Algoritma & Struktur Data
~ Ujian Tengah Semester ~
| Kontak | : \(\downarrow\) |
| ferdinand.widjaya@student.matanauniversity.ac.id | |
| https://www.instagram.com/fe_nw/ | |
| RPubs | https://rpubs.com/ferdnw/ |
Kasus 1
Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property seperti yang dapat kita lihat pada tabel berikut:
Id <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
"Peronia","Lavesh","Alindra","Sweethome", "Asera",
"Teradamai","Albasia", "Adara","Neon","Arana",
"Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price <- sample(c(7000:15000),10000, replace = T)
Date_Sales <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement <- sample(c(1:20), 10000, replace = T)
Data <- data.frame(Id,
Marketing_Name,
Work_Exp,
City,
Cluster,
Price,
Date_Sales,
Advertisement)
library(DT)
datatable(Data)Soal 1
Kategorikan variabel Harga pada dataset di atas menjadi tiga kelompok sebagai berikut:
- \(\text{High} > 12000\)
- \(10000 \le \text{Medium} \le 12000\)
- \(\text{Low} < 10000\)
Tetapkan ke dalam variabel baru yang disebut Kelas dengan menggunakan fungsi kontrol If, else if, dan else.
R
# tuliskan koding R kalian disini
x= Data$Price
y = ifelse((x>12000),print('High'), ifelse((x>=10000 & x<=12000), print('Medium'), print('Low')))## [1] "High"
## [1] "Medium"
## [1] "Low"
Data$Classes = y
datatable(Data)Soal 2
Kategorikan variabel Harga pada dataset di atas menjadi enam kelompok sebagai berikut:
- Booking_fee nya 5 % jika \(\text{Price} < 8000\)
- Booking_fee nya 6 % jika \(8000 \le \text{Price} < 9000\)
- Booking_fee nya 7 % jika \(9000 \le \text{Price} < 10000\)
- Booking_fee nya 8 % jika \(10000 \le \text{Price} < 11000\)
- Booking_fee nya 9 % jika \(11000 \le \text{Price} < 13000\)
- Booking_fee nya 10 % jika \(13000 \le \text{Price} \le 15000\)
Tetapkan ke dalam variabel baru yang disebut Booking_fee dengan menggunakan fungsi kontrol If, else if, dan else.
R
k = Data$Price
l = ifelse((k<8000), 5/100*Data$Price, ifelse((k>=8000 & k<9000),6/100*Data$Price, ifelse((k>=9000 & k<10000), 7/100*Data$Price ,ifelse((k>= 10000 & k<11000), 8/100*Data$Price, ifelse ((k>=11000 & k<13000), 9/100*Data$Price,1/10*Data$Price))) ))
Data$BookingFee = l
DataSoal 3
Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for.
R
library(DT)
z=for(x in "Irene" ){print(subset(Data,subset=(Marketing_Name== x)))}## Id Marketing_Name Work_Exp City Cluster Price Date_Sales
## 4 4 Irene 3.6 Tengerang Permata 7323 2018-11-03
## 54 54 Irene 3.6 Bekasi Asoka 7158 2018-12-27
## 104 104 Irene 3.6 Bogor Teradamai 7538 2020-03-07
## 154 154 Irene 3.6 Bekasi Adara 7268 2018-06-13
## 204 204 Irene 3.6 Jakarta Asera 14417 2018-07-01
## 254 254 Irene 3.6 Depok Alamanda 13613 2018-08-01
## 304 304 Irene 3.6 Bogor Lavesh 10605 2018-11-15
## 354 354 Irene 3.6 Jakarta Narada 10786 2020-04-27
## 404 404 Irene 3.6 Tengerang Alindra 11820 2018-02-08
## 454 454 Irene 3.6 Depok Asoka 9672 2019-02-18
## 504 504 Irene 3.6 Depok Alamanda 10247 2020-04-08
## 554 554 Irene 3.6 Bogor Arana 14623 2020-07-05
## 604 604 Irene 3.6 Bekasi Winona 9467 2018-06-22
## 654 654 Irene 3.6 Depok Permata 9016 2019-07-09
## 704 704 Irene 3.6 Tengerang Albasia 8105 2019-01-14
## 754 754 Irene 3.6 Jakarta Peronia 8964 2018-05-20
## 804 804 Irene 3.6 Jakarta Arana 13280 2018-07-03
## 854 854 Irene 3.6 Jakarta Primadona 13644 2019-03-06
## 904 904 Irene 3.6 Jakarta Permata 11010 2018-04-06
## 954 954 Irene 3.6 Bogor Primadona 10587 2019-04-15
## 1004 1004 Irene 3.6 Jakarta Narada 12511 2020-09-06
## 1054 1054 Irene 3.6 Bekasi Mutiara 8049 2019-03-08
## 1104 1104 Irene 3.6 Depok Narada 13829 2020-06-25
