6206 3 1473.80
## 6256 18 1341.80
## 6306 6 1378.00
## 6356 8 388.50
## 6406 7 805.36
## 6456 19 641.69
## 6506 18 535.74
## 6556 10 513.48
## 6606 5 1497.50
## 6656 11 1167.39
## 6706 3 535.38
## 6756 13 694.05
## 6806 3 1427.10
## 6856 9 1074.69
## 6906 10 1473.50
## 6956 7 1316.70
## 7006 18 1032.84
## 7056 19 870.88
## 7106 7 1344.50
## 7156 3 1361.30
## 7206 7 1442.70
## 7256 20 525.90
## 7306 9 1126.17
## 7356 19 1164.60
## 7406 10 384.80
## 7456 10 817.68
## 7506 3 365.20
## 7556 7 1063.08
## 7606 8 634.76
## 7656 6 1429.00
## 7706 8 500.10
## 7756 15 535.86
## 7806 15 483.12
## 7856 3 1065.42
## 7906 9 634.97
## 7956 12 1133.55
## 8006 3 836.96
## 8056 4 353.10
## 8106 5 1165.32
## 8156 10 481.80
## 8206 17 399.00
## 8256 14 829.60
## 8306 14 1006.11
## 8356 11 1079.28
## 8406 20 1116.18
## 8456 16 864.16
## 8506 17 863.28
## 8556 14 878.24
## 8606 16 1349.10
## 8656 13 1360.50
## 8706 19 1130.31
## 8756 2 1475.80
## 8806 20 387.65
## 8856 17 694.05
## 8906 7 822.64
## 8956 20 485.46
## 9006 13 1311.30
## 9056 7 1471.90
## 9106 11 1103.40
## 9156 6 501.78
## 9206 1 489.66
## 9256 16 1492.80
## 9306 7 668.71
## 9356 2 698.74
## 9406 4 1111.05
## 9456 14 486.66
## 9506 4 1327.60
## 9556 17 376.40
## 9606 13 669.34
## 9656 7 363.30
## 9706 18 1455.20
## 9756 2 1347.30
## 9806 6 830.96
## 9856 18 1123.56
## 9906 19 690.13
## 9956 5 685.44
Soal 4
Jika Anda akan mendapatkan bonus 2% dari Booking fee per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break.
R
sales = "Jeffry"
x <- subset(Data, subset = (Marketing_Name == sales))
for (i in 1:nrow(x)){
if (x$Work_Exp [i] > 3){
x$Bonus [i] <- ((x$Booking_fee[i])*(3/100))
}
else {
x$Bonus [i] <- ((x$Booking_fee[i])*(2/100))
}
}
xTotal = sum(x$Bonus)
Total## [1] 5376.997
Soal 5
Pada bagian ini, Anda diharapkan dapat membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.
- Siapa nama marketing pemasaran terbaik?
- Kota dan Cluster mana yang paling menguntungkan?
- Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
- Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
- Hitung Total Pendapatan (dalam Bulanan)
R
Angel = subset(Data, subset =(Marketing_Name == "Angel"))
Sherly = subset(Data, subset =(Marketing_Name == "Sherly"))
Vanessa = subset(Data, subset =(Marketing_Name == "Vanessa"))
Irene = subset(Data, subset =(Marketing_Name == "Irene"))
Julian = subset(Data, subset =(Marketing_Name == "Julian"))
Jeffry = subset(Data, subset =(Marketing_Name == "Jeffry"))
Nikita= subset(Data, subset =(Marketing_Name == "Nikita"))
Kefas = subset(Data, subset =(Marketing_Name == "Kefas"))
Siana = subset(Data, subset =(Marketing_Name == "Siana"))
Lala = subset(Data, subset =(Marketing_Name == "Lala"))
Fallen = subset(Data, subset =(Marketing_Name == "Falen"))
Ardifo = subset(Data, subset =(Marketing_Name == "Ardifo"))
Kevin = subset(Data, subset =(Marketing_Name == "Kevin"))
Juen = subset(Data, subset =(Marketing_Name == "Sherly"))
Jerrel = subset(Data, subset =(Marketing_Name == "Vanessa"))
Imelda = subset(Data, subset =(Marketing_Name == "Irene"))
Widi = subset(Data, subset =(Marketing_Name == "Julian"))
Theodora = subset(Data, subset =(Marketing_Name == "Jeffry"))
Elvani = subset(Data, subset =(Marketing_Name == "Elvani"))
Jonathan = subset(Data, subset =(Marketing_Name == "Jonathan"))
Sofia = subset(Data, subset =(Marketing_Name == "Sofia"))
Abraham = subset(Data, subset =(Marketing_Name == "Abraham"))
Siti = subset(Data, subset =(Marketing_Name == "Siti"))
Niko = subset(Data, subset =(Marketing_Name == "Niko"))
Sefli = subset(Data, subset =(Marketing_Name == "Sefli"))
Bene = subset(Data, subset =(Marketing_Name == "Bene"))
Diana = subset(Data, subset =(Marketing_Name == "Diana"))
Pupe = subset(Data, subset =(Marketing_Name == "Pupe"))
Andi = subset(Data, subset =(Marketing_Name == "Andi"))
