Algoritma & Struktur Data
~ Ujian Tengah Semester ~
| Kontak | : \(\downarrow\) |
| dsciencelabs@outlook.com | |
| https://www.instagram.com/cvnopp_/ | |
| RPubs | https://rpubs.com/calvinriswandy/ |
Kasus 1
Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property seperti yang dapat kita lihat pada tabel berikut:
Id <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
"Peronia","Lavesh","Alindra","Sweethome", "Asera",
"Teradamai","Albasia", "Adara","Neon","Arana",
"Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price <- sample(c(7000:15000),10000, replace = T)
Date_Sales <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement <- sample(c(1:20), 10000, replace = T)
Data <- data.frame(Id,
Marketing_Name,
Work_Exp,
City,
Cluster,
Price,
Date_Sales,
Advertisement)
library(DT)
datatable(Data)Soal 1
Kategorikan variabel Harga pada dataset di atas menjadi tiga kelompok sebagai berikut:
- \(\text{High} > 12000\)
- \(10000 \le \text{Medium} \le 12000\)
- \(\text{Low} < 10000\)
Tetapkan ke dalam variabel baru yang disebut Kelas dengan menggunakan fungsi kontrol If, else if, dan else.
x = Data$Price
k= ifelse((x>12000),print('High'),
ifelse((x>=10000 & x<= 12000), print("Medium"),print('Low')
))## [1] "High"
## [1] "Medium"
## [1] "Low"
Data$Class = k
datatable(Data)Data$Class = k
DataSoal 2
Kategorikan variabel Harga pada dataset di atas menjadi enam kelompok sebagai berikut:
- Booking_fee nya 5 % jika \(\text{Price} < 8000\)
- Booking_fee nya 6 % jika \(8000 \le \text{Price} < 9000\)
- Booking_fee nya 7 % jika \(9000 \le \text{Price} < 10000\)
- Booking_fee nya 8 % jika \(10000 \le \text{Price} < 11000\)
- Booking_fee nya 9 % jika \(11000 \le \text{Price} < 13000\)
- Booking_fee nya 10 % jika \(13000 \le \text{Price} \le 15000\)
Tetapkan ke dalam variabel baru yang disebut Booking_fee dengan menggunakan fungsi kontrol If, else if, dan else.
R
x = Data$Price
b= ifelse((x<8000),5/100,
ifelse((x>=8000 & x< 9000),6/100,
ifelse((x>=9000 & x< 10000),7/100,
ifelse((x>=10000 & x< 11000),8/100,
ifelse((x>=11000 & x< 13000),9/100,10/100
)))))
Data$Booking_Fee = b
datatable(Data)Soal 3
Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for.
R
# Contoh mengumpulkan data penjualan Lala
library(DT)
penjual = "Lala"
for (x in penjual){
print(subset(Data, subset=(Marketing_Name == x)))
}## Id Marketing_Name Work_Exp City Cluster Price Date_Sales
## 10 10 Lala 7.3 Tengerang Albasia 14667 2018-09-07
## 60 60 Lala 7.3 Bogor Lavesh 12834 2018-01-26
## 110 110 Lala 7.3 Bekasi Arana 14483 2020-02-29
## 160 160 Lala 7.3 Jakarta Palmyra 7171 2020-02-04
## 210 210 Lala 7.3 Bekasi Permata 10519 2019-08-01
## 260 260 Lala 7.3 Jakarta Asera 8065 2020-07-31
## 310 310 Lala 7.3 Bogor Peronia 14324 2018-06-04
## 360 360 Lala 7.3 Tengerang Primadona 8770 2019-10-20
## 410 410 Lala 7.3 Tengerang Alamanda 11020 2018-12-02
## 460 460 Lala 7.3 Depok Winona 10560 2018-12-22
## 510 510 Lala 7.3 Jakarta Asoka 12615 2020-04-11
## 560 560 Lala 7.3 Jakarta Mutiara 13936 2018-10-11
## 610 610 Lala 7.3 Bogor Victoria 12689 2019-09-06
## 660 660 Lala 7.3 Bekasi Mutiara 7727 2020-07-11
## 710 710 Lala 7.3 Bekasi Alindra 8257 2018-03-13
## 760 760 Lala 7.3 Depok Primadona 9170 2018-09-24
## 810 810 Lala 7.3 Bogor Palmyra 14452 2019-11-16
## 860 860 Lala 7.3 Depok Narada 7298 