## 1154 1154 Irene 3.6 Bogor Sweethome 11032 2020-04-11
## 1204 1204 Irene 3.6 Jakarta Tiara 13707 2019-11-02
## 1254 1254 Irene 3.6 Jakarta Albasia 11023 2020-02-18
## 1304 1304 Irene 3.6 Depok Narada 10159 2020-09-05
## 1354 1354 Irene 3.6 Tengerang Neon 11180 2019-09-24
## 1404 1404 Irene 3.6 Tengerang Asoka 7307 2020-09-03
## 1454 1454 Irene 3.6 Tengerang Alamanda 13435 2018-04-12
## 1504 1504 Irene 3.6 Bogor Arana 11532 2019-04-18
## 1554 1554 Irene 3.6 Depok Winona 14982 2018-10-27
## 1604 1604 Irene 3.6 Bekasi Asoka 11617 2019-05-15
## 1654 1654 Irene 3.6 Bogor Teradamai 10828 2020-03-26
## 1704 1704 Irene 3.6 Depok Alamanda 8138 2020-01-07
## 1754 1754 Irene 3.6 Depok Sweethome 9632 2019-10-02
## 1804 1804 Irene 3.6 Bogor Adara 13244 2020-05-22
## 1854 1854 Irene 3.6 Depok Alindra 12778 2018-07-19
## 1904 1904 Irene 3.6 Bekasi Teradamai 7847 2018-06-07
## 1954 1954 Irene 3.6 Tengerang Teradamai 9282 2020-06-28
## 2004 2004 Irene 3.6 Jakarta Sweethome 9264 2019-11-08
## 2054 2054 Irene 3.6 Jakarta Lavesh 12223 2018-10-24
## 2104 2104 Irene 3.6 Bekasi Lavesh 13444 2018-03-27
## 2154 2154 Irene 3.6 Bekasi Winona 10138 2020-08-01
## 2204 2204 Irene 3.6 Jakarta Albasia 7012 2018-09-03
## 2254 2254 Irene 3.6 Bekasi Mutiara 8021 2018-08-02
## 2304 2304 Irene 3.6 Tengerang Primadona 7580 2019-04-25
## 2354 2354 Irene 3.6 Depok Palmyra 10905 2019-12-13
## 2404 2404 Irene 3.6 Tengerang Asoka 14141 2019-08-21
## 2454 2454 Irene 3.6 Jakarta Adara 10168 2020-06-08
## 2504 2504 Irene 3.6 Jakarta Asoka 10303 2020-07-07
## 2554 2554 Irene 3.6 Bogor Sweethome 12546 2018-12-03
## 2604 2604 Irene 3.6 Depok Asera 9602 2018-04-22
## 2654 2654 Irene 3.6 Bogor Arana 9728 2018-08-17
## 2704 2704 Irene 3.6 Depok Primadona 9521 2018-08-19
## 2754 2754 Irene 3.6 Bogor Mutiara 14280 2020-04-26
## 2804 2804 Irene 3.6 Jakarta Winona 12260 2019-09-03
## 2854 2854 Irene 3.6 Depok Peronia 7044 2020-03-14
## 2904 2904 Irene 3.6 Tengerang Alindra 12053 2020-02-21
## 2954 2954 Irene 3.6 Depok Adara 11571 2018-01-21
## 3004 3004 Irene 3.6 Bogor Alamanda 11444 2019-10-26
## 3054 3054 Irene 3.6 Tengerang Teradamai 13860 2019-11-05
## 3104 3104 Irene 3.6 Jakarta Arana 8472 2020-07-26
## 3154 3154 Irene 3.6 Jakarta Asoka 13919 2019-05-26
## 3204 3204 Irene 3.6 Bekasi Palmyra 14174 2020-05-27
## 3254 3254 Irene 3.6 Bekasi Teradamai 10083 2020-01-27
## 3304 3304 Irene 3.6 Depok Asera 13998 2018-02-07
## 3354 3354 Irene 3.6 Jakarta Palmyra 9622 2018-10-18
## 3404 3404 Irene 3.6 Depok Permata 8133 2018-04-14
## 3454 3454 Irene 3.6 Bekasi Primadona 13569 2018-09-23
## 3504 3504 Irene 3.6 Jakarta Alamanda 10723 2018-03-16
## 3554 3554 Irene 3.6 Bogor Adara 8542 2018-08-03
## 3604 3604 Irene 3.6 Depok Victoria 12879 2019-03-30
## 3654 3654 Irene 3.6 Bogor Primadona 14179 2020-08-17
## 3704 3704 Irene 3.6 Bekasi Alamanda 10191 2019-01-10
## 3754 3754 Irene 3.6 Tengerang Teradamai 7365 2019-08-25
## 3804 3804 Irene 3.6 Bekasi Albasia 11796 2018-07-04
## 3854 3854 Irene 3.6 Jakarta Asera 14666 2019-06-19
## 3904 3904 Irene 3.6 Tengerang Primadona 11587 2020-09-01
## 3954 3954 Irene 3.6 Depok Mutiara 12995 2018-04-24
## 4004 4004 Irene 3.6 Bogor Tiara 8421 2020-09-24
## 4054 4054 Irene 3.6 Bekasi Victoria 14494 2018-03-03
## 4104 4104 Irene 3.6 Tengerang Primadona 12004 2018-10-31
## 4154 4154 Irene 3.6 Depok Teradamai 7799 2018-11-01
## 4204 4204 Irene 3.6 Tengerang Asera 11524 2018-02-19
## 4254 4254 Irene 3.6 Tengerang Asoka 11976 2019-07-10
## 4304 4304 Irene 3.6 Tengerang Adara 12811 2020-08-16
## 4354 4354 Irene 3.6 Depok Mutiara 11728 2018-06-21
## 4404 4404 Irene 3.6 Bogor