Email : naufal3433@gmail.com
RPubs : https://www.rpubs.com/muhammad_naufal/
Jurusan : Statistika Bisnis
Address : Jalan Gunung Galunggung 5 Blok E9, No.21
Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property
seperti yang dapat kita lihat pada tabel berikut:
Id <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
"Peronia","Lavesh","Alindra","Sweethome", "Asera",
"Teradamai","Albasia", "Adara","Neon","Arana",
"Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price <- sample(c(7000:15000),10000, replace = T)
Date_Sales <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement <- sample(c(1:20), 10000, replace = T)
Data <- data.frame(Id,
Marketing_Name,
Work_Exp,
City,
Cluster,
Price,
Date_Sales,
Advertisement)
library(DT)
datatable(Data)
Kategorikan variabel Harga
pada dataset di atas menjadi tiga kelompok sebagai berikut:
Tetapkan ke dalam variabel baru yang disebut Kelas
dengan menggunakan fungsi kontrol If
, else if
, dan else
.
Kategorikan variabel Harga
pada dataset di atas menjadi enam kelompok sebagai berikut:
Tetapkan ke dalam variabel baru yang disebut Booking_fee
dengan menggunakan fungsi kontrol If
, else if
, dan else
.
Data$Booking_fee <- ifelse(Data$Price >= 13000,
Data$Price*0.1,
ifelse(Data$Price>=11000,
Data$Price*0.09,
ifelse(Data$Price>=10000,
Data$Price*0.08,
ifelse(Data$Price>=9000,
Data$Price*0.07,
ifelse(Data$Price>=8000,
Data$Price*0.06,
Data$Price*0.05)))))
library(DT)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property
, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for
.
Jika Anda akan mendapatkan bonus 2% dari Booking fee
per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break
.
Pada bagian ini, Anda diharapkan dapa membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.
Siapa nama marketing pemasaran terbaik?
Kota dan Cluster mana yang paling menguntungkan?
Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
Hitung Total Pendapatan (dalam Bulanan)
Siapa nama marketing pemasaran terbaik?
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.4 v stringr 1.4.0
## v tidyr 1.1.3 v forcats 0.5.1
## v readr 2.0.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Marketing_Sales <- aggregate(Price ~ Marketing_Name,
data = Data,
sum)
Marketing_Terbaik <- Marketing_Sales[
order(Marketing_Sales$Price,
decreasing = T),] %>%
head (1) %>%
print()
## Marketing_Name Price
## 33 Lala 2279948
library(dplyr)
City_Cluster <- aggregate(Price ~ City + Cluster,
data = Data,
sum)
City_Cluster_Menguntungkan <- City_Cluster [
order(City_Cluster$Price, decreasing = T),] %>%
head(1)%>%
print()
## City Cluster Price
## 89 Jakarta Tiara 1376788
Data$Advertisement <- as.numeric(Data$Advertisement)
Data$Advertisement_Cost <- Data$Advertisement * 4
Total_Biaya_Iklan <- sum(Data$Advertisement_Cost)
paste("The total cost was", Total_Biaya_Iklan)
## [1] "The total cost was 416252"
Marketing_Rata2_Biayaiklan <- aggregate(Advertisement_Cost ~ Marketing_Name,
data = Data,
mean)
library(DT)
datatable(Marketing_Rata2_Biayaiklan)
library(dplyr)
Data$Revenue <- Data$Booking_fee + Data$Price
Monthly_Revenue <- Data %>%
separate(Date_Sales, c("Year", "Month", "Day"), sep = "-") %>%
select(Year, Month, Revenue)
Total_Monthly_Revenue <- aggregate(Revenue ~ Year+Month,Monthly_Revenue, sum)
Total_Monthly_Revenue <- Total_Monthly_Revenue[order(Total_Monthly_Revenue$Year, decreasing = F),]
library(DT)
datatable(Total_Monthly_Revenue)
Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:
Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!