Tatha = subset(Data, subset =(Marketing_Name == "Tatha"))
Endri = subset(Data, subset =(Marketing_Name == "Endri"))
Monika = subset(Data, subset =(Marketing_Name == "Monika"))
Hans = subset(Data, subset =(Marketing_Name == "Hans"))
Debora = subset(Data, subset =(Marketing_Name == "Debora"))
Hanifa = subset(Data, subset =(Marketing_Name == "Hanifa"))
James = subset(Data, subset =(Marketing_Name == "James"))
Jihan = subset(Data, subset =(Marketing_Name == "Jihan"))
Friska = subset(Data, subset =(Marketing_Name == "Friska"))
Ardiwan = subset(Data, subset =(Marketing_Name == "Ardiwan"))
Bakti = subset(Data, subset =(Marketing_Name == "Bakti"))
Anthon = subset(Data, subset =(Marketing_Name == "Anthon"))
Amry = subset(Data, subset =(Marketing_Name == "Amry"))
Wiwik = subset(Data, subset =(Marketing_Name == "Wiwik"))
Bastian = subset(Data, subset =(Marketing_Name == "Bastian"))
Budi = subset(Data, subset =(Marketing_Name == "Budi"))
Leo = subset(Data, subset =(Marketing_Name == "Leo"))
Simon = subset(Data, subset =(Marketing_Name == "Simon"))
Matius = subset(Data, subset =(Marketing_Name == "Matius"))
Arry = subset(Data, subset =(Marketing_Name == "Arry"))
Eliando = subset(Data, subset =(Marketing_Name == "Eliando"))
Sales_name = c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando")
total_sales = c(sum(Angel$Price), sum(Sherly$Price), sum(Vanessa$Price), sum(Irene$Price), sum(Julian$Price), sum(Jeffry$Price), sum(Nikita$Price), sum(Kefas$Price), sum(Siana$Price), sum(Lala$Price), sum(Fallen$Price), sum(Ardifo$Price), sum(Kevin$Price), sum(Juen$Price), sum(Jerrel$Price), sum(Imelda$Price), sum(Widi$Price), sum(Theodora$Price), sum(Elvani$Price), sum(Jonathan$Price), sum(Sofia$Price), sum(Abraham$Price), sum(Siti$Price), sum(Niko$Price), sum(Sefli$Price), sum(Bene$Price), sum(Diana$Price), sum(Pupe$Price), sum(Andi$Price), sum(Tatha$Price), sum(Endri$Price), sum(Monika$Price), sum(Hans$Price), sum(Debora$Price), sum(Hanifa$Price), sum(James$Price), sum(Jihan$Price), sum(Friska$Price), sum(Ardiwan$Price), sum(Bakti$Price), sum(Anthon$Price), sum(Amry$Price), sum(Wiwik$Price), sum(Bastian$Price), sum(Budi$Price), sum(Leo$Price), sum(Simon$Price), sum(Matius$Price), sum(Arry$Price), sum(Eliando$Price))
Marketing=data.frame(Sales_name,total_sales)
Marketing#marketing terbaik
Marketing[which.max(Marketing$total_sales),]#kota dan cluster
Untung=Data[c("City","Cluster","Price")]
Untung[which.max(Untung$Price),]review <- function(x){
total_iklan = sum(x$Advertisement)*4
rerata_iklan = total_iklan/sum(x$Advertisement)
pendapatan = sum(x$Booking_fee) + sum(x$Bonus)
return(cat(c("Total biaya iklan :", total_iklan, "\n",
"Rata-rata biaya iklan:", rerata_iklan, "\n",
"Total pendapatan bulanan:", pendapatan, "\n")))
}
review(x)## Total biaya iklan : 8396
## Rata-rata biaya iklan: 4
## Total pendapatan bulanan: 184610.2166
Kasus 2
Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:
- Marital_Status : menetapkan status perkawinan acak (“Ya”, “Tidak”)
- Address : berikan alamat acak (JABODETABEK)
- Work_Location : menetapkan lokasi kerja secara acak (JABODETABEK)
- Age : menetapkan urutan angka acak (dari 19 hingga 60)
- Academic : menetapkan tingkat akademik acak (“J.School”, “H.School”, “Sarjana”, “Magister”, “Phd”)
- Job : 10 pekerjaan acak untuk setiap tingkat akademik
- Grade : 5 nilai acak untuk setiap Pekerjaan
- Income : tetapkan pendapatan yang mungkin untuk setiap Pekerjaan
- Spending : tetapkan kemungkinan pengeluaran untuk setiap Pekerjaan
- Number_of_children: menetapkan nomor acak di antara 0 dan 10 (sesuai dengan status perkawinan)
- Private_vehicle : menetapkan kemungkinan kendaraan pribadi untuk setiap orang (“Mobil”, “sepeda motor”, “Umum”)
- Home : “Sewa”, “Milik”, “Kredit”
Soal 1
Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!