Primadona 7646 2019-08-30
## 4454 4454 Irene 3.6 Depok Arana 14657 2018-10-16
## 4504 4504 Irene 3.6 Jakarta Mutiara 13785 2018-07-21
## 4554 4554 Irene 3.6 Jakarta Victoria 13686 2019-08-17
## 4604 4604 Irene 3.6 Bekasi Lavesh 11347 2020-06-30
## 4654 4654 Irene 3.6 Jakarta Asoka 12531 2020-08-20
## 4704 4704 Irene 3.6 Tengerang Narada 8384 2019-03-09
## 4754 4754 Irene 3.6 Depok Narada 9098 2018-10-24
## 4804 4804 Irene 3.6 Tengerang Alamanda 9029 2020-02-05
## 4854 4854 Irene 3.6 Jakarta Sweethome 9109 2019-04-22
## 4904 4904 Irene 3.6 Depok Arana 11097 2019-01-27
## 4954 4954 Irene 3.6 Bogor Mutiara 8455 2020-09-12
## 5004 5004 Irene 3.6 Depok Primadona 8175 2018-02-28
## 5054 5054 Irene 3.6 Tengerang Neon 12526 2019-06-25
## 5104 5104 Irene 3.6 Bogor Alindra 8050 2018-05-29
## 5154 5154 Irene 3.6 Depok Lavesh 10702 2019-04-02
## 5204 5204 Irene 3.6 Depok Albasia 11470 2020-04-24
## 5254 5254 Irene 3.6 Bekasi Peronia 11261 2018-10-25
## 5304 5304 Irene 3.6 Jakarta Teradamai 7829 2019-08-13
## 5354 5354 Irene 3.6 Bekasi Lavesh 7362 2018-12-15
## 5404 5404 Irene 3.6 Jakarta Primadona 8841 2019-11-17
## 5454 5454 Irene 3.6 Depok Asoka 9609 2019-03-25
## 5504 5504 Irene 3.6 Bogor Palmyra 11582 2020-03-03
## 5554 5554 Irene 3.6 Bekasi Albasia 7183 2019-12-16
## 5604 5604 Irene 3.6 Bogor Winona 13655 2020-01-24
## 5654 5654 Irene 3.6 Depok Permata 7885 2019-04-02
## 5704 5704 Irene 3.6 Bogor Peronia 9197 2020-06-03
## 5754 5754 Irene 3.6 Depok Palmyra 14645 2019-07-08
## 5804 5804 Irene 3.6 Bogor Alamanda 13653 2019-01-26
## 5854 5854 Irene 3.6 Bogor Lavesh 7232 2018-02-27
## 5904 5904 Irene 3.6 Tengerang Primadona 8533 2019-02-28
## 5954 5954 Irene 3.6 Bogor Primadona 10785 2018-05-20
## 6004 6004 Irene 3.6 Tengerang Asera 10630 2018-04-14
## 6054 6054 Irene 3.6 Tengerang Sweethome 8251 2019-05-17
## 6104 6104 Irene 3.6 Bogor Narada 10997 2018-12-30
## 6154 6154 Irene 3.6 Tengerang Albasia 7952 2020-06-17
## 6204 6204 Irene 3.6 Bogor Arana 9750 2019-08-07
## 6254 6254 Irene 3.6 Depok Alamanda 11580 2018-12-15
## 6304 6304 Irene 3.6 Depok Albasia 12963 2020-02-13
## 6354 6354 Irene 3.6 Depok Albasia 7889 2019-01-20
## 6404 6404 Irene 3.6 Jakarta Neon 12499 2019-10-16
## 6454 6454 Irene 3.6 Bekasi Mutiara 7446 2020-08-13
## 6504 6504 Irene 3.6 Tengerang Adara 8824 2018-05-29
## 6554 6554 Irene 3.6 Jakarta Lavesh 9558 2018-09-17
## 6604 6604 Irene 3.6 Tengerang Asera 9583 2020-02-07
## 6654 6654 Irene 3.6 Depok Palmyra 10336 2019-05-03
## 6704 6704 Irene 3.6 Jakarta Arana 7869 2020-06-04
## 6754 6754 Irene 3.6 Bogor Sweethome 9979 2019-04-07
## 6804 6804 Irene 3.6 Tengerang Permata 7879 2018-01-03
## 6854 6854 Irene 3.6 Tengerang Tiara 10737 2019-11-28
## 6904 6904 Irene 3.6 Tengerang Albasia 8943 2020-04-07
## 6954 6954 Irene 3.6 Bekasi Victoria 7056 2018-03-11
## 7004 7004 Irene 3.6 Bekasi Alindra 8801 2020-04-27
## 7054 7054 Irene 3.6 Bogor Lavesh 14966 2020-01-22
## 7104 7104 Irene 3.6 Jakarta Tiara 11991 2019-08-10
## 7154 7154 Irene 3.6 Bogor Sweethome 13470 2020-01-25
## 7204 7204 Irene 3.6 Tengerang Asera 7585 2020-09-21
## 7254 7254 Irene 3.6 Depok Palmyra 8530 2018-07-18
## 7304 7304 Irene 3.6 Tengerang Arana 7490 2020-08-18
## 7354 7354 Irene 3.6 Jakarta Narada 11842 2020-03-03
## 7404 7404 Irene 3.6 Depok Teradamai 11666 2019-11-13
## 7454 7454 Irene 3.6 Bekasi Winona 7759 2020-06-13
## 7504 7504 Irene 3.6 Bekasi Alamanda 14370 2019-02-14
## 7554 7554 Irene 3.6 Depok Peronia 12640 2018-03-23
## 7604 7604 Irene 3.6 Depok Alamanda 10464 2019-05-26
## 7654 7654 Irene 3.6 Bogor Alamanda 9828 2020-07-20
## 7704 7704 Irene 3.6 Tengerang Adara 