2019-05-11
## 910 910 Lala 7.3 Jakarta Permata 9318 2020-01-14
## 960 960 Lala 7.3 Depok Victoria 7632 2018-12-06
## 1010 1010 Lala 7.3 Jakarta Adara 8882 2018-10-01
## 1060 1060 Lala 7.3 Bogor Peronia 12757 2018-09-20
## 1110 1110 Lala 7.3 Tengerang Adara 11064 2020-05-19
## 1160 1160 Lala 7.3 Bogor Permata 12819 2019-09-13
## 1210 1210 Lala 7.3 Depok Tiara 14475 2020-03-16
## 1260 1260 Lala 7.3 Depok Mutiara 13854 2018-01-08
## 1310 1310 Lala 7.3 Tengerang Permata 9316 2018-09-20
## 1360 1360 Lala 7.3 Tengerang Asoka 13901 2019-06-10
## 1410 1410 Lala 7.3 Tengerang Primadona 10574 2020-03-11
## 1460 1460 Lala 7.3 Jakarta Palmyra 8846 2019-03-01
## 1510 1510 Lala 7.3 Depok Palmyra 8838 2019-06-29
## 1560 1560 Lala 7.3 Bekasi Victoria 10617 2018-06-18
## 1610 1610 Lala 7.3 Bekasi Permata 9192 2019-01-03
## 1660 1660 Lala 7.3 Bekasi Tiara 11817 2019-01-02
## 1710 1710 Lala 7.3 Jakarta Neon 14608 2020-01-12
## 1760 1760 Lala 7.3 Bogor Albasia 14146 2018-01-28
## 1810 1810 Lala 7.3 Bekasi Winona 8678 2019-07-01
## 1860 1860 Lala 7.3 Depok Mutiara 10003 2018-05-23
## 1910 1910 Lala 7.3 Tengerang Lavesh 7066 2018-07-29
## 1960 1960 Lala 7.3 Depok Palmyra 7598 2019-08-28
## 2010 2010 Lala 7.3 Bekasi Permata 8568 2019-09-10
## 2060 2060 Lala 7.3 Depok Permata 7613 2018-03-06
## 2110 2110 Lala 7.3 Tengerang Alindra 12399 2018-07-30
## 2160 2160 Lala 7.3 Depok Arana 13349 2018-05-16
## 2210 2210 Lala 7.3 Bogor Adara 10914 2018-05-30
## 2260 2260 Lala 7.3 Jakarta Alamanda 7218 2018-07-14
## 2310 2310 Lala 7.3 Tengerang Alamanda 8431 2018-09-09
## 2360 2360 Lala 7.3 Tengerang Alindra 10065 2020-01-10
## 2410 2410 Lala 7.3 Tengerang Tiara 7283 2018-09-12
## 2460 2460 Lala 7.3 Depok Tiara 12151 2020-04-23
## 2510 2510 Lala 7.3 Bogor Albasia 8837 2019-05-25
## 2560 2560 Lala 7.3 Tengerang Primadona 7015 2018-07-30
## 2610 2610 Lala 7.3 Bogor Winona 13383 2019-04-23
## 2660 2660 Lala 7.3 Jakarta Peronia 8781 2020-02-27
## 2710 2710 Lala 7.3 Jakarta Palmyra 9043 2020-01-12
## 2760 2760 Lala 7.3 Depok Winona 9833 2018-05-06
## 2810 2810 Lala 7.3 Bogor Asera 7487 2018-06-11
## 2860 2860 Lala 7.3 Bekasi Lavesh 13315 2019-08-28
## 2910 2910 Lala 7.3 Bekasi Victoria 11862 2018-11-29
## 2960 2960 Lala 7.3 Bekasi Peronia 14292 2020-04-08
## 3010 3010 Lala 7.3 Depok Asera 8696 2019-01-18
## 3060 3060 Lala 7.3 Tengerang Tiara 13862 2020-07-06
## 3110 3110 Lala 7.3 Bekasi Albasia 14920 2019-05-25
## 3160 3160 Lala 7.3 Bekasi Arana 13962 2019-06-21
## 3210 3210 Lala 7.3 Tengerang Primadona 10115 2020-08-19
## 3260 3260 Lala 7.3 Tengerang Adara 9634 2020-05-09
## 3310 3310 Lala 7.3 Jakarta Asoka 13041 2019-04-08
## 3360 3360 Lala 7.3 Bekasi Alamanda 14473 2018-08-08
## 3410 3410 Lala 7.3 Depok Peronia 12881 2018-02-17
## 3460 3460 Lala 7.3 Bogor Peronia 13122 2019-09-05
## 3510 3510 Lala 7.3 Depok Asera 12985 2018-04-01
## 3560 3560 Lala 7.3 Tengerang Teradamai 9267 2020-02-27
## 3610 3610 Lala 7.3 Jakarta Adara 11237 2020-08-25
## 3660 3660 Lala 7.3 Tengerang Winona 7324 2020-03-05
## 3710 3710 Lala 7.3 Bogor Tiara 14657 2019-06-13
## 3760 3760 Lala 7.3 Jakarta Asera 12701 2018-08-30
## 3810 3810 Lala 7.3 Bekasi Winona 11141 2020-07-30
## 3860 3860 Lala 7.3 Jakarta Albasia 12348 2019-08-13
## 3910 3910 Lala 7.3 Bekasi Permata 9343 2019-08-10
## 3960 3960 Lala 7.3 Bogor