R
No <- 1:50000
Marital_Status <- sample(c("Ya","Tidak"),50000,replace=TRUE)
Addres <- sample(c("Jakarta","Bogor","Depok","Tangerang","Bekasi"),50000, replace = TRUE)
Work_location <- sample(c("Jakarta","Bogor","Depok","Tangerang","Bekasi"),50000, replace=TRUE)
Age <- sample(c(19:60),50000,replace=TRUE)
Academic <- rep(c("J.School", "H.School", "Sarjana", "Magister", "Phd"),10000)
Job <- sample(c("Pengusaha","Pegawai","Supir","Perawat","Guru","Pelayan","Designer","Ibu_rumah_tangga","Asisten_rumah_tangga","fotografer","Artis","Penyanyi","Model","Koki","Arsitek","Ojek","Montir","Hair_stylish","Kolektor","Akuntan","Programmer","Atlet","MC","Wedding_Organizer","Vlogger","Selebgram","Sales","Pramugari","Pilot","Pelukis","Wartawan","Petani","Pesulap","Polisi","Pemadam_kebakaran","Penulis","Seniman","ilmuwan","Buruh","Tentara","Psikolog","Nelayan","Tukang_bangunan","Penjahit","Peternak","Teknisi","Komedian","Gammers","Youtuber","Sutradara"),50000,replace=TRUE)
Grade <- sample(c("A","B","C","D","E"),50000,replace=TRUE)
Income <- sample(c('<1000.000','1.000.000-2.000.000','2.000.000-3.000.000','3.000.000-4.000.000','4.000.000-5.000.000','>5.000.000'),50000,replace=TRUE)
Spending <- sample(c('<1000.000','1.000.000-2.000.000','2.000.000-3.000.000','3.000.000-4.000.000','4.000.000-5.000.000','>5.000.000'),50000,replace=TRUE)
Number_of_children <- ifelse(Marital_Status == "Ya", sample(c(1:10),25000,replace=TRUE),0)
Private_vehicle <- sample(c("Mobil","Motor","Umum"),50000,replace=TRUE)
Home <- sample(c("sewa","milik","kredit"),50000,replace=TRUE)
Asuransi <- data.frame(No,
Marital_Status,
Addres,
Work_location,
Age,
Academic,
Job,
Grade,
Income,
Spending,
Number_of_children,
Private_vehicle,
Home)
library(DT)
datatable(Asuransi)## Warning in instance$preRenderHook(instance): It seems your data is too big
## for client-side DataTables. You may consider server-side processing: https://
## rstudio.github.io/DT/server.html
Soal 2
Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?
R
Asuransi$Age -> Umur
Statistik <- function(Umur)
{rerata = sum(Umur)/length(Umur)
Maks = max(Umur)
Min = min(Umur)
Median = median(Umur)
return(cat(c("Rata-rata umur :", rerata, "\n",
"Maksimal Umur :", Maks, "\n",
"Minimal umur :", Min, "\n",
"Median dari umur :", Median, "\n")))}
Statistik(Umur)## Rata-rata umur : 39.43988
## Maksimal Umur : 60
## Minimal umur : 19
## Median dari umur : 39
Soal 3
Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?
R
for (i in 1:nrow(Asuransi)){
if (Asuransi$Home[i] == "milik")
if(Asuransi$Income[i] == ">5.000.000"){
Asuransi$Status[i] <- "Pertahankan"}
else{
Asuransi$Status[i] <- "Tidak"}
}
library(DT)
datatable(Asuransi)## Warning in instance$preRenderHook(instance): It seems your data is too big
## for client-side DataTables. You may consider server-side processing: https://
## rstudio.github.io/DT/server.html
Referensi
- ref 1
- ref 2
- ref 3