8151 2018-04-22
## 7754 7754 Irene 3.6 Depok Alindra 12789 2020-09-21
## 7804 7804 Irene 3.6 Depok Neon 12656 2019-07-21
## 7854 7854 Irene 3.6 Bogor Permata 13199 2018-10-03
## 7904 7904 Irene 3.6 Bekasi Teradamai 9554 2019-10-22
## 7954 7954 Irene 3.6 Depok Neon 10942 2020-06-21
## 8004 8004 Irene 3.6 Jakarta Victoria 12550 2020-08-28
## 8054 8054 Irene 3.6 Bekasi Alindra 7408 2019-12-06
## 8104 8104 Irene 3.6 Tengerang Tiara 11336 2018-03-01
## 8154 8154 Irene 3.6 Bogor Victoria 8825 2018-01-11
## 8204 8204 Irene 3.6 Jakarta Lavesh 13554 2019-12-27
## 8254 8254 Irene 3.6 Jakarta Teradamai 8080 2018-03-22
## 8304 8304 Irene 3.6 Bogor Permata 9420 2018-08-04
## 8354 8354 Irene 3.6 Bogor Primadona 12265 2018-05-20
## 8404 8404 Irene 3.6 Depok Tiara 13549 2019-03-31
## 8454 8454 Irene 3.6 Bekasi Mutiara 10903 2019-06-03
## 8504 8504 Irene 3.6 Bogor Winona 14837 2018-12-01
## 8554 8554 Irene 3.6 Jakarta Sweethome 8101 2020-09-10
## 8604 8604 Irene 3.6 Tengerang Asera 9620 2019-11-19
## 8654 8654 Irene 3.6 Depok Sweethome 12536 2018-08-10
## 8704 8704 Irene 3.6 Depok Lavesh 12569 2018-06-23
## 8754 8754 Irene 3.6 Depok Winona 12452 2018-09-19
## 8804 8804 Irene 3.6 Jakarta Teradamai 14589 2018-12-25
## 8854 8854 Irene 3.6 Depok Lavesh 11861 2019-03-16
## 8904 8904 Irene 3.6 Bekasi Albasia 12401 2018-09-12
## 8954 8954 Irene 3.6 Depok Arana 13500 2019-07-22
## 9004 9004 Irene 3.6 Tengerang Primadona 9487 2019-12-07
## 9054 9054 Irene 3.6 Bekasi Lavesh 14905 2020-06-08
## 9104 9104 Irene 3.6 Bekasi Permata 7309 2020-03-11
## 9154 9154 Irene 3.6 Bogor Teradamai 12805 2018-03-01
## 9204 9204 Irene 3.6 Bogor Asera 12483 2018-05-12
## 9254 9254 Irene 3.6 Depok Peronia 13585 2018-07-29
## 9304 9304 Irene 3.6 Jakarta Alamanda 12653 2018-05-06
## 9354 9354 Irene 3.6 Bogor Permata 9742 2019-10-17
## 9404 9404 Irene 3.6 Tengerang Neon 10927 2020-09-07
## 9454 9454 Irene 3.6 Bogor Mutiara 13325 2020-02-25
## 9504 9504 Irene 3.6 Bogor Victoria 14994 2018-07-25
## 9554 9554 Irene 3.6 Bekasi Teradamai 10562 2019-04-04
## 9604 9604 Irene 3.6 Jakarta Asoka 13954 2020-04-18
## 9654 9654 Irene 3.6 Tengerang Arana 7756 2019-02-03
## 9704 9704 Irene 3.6 Bekasi Asera 9858 2019-05-03
## 9754 9754 Irene 3.6 Bogor Narada 9274 2018-11-30
## 9804 9804 Irene 3.6 Bekasi Neon 13211 2018-11-02
## 9854 9854 Irene 3.6 Depok Alamanda 9577 2020-04-27
## 9904 9904 Irene 3.6 Bekasi Arana 12328 2019-04-17
## 9954 9954 Irene 3.6 Depok Winona 13207 2019-11-29
## Advertisement Classes BookingFee
## 4 5 Low 366.15
## 54 14 Low 357.90
## 104 15 Low 376.90
## 154 13 Low 363.40
## 204 18 High 1441.70
## 254 3 High 1361.30
## 304 1 Medium 848.40
## 354 13 Medium 862.88
## 404 18 Medium 1063.80
## 454 2 Low 677.04
## 504 15 Medium 819.76
## 554 20 High 1462.30
## 604 13 Low 662.69
## 654 14 Low 631.12
## 704 1 Low 486.30
## 754 10 Low 537.84
## 804 4 High 1328.00
## 854 13 High 1364.40
## 904 9 Medium 990.90
## 954 9 Medium 846.96
## 1004 19 High 1125.99
## 1054 19 Low 482.94
## 1104 13 High 1382.90
## 1154 19 Medium 992.88
## 1204 15 High 1370.70
## 1254 11 Medium 992.07
## 1304 3 Medium 812.72
## 1354 9 Medium 1006.20
## 1404 14 Low 365.35
## 1454 15 High 1343.50
## 1504 2 Medium 1037.88
## 1554 16 High 1498.20
## 1604 12 Medium 1045.53
## 1654 12 Medium 866.24
## 1704 11 Low 488.28
## 1754 15 Low 674.24
## 1804 3 High 1324.40
## 1854 7 High 1150.02
## 1904 10 Low 392.35
## 1954 16 Low 649.74
## 2004 19 Low 648.48
## 2054 16 High 1100.07
## 2104 6 High 1344.40
## 2154 4 Medium 811.04
## 2204 6 Low 350.60
## 2254 15 Low 481.26
## 2304 6 Low 379.00
## 2354 18 Medium 872.40
## 2404 12 High 