Marital_Status <- sample(c("yes","no"),50000, replace = T)
Address <- sample(c("Jakarta","Bogor", "Depok", "Tangerang", "Bekasi"),50000, replace = T)
Work_Location <- sample(c("Jakarta", "Bogor", "Depok", "Tangerang", "Bekasi"),50000, replace = T)
Age <- sample(19:60,50000,replace = T)
Academic <- sample(c("J.School","H.School","Undergraduate","Master","PhD"),50000,T)
Job <- ifelse (Academic=="J.School",
sample(c("Office Boy/Office Girl", "Pemelihara Anjing", "ART", "Buruh Pabrik", "Ojek Online", "Security", "Packing Barang","Pelayan Restoran", "Kasir", "Sopir")),
ifelse(Academic=="H.School",
sample(c("Asisten Administrasi", "Marketing","Drafter", "Guru Les", "Operator Labotarium", "Polisi","Data Entry", "Teknisi Listrik",
"Customer Service", "ABK")),
ifelse(Academic=="Undergraduate",
sample(c("Guru", "Pilot","Akuntan", "Nakhoda",
"Software Developer", "Masinis",
"Arsitektur", "PNS",
"Data Analyst", "Dokter")),
ifelse(Academic=="Master",
sample(c("Aktuaris", "Dosen",
"Data Scientist", "Dokter Spesialis",
"Computer Science & Engineering", "Enterpreneur",
"Notaris", "Biomedical Engineering",
"Psikolog", "Technology Management")),
sample(c("CEO", "Hakim", "Researcher", "Manager",
"Senior Marketing Profesional", "Anggota Dewan",
"Menteri", "Neuroscientist",
"Rektor", "Direktur"))
))))
Grade <- sample(1:5 ,50000,replace = T)
Salary_function <- function(x){
J.School <- sample(c(500000:2000000))
H.School <- sample(c(2000000:4000000))
Undergraduate <- sample(c(4000000:10000000))
Master <- sample(c(10000000:20000000))
PhD <- sample(c(20000000:50000000))
Basic_Salary<-ifelse(x=="J.School",
J.School,
ifelse(x=="H.School",
H.School,
ifelse(x=="Undergraduate",
Undergraduate,
ifelse(x=="Master",
Master,
PhD))))
}
Income <- Salary_function(Academic)
Spending <- 0.8*Income
Number_of_Children <- ifelse(Marital_Status=="yes",
sample(c(0:10)),
0)
Private_Vehicle <- sample(c('Car','Motorcycle','Public'),50000,replace = T)
Home <- sample(c("Sewa", "Milik", "Kredit"),50000, replace = T)
Asuransi_ABC <- data.frame(Marital_Status,
Address,
Work_Location,
Age,
Academic,
Job,
Grade,
Income,
Spending,
Number_of_Children,
Private_Vehicle,
Home)
library(DT)
datatable(Asuransi_ABC)
## Warning in instance$preRenderHook(instance): It seems your data is too big
## for client-side DataTables. You may consider server-side processing: https://
## rstudio.github.io/DT/server.html
Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?
## Marital_Status Address Work_Location Age
## Length:50000 Length:50000 Length:50000 Min. :19.00
## Class :character Class :character Class :character 1st Qu.:29.00
## Mode :character Mode :character Mode :character Median :39.00
## Mean :39.47
## 3rd Qu.:50.00
## Max. :60.00
## Academic Job Grade Income
## Length:50000 Length:50000 Min. :1.000 Min. : 500125
## Class :character Class :character 1st Qu.:2.000 1st Qu.: 2485191
## Mode :character Mode :character Median :3.000 Median : 7074238
## Mean :2.987 Mean :12321773
## 3rd Qu.:4.000 3rd Qu.:17649332
## Max. :5.000 Max. :49996755
## Spending Number_of_Children Private_Vehicle Home
## Min. : 400100 Min. : 0.000 Length:50000 Length:50000
## 1st Qu.: 1988153 1st Qu.: 0.000 Class :character Class :character
## Median : 5659390 Median : 0.000 Mode :character Mode :character
## Mean : 9857419 Mean : 2.506
## 3rd Qu.:14119465 3rd Qu.: 5.000
## Max. :39997404 Max. :10.000
#yang penting adalah pengeluaran, pemasukan, Home.
#Spending karena mempengaruhi pemasukan perusahaan ( Jika terlalu boros)
#Income karena harus menyetarakan pemasukan pelanggan dengan biaya asuransinya
#Home karena kalau rumahnya milik tidak ada tanggungan lain ,
#Jika sewa atau kredit akan mempengaruhi pembayaran asuransi
Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?
kategori <- Vectorize(function(Income)
{
if (Income > 4000000){
print('Yes')}
else {
print('No')}
})
Asuransi_ABC$dipertahankan <- kategori(Asuransi_ABC$Income)
## Warning in instance$preRenderHook(instance): It seems your data is too big
## for client-side DataTables. You may consider server-side processing: https://
## rstudio.github.io/DT/server.html