1414.10
## 2454 14 Medium 813.44
## 2504 5 Medium 824.24
## 2554 4 High 1129.14
## 2604 14 Low 672.14
## 2654 12 Low 680.96
## 2704 8 Low 666.47
## 2754 19 High 1428.00
## 2804 16 High 1103.40
## 2854 19 Low 352.20
## 2904 9 High 1084.77
## 2954 2 Medium 1041.39
## 3004 18 Medium 1029.96
## 3054 9 High 1386.00
## 3104 18 Low 508.32
## 3154 13 High 1391.90
## 3204 11 High 1417.40
## 3254 17 Medium 806.64
## 3304 11 High 1399.80
## 3354 14 Low 673.54
## 3404 17 Low 487.98
## 3454 4 High 1356.90
## 3504 20 Medium 857.84
## 3554 3 Low 512.52
## 3604 19 High 1159.11
## 3654 7 High 1417.90
## 3704 9 Medium 815.28
## 3754 3 Low 368.25
## 3804 9 Medium 1061.64
## 3854 13 High 1466.60
## 3904 13 Medium 1042.83
## 3954 3 High 1169.55
## 4004 15 Low 505.26
## 4054 15 High 1449.40
## 4104 13 High 1080.36
## 4154 10 Low 389.95
## 4204 9 Medium 1037.16
## 4254 15 Medium 1077.84
## 4304 14 High 1152.99
## 4354 8 Medium 1055.52
## 4404 17 Low 382.30
## 4454 9 High 1465.70
## 4504 13 High 1378.50
## 4554 17 High 1368.60
## 4604 10 Medium 1021.23
## 4654 15 High 1127.79
## 4704 6 Low 503.04
## 4754 18 Low 636.86
## 4804 4 Low 632.03
## 4854 6 Low 637.63
## 4904 20 Medium 998.73
## 4954 13 Low 507.30
## 5004 8 Low 490.50
## 5054 7 High 1127.34
## 5104 18 Low 483.00
## 5154 12 Medium 856.16
## 5204 14 Medium 1032.30
## 5254 8 Medium 1013.49
## 5304 6 Low 391.45
## 5354 7 Low 368.10
## 5404 8 Low 530.46
## 5454 9 Low 672.63
## 5504 18 Medium 1042.38
## 5554 8 Low 359.15
## 5604 14 High 1365.50
## 5654 7 Low 394.25
## 5704 6 Low 643.79
## 5754 18 High 1464.50
## 5804 20 High 1365.30
## 5854 18 Low 361.60
## 5904 20 Low 511.98
## 5954 18 Medium 862.80
## 6004 7 Medium 850.40
## 6054 13 Low 495.06
## 6104 1 Medium 879.76
## 6154 9 Low 397.60
## 6204 7 Low 682.50
## 6254 19 Medium 1042.20
## 6304 16 High 1166.67
## 6354 4 Low 394.45
## 6404 3 High 1124.91
## 6454 9 Low 372.30
## 6504 9 Low 529.44
## 6554 10 Low 669.06
## 6604 20 Low 670.81
## 6654 13 Medium 826.88
## 6704 2 Low 393.45
## 6754 4 Low 698.53
## 6804 14 Low 393.95
## 6854 8 Medium 858.96
## 6904 3 Low 536.58
## 6954 1 Low 352.80
## 7004 12 Low 528.06
## 7054 16 High 1496.60
## 7104 18 Medium 1079.19
## 7154 3 High 1347.00
## 7204 19 Low 379.25
## 7254 2 Low 511.80
## 7304 7 Low 374.50
## 7354 8 Medium 1065.78
## 7404 6 Medium 1049.94
## 7454 9 Low 387.95
## 7504 6 High 1437.00
## 7554 16 High 1137.60
## 7604 8 Medium 837.12
## 7654 2 Low 687.96
## 7704 12 Low 489.06
## 7754 9 High 1151.01
## 7804 10 High 1139.04
## 7854 15 High 1319.90
## 7904 13 Low 668.78
## 7954 12 Medium 875.36
## 8004 9 High 1129.50
## 8054 14 Low 370.40
## 8104 8 Medium 1020.24
## 8154 6 Low 529.50
## 8204 2 High 1355.40
## 8254 14 Low 484.80
## 8304 13 Low 659.40
## 8354 18 High 1103.85
## 8404 10 High 1354.90
## 8454 17 Medium 872.24
## 8504 11 High 1483.70
## 8554 10 Low 486.06
## 8604 5 Low 673.40
## 8654 4 High 1128.24
## 8704 14 High 1131.21
## 8754 16 High 1120.68
## 8804 9 High 1458.90
## 8854 5 Medium 1067.49
## 8904 13 High 1116.09
## 8954 5 High 1350.00
## 9004 7 Low 664.09
## 9054 15 High 1490.50
## 9104 17 Low 365.45
## 9154 9 High 1152.45
## 9204 12 High 1123.47
## 9254 15 High 1358.50
## 9304 5 High 1138.77
## 9354 20 Low 681.94
## 9404 1 Medium 874.16
## 9454 15 High 1332.50
## 9504 5 High 1499.40
## 9554 11 Medium 844.96
## 9604 15 High 1395.40
## 9654 14 Low 387.80
## 9704 12 Low 690.06
## 9754 11 Low 649.18
## 9804 8 High 1321.10
## 9854 2 Low 670.39
## 9904 15 High 1109.52
## 9954 15 High 1320.70
Soal 4
Jika Anda akan mendapatkan bonus 2% dari Booking fee per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break.
R
DataIrene = subset(Data, subset=(Marketing_Name == "Irene"))
b = ifelse((DataIrene$Work_Exp>3), (DataIrene$BookingFee*0.03),(DataIrene$BookingFee*0.02))
DataIrene$Bonus = b
DataIreneTotalbonus=sum(DataIrene$Bonus)
Totalbonus## [1] 5351.693
Soal 5
Pada bagian ini, Anda diharapkan dapa membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.
- Siapa nama marketing pemasaran terbaik?
- Kota dan Cluster mana yang paling menguntungkan?
- Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
- Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
- Hitung Total Pendapatan (dalam Bulanan)
R
Angel = subset (Data, subset=(Marketing_Name == "Angel"))
Sherly=subset (Data, subset=(Marketing_Name == "Sherly"))
Vanessa=subset(Data, subset=(Marketing_Name == "Vanessa" ))
Irene=subset(Data, subset=(Marketing_Name == "Irene"))
Julian=subset (Data, subset=(Marketing_Name == "Julian"))
Jeffry =subset (Data, subset=(Marketing_Name == "Jeffry"))
Nikita =subset (Data, subset=(Marketing_Name =="Nikita"))
Kefas =subset(Data, subset=(Marketing_Name == "Kefas"))
Siana =subset (Data, subset=(Marketing_Name == "Siana"))
Lala=subset (Data, subset=(Marketing_Name == "Lala"))
Fallen =subset (Data, subset=(Marketing_Name == "Fallen"))
Ardifo =subset (Data, subset=(Marketing_Name == "Ardifo"))
Kevin =subset (Data, subset=(Marketing_Name == "Kevin"))
Juen =subset (Data, subset=(Marketing_Name == "Juen"))
Jerrel =subset (Data, subset=(Marketing_Name == "Jerrel"))
Imelda =subset (Data, subset=(Marketing_Name == "Imelda"))
Widi =subset(Data, subset=(Marketing_Name == "Widi"))
Theodor = subset (Data, subset=(Marketing_Name == "Theodor"))
Elvani =subset (Data, subset=(Marketing_Name == "Elvani"))
Jonathan = subset (Data, subset=(Marketing_Name == "Jonathan"))
Sofia =subset (Data, subset=(Marketing_Name == "Sofia"))
Abraham = subset (Data, subset=(Marketing_Name == "Abraham"))
Siti =subset (Data, subset=(Marketing_Name == "Siti"))
Niko =subset(Data, subset=(Marketing_Name == "Niko"))
Sefli =subset (Data, subset=(Marketing_Name == "Selfi"))
Bene =subset(Data, subset=(Marketing_Name == "Bene"))
Diana =subset (Data, subset=(Marketing_Name == "Diana"))
Pupe =subset(Data, subset=(Marketing_Name == "Pupe"))
Andi =subset (Data, subset=(Marketing_Name == "Andi"))
Tatha =subset (Data, subset=(Marketing_Name == "Tatha"))
Endri=subset (Data, subset=(Marketing_Name == "Endri"))
Monika= subset(Data, subset=(Marketing_Name == "Monika"))
Hans =subset(Data, subset=(Marketing_Name == "Hans"))
Debora= subset (Data, subset=(Marketing_Name == "Debora"))
Hanifa= subset (Data, subset=(Marketing_Name == "Hanifa"))
James =subset (Data, subset=(Marketing_Name == "James"))
Jihan =subset (Data, subset=(Marketing_Name == "Jihan"))
Friska =subset (Data, subset=(Marketing_Name == "Friska"))
Ardiwan = subset (Data, subset=(Marketing_Name == "Ardiwan"))
Bakti =subset (Data, subset=(Marketing_Name == "Bakti"))
Anthon =subset (Data, subset=(Marketing_Name == "Anthon"))
Amry =subset (Data, subset=(Marketing_Name == "Amry"))
Wiwik =subset (Data, subset=(Marketing_Name == "Wiwik"))
Bastian = subset (Data, subset=(Marketing_Name == "Bastian"))
Budi = subset (Data, subset=(Marketing_Name == "Budi"))
Leo = subset (Data, subset=(Marketing_Name == "Leo"))
Simon = subset (Data, subset=(Marketing_Name == "Simon"))
Matius = subset (Data, subset=(Marketing_Name == "Matius"))
Arry = subset (Data, subset=(Marketing_Name == "Arry"))
Eliando = subset (Data, subset=(Marketing_Name == "Eliando"))
Nama_Sales = c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando")
propertysold = c(sum(Angel$Price), sum(Sherly$Price), sum(Vanessa$Price), sum(Irene$Price),
sum(Julian$Price), sum (Jeffry$Price), sum(Nikita$Price), sum(Kefas$Price), sum(Siana$Price), sum(Lala$Price), sum(Fallen$Price), sum(Ardifo$Price), sum(Kevin$Price), sum (Juen$Price), sum(Jerrel$Price), sum(Imelda$Price), sum(Widi$Price), sum(Theodor$Price), sum(Elvani$Price), sum(Jonathan$Price), sum(Sofia$Price), sum(Abraham$Price), sum(Siti$Price), sum(Niko$Price), sum(Sefli$Price), sum(Bene$Price), sum( Diana$Price), sum (Pupe$Price), sum(Andi$Price), sum( Tatha$Price), sum(Endri$Price), sum( Monika$Price), sum( Hans$Price), sum( Debora$Price), sum(Hanifa$Price), sum (James$Price), sum( Jihan$Price), sum( Friska$Price), sum(Ardiwan$Price), sum(Bakti$Price), sum(Anthon$Price), sum(Amry$Price), sum( Wiwik$Price), sum( Bastian$Price), sum( Budi$Price), sum (Leo$Price), sum(Simon$Price), sum(Matius$Price), sum(Arry$Price), sum( Eliando$Price))
datamarketing= data.frame(Nama_Sales, propertysold)
datamarketing# Best Marketing
datamarketing[which.max(datamarketing$propertysold),]#Kota dan Cluster Paling Menguntungkan
profitable= Data[,c("City","Cluster","Price")]
profitable[which.max(profitable$Price),]#Total Biaya Sdvertisment irene
costforad = subset(Data, subset=(Marketing_Name == "Irene"))
adscost = ( costforad$Advertisement * 4)
Totalcost=print(sum(adscost))## [1] 8796
# Rata-Rata cost iklan
Namasales = c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando")
ratacost = for (x in Namasales) {
f= subset ( Data, subset=(Marketing_Name == x ))
c=sum(f$Advertisement * 4)
print (cat(sum(c)/length(f$Id), (cat(x, 'Rata-rata pengeluaran untuk iklan'))))}## Angel Rata-rata pengeluaran untuk iklan39.64NULL
## Sherly Rata-rata pengeluaran untuk iklan42.2NULL
## Vanessa Rata-rata pengeluaran untuk iklan43.44NULL
## Irene Rata-rata pengeluaran untuk iklan43.98NULL
## Julian Rata-rata pengeluaran untuk iklan42.04NULL
## Jeffry Rata-rata pengeluaran untuk iklan39.68NULL
## Nikita Rata-rata pengeluaran untuk iklan43.6NULL
## Kefas Rata-rata pengeluaran untuk iklan41.28NULL
## Siana Rata-rata pengeluaran untuk iklan43.4NULL
## Lala Rata-rata pengeluaran untuk iklan44.04NULL
## Fallen Rata-rata pengeluaran untuk iklan42.8NULL
## Ardifo Rata-rata pengeluaran untuk iklan42.2NULL
## Kevin Rata-rata pengeluaran untuk iklan42.24NULL
## Juen Rata-rata pengeluaran untuk iklan40.88NULL
## Jerrel Rata-rata pengeluaran untuk iklan41.76NULL
## Imelda Rata-rata pengeluaran untuk iklan41.44NULL
## Widi Rata-rata pengeluaran untuk iklan41.78NULL
## Theodora Rata-rata pengeluaran untuk iklan41.54NULL
## Elvani Rata-rata pengeluaran untuk iklan41NULL
## Jonathan Rata-rata pengeluaran untuk iklan42.3NULL
## Sofia Rata-rata pengeluaran untuk iklan43.74NULL
## Abraham Rata-rata pengeluaran untuk iklan40.22NULL
## Siti Rata-rata pengeluaran untuk iklan39.58NULL
## Niko Rata-rata pengeluaran untuk iklan38.06NULL
## Sefli Rata-rata pengeluaran untuk iklan43.38NULL
## Bene Rata-rata pengeluaran untuk iklan43.88NULL
## Diana Rata-rata pengeluaran untuk iklan42.56NULL
## Pupe Rata-rata pengeluaran untuk iklan42.76NULL
## Andi Rata-rata pengeluaran untuk iklan40.14NULL
## Tatha Rata-rata pengeluaran untuk iklan43.56NULL
## Endri Rata-rata pengeluaran untuk iklan44.1NULL
## Monika Rata-rata pengeluaran untuk iklan43.16NULL
## Hans Rata-rata pengeluaran untuk iklan41.22NULL
## Debora Rata-rata pengeluaran untuk iklan41.08NULL
## Hanifa Rata-rata pengeluaran untuk iklan39.1NULL
## James Rata-rata pengeluaran untuk iklan38.96NULL
## Jihan Rata-rata pengeluaran untuk iklan39.02NULL
## Friska Rata-rata pengeluaran untuk iklan41.28NULL
## Ardiwan Rata-rata pengeluaran untuk iklan43.8NULL
## Bakti Rata-rata pengeluaran untuk iklan41.76NULL
## Anthon Rata-rata pengeluaran untuk iklan40.54NULL
## Amry Rata-rata pengeluaran untuk iklan41.36NULL
## Wiwik Rata-rata pengeluaran untuk iklan41.02NULL
## Bastian Rata-rata pengeluaran untuk iklan40.94NULL
## Budi Rata-rata pengeluaran untuk iklan42.04NULL
## Leo Rata-rata pengeluaran untuk iklan39.96NULL
## Simon Rata-rata pengeluaran untuk iklan43.66NULL
## Matius Rata-rata pengeluaran untuk iklan39.12NULL
## Arry Rata-rata pengeluaran untuk iklan41.52NULL
## Eliando Rata-rata pengeluaran untuk iklan43.06NULL
# Pendapatan
revenue= (sum(Data$Price)-(sum(Data$Advertisment) * 4))/((max(Data$Work_Exp))*12)
revenue## [1] 917232.2
Kasus 2
Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:
- Marital_Status : menetapkan status perkawinan acak (“Ya”, “Tidak”)
- Address : berikan alamat acak (JABODETABEK)
- Work_Location : menetapkan lokasi kerja secara acak (JABODETABEK)
- Age : menetapkan urutan angka acak (dari 19 hingga 60)
- Academic : menetapkan tingkat akademik acak (“J.School”, “H.School”, “Sarjana”, “Magister”, “Phd”)
- Job : 10 pekerjaan acak untuk setiap tingkat akademik
- Grade : 5 nilai acak untuk setiap Pekerjaan
- Income : tetapkan pendapatan yang mungkin untuk setiap Pekerjaan
- Spending : tetapkan kemungkinan pengeluaran untuk setiap Pekerjaan
- Number_of_children: menetapkan nomor acak di antara 0 dan 10 (sesuai dengan status perkawinan)
- Private_vehicle : menetapkan kemungkinan kendaraan pribadi untuk setiap orang (“Mobil”, “sepeda motor”, “Umum”)
- Home : “Sewa”, “Milik”, “Kredit”
Soal 1
Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!
R
marital_status <- sample(c("Yes", "No"), 50000, replace = T)
Address <-sample(c("Jakarta", "Bogor", "Depok", "Tangerang", "Bekasi"),50000, replace=T)
Work_Location <-sample(c("Jakarta", "Bogor", "Depok", "Tangerang", "Bekasi"),50000, replace=T)
Age <-floor (runif(50000,19,60))
Academic <-sample(c("J.School", "H.School", "Bachelor Degree", "Master",
"Phd"), 50000, replace = T)
Grade <-sample(c("S+", "S", "A+", "A",
"B"), 50000, replace=T)
Number_of_children <- ifelse(marital_status =="Yes", sample((c(0:10)), length(marital_status =="Yes"), replace=T), "0")
Private_vehicle <- sample(c("Car", "Motorcycle", "Public"),
50000, replace=T)
Home <- sample(c("Rent", "Own", "Credit"), 50000, replace=T)
Datasoal2 <-data.frame (marital_status, Address, Work_Location, Age, Academic, Grade, Number_of_children, Private_vehicle, Home)
library(data.table)
data.table(Datasoal2)Job <- ifelse (Datasoal2$Academic == "J.School", sample(c("Cleaning Service", "Security Guard", "Waiter")),
ifelse(Datasoal2$Academic == "H.School", sample(c("Waiter", "Security Guard")), ifelse(Datasoal2$Academic == "Bachelor Degree", sample(c("CEO", "Teacher")), ifelse(Datasoal2$Academic == "Master",sample(c("Board Director", "Actuarist", "Software Enginering")), sample(c("Head of Research", "Teacher"))
))))
Datasoal2 = data.frame(marital_status, Address, Work_Location, Age, Academic,Job, Grade, Number_of_children, Private_vehicle, Home)
Income <- ifelse (Datasoal2$Job == "Cleaning Service", sample(c(5000:6000)),
ifelse(Datasoal2$Job == "Clerk", sample(c(4500:5500)), ifelse(Datasoal2$Job == "Waiter", sample(c(4500:6000)), ifelse(Datasoal2$Job == "Teacher",sample(c(6000:9000)), ifelse (Datasoal2$Job == "Actuarist", sample(c(8500:13000)), ifelse(Datasoal2$ Job == "Software Enginering", sample(c(8000:12000)), ifelse (Datasoal2$Job =="Security Guard", sample(c(5000:5500)), ifelse (Datasoal2$Job== "Head of Research", sample(c(9000:14000)), ifelse(Datasoal2$Job == "CEO", sample(c(13000:20000)), sample(c(11000:16000))
)))))))))
Spending <- ifelse (Datasoal2$Job == "Cleaning Service", sample(c(3000:4500)),
ifelse(Datasoal2$Job == "Clerk", sample(c(2200:5100)), ifelse(Datasoal2$Job == "Waiter", sample(c(3000:5000)), ifelse(Datasoal2$Job == "Teacher",sample(c(4000:7500)), ifelse (Datasoal2$Job == "Actuarist", sample(c(3500:9000)), ifelse(Datasoal2$ Job == "Software Enginering", sample(c(5000:7500)), ifelse (Datasoal2$Job =="Security Guard", sample(c(4000:4500)), ifelse (Datasoal2$Job== "Head of Research", sample(c(6000:10500)), ifelse(Datasoal2$Job == "CEO", sample(c(6000:10000)), sample(c(5500:11000))
)))))))))
Datasoal2$Job=Job
Datasoal2$Income = Income
Datasoal2$Spending = Spending
Datasoal2Soal 2
Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?
R
summary(Datasoal2)## marital_status Address Work_Location Age
## Length:50000 Length:50000 Length:50000 Min. :19.00
## Class :character Class :character Class :character 1st Qu.:29.00
## Mode :character Mode :character Mode :character Median :39.00
## Mean :38.92
## 3rd Qu.:49.00
## Max. :59.00
## Academic Job Grade Number_of_children
## Length:50000 Length:50000 Length:50000 Length:50000
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Private_vehicle Home Income Spending
## Length:50000 Length:50000 Min. : 4500 Min. : 3000
## Class :character Class :character 1st Qu.: 5381 1st Qu.: 4216
## Mode :character Mode :character Median : 7505 Median : 5247
## Mean : 8704 Mean : 5783
## 3rd Qu.:11377 3rd Qu.: 7115
## Max. :20000 Max. :11000
`
Soal 3
Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?
R
Datasoal2$NetWorth = Datasoal2$Income-Datasoal2$Spending
Datasoal2#Potential untuk dipertahankan
subset(Datasoal2, NetWorth>= 7000)Referensi
- ref 1
- ref 2
- ref 3