Alindra 8577 2018-06-18
## 4010 4010 Lala 7.3 Bekasi Arana 11562 2019-08-04
## 4060 4060 Lala 7.3 Bekasi Neon 13368 2018-02-02
## 4110 4110 Lala 7.3 Bekasi Arana 13116 2018-01-01
## 4160 4160 Lala 7.3 Depok Teradamai 10563 2018-05-12
## 4210 4210 Lala 7.3 Bogor Neon 9992 2020-04-08
## 4260 4260 Lala 7.3 Tengerang Asera 12172 2018-08-01
## 4310 4310 Lala 7.3 Bekasi Neon 10554 2019-06-09
## 4360 4360 Lala 7.3 Depok Sweethome 9495 2019-08-07
## 4410 4410 Lala 7.3 Jakarta Peronia 8445 2019-05-02
## 4460 4460 Lala 7.3 Tengerang Sweethome 7289 2020-05-02
## 4510 4510 Lala 7.3 Jakarta Teradamai 13575 2020-01-20
## 4560 4560 Lala 7.3 Depok Victoria 10819 2019-06-25
## 4610 4610 Lala 7.3 Jakarta Permata 13434 2020-06-24
## 4660 4660 Lala 7.3 Depok Alindra 7436 2019-12-13
## 4710 4710 Lala 7.3 Depok Alamanda 7500 2020-01-28
## 4760 4760 Lala 7.3 Tengerang Winona 12492 2020-02-21
## 4810 4810 Lala 7.3 Bogor Mutiara 10528 2019-05-26
## 4860 4860 Lala 7.3 Jakarta Neon 10714 2019-01-17
## 4910 4910 Lala 7.3 Jakarta Sweethome 10126 2019-05-26
## 4960 4960 Lala 7.3 Jakarta Albasia 11910 2018-09-03
## 5010 5010 Lala 7.3 Tengerang Lavesh 11865 2019-01-03
## 5060 5060 Lala 7.3 Jakarta Alamanda 10555 2018-08-18
## 5110 5110 Lala 7.3 Jakarta Victoria 10823 2018-12-06
## 5160 5160 Lala 7.3 Jakarta Albasia 9187 2018-05-08
## 5210 5210 Lala 7.3 Jakarta Mutiara 14768 2019-11-14
## 5260 5260 Lala 7.3 Jakarta Albasia 11928 2020-01-07
## 5310 5310 Lala 7.3 Jakarta Adara 9990 2020-06-06
## 5360 5360 Lala 7.3 Jakarta Narada 8340 2019-04-05
## 5410 5410 Lala 7.3 Jakarta Asoka 7760 2018-04-06
## 5460 5460 Lala 7.3 Bogor Teradamai 13703 2019-03-27
## 5510 5510 Lala 7.3 Bogor Asoka 10654 2018-06-24
## 5560 5560 Lala 7.3 Bogor Narada 9051 2018-04-11
## 5610 5610 Lala 7.3 Bekasi Alindra 14662 2018-03-21
## 5660 5660 Lala 7.3 Bogor Permata 8293 2020-01-20
## 5710 5710 Lala 7.3 Tengerang Peronia 8566 2018-09-03
## 5760 5760 Lala 7.3 Depok Alamanda 7782 2019-05-30
## 5810 5810 Lala 7.3 Bogor Adara 14502 2018-04-16
## 5860 5860 Lala 7.3 Jakarta Tiara 7766 2018-08-18
## 5910 5910 Lala 7.3 Bekasi Tiara 14108 2019-01-12
## 5960 5960 Lala 7.3 Jakarta Tiara 12713 2018-09-11
## 6010 6010 Lala 7.3 Depok Narada 9520 2019-10-19
## 6060 6060 Lala 7.3 Tengerang Sweethome 11188 2020-01-26
## 6110 6110 Lala 7.3 Bekasi Peronia 12356 2020-08-22
## 6160 6160 Lala 7.3 Jakarta Alindra 7438 2018-10-15
## 6210 6210 Lala 7.3 Jakarta Neon 10293 2018-12-16
## 6260 6260 Lala 7.3 Bekasi Narada 14942 2019-09-26
## 6310 6310 Lala 7.3 Bogor Asoka 9448 2020-08-22
## 6360 6360 Lala 7.3 Bogor Palmyra 11207 2019-11-29
## 6410 6410 Lala 7.3 Bekasi Asera 8608 2019-07-14
## 6460 6460 Lala 7.3 Depok Albasia 11832 2020-07-22
## 6510 6510 Lala 7.3 Depok Narada 14956 2019-04-15
## 6560 6560 Lala 7.3 Depok Peronia 10613 2020-05-24
## 6610 6610 Lala 7.3 Jakarta Teradamai 8343 2018-07-12
## 6660 6660 Lala 7.3 Depok Neon 14938 2018-02-24
## 6710 6710 Lala 7.3 Jakarta Teradamai 13054 2019-05-01
## 6760 6760 Lala 7.3 Tengerang Neon 10371 2018-02-28
## 6810 6810 Lala 7.3 Tengerang Winona 8502 2019-06-16
## 6860 6860 Lala 7.3 Tengerang Adara 10789 2019-04-26
## 6910 6910 Lala 7.3 Bekasi Narada 12742 2019-03-26
## 6960 6960 Lala 7.3 Bogor Alamanda 7308 2019-08-21
## 7010 7010 Lala 7.3 Jakarta Lavesh 10189 2019-07-07
## 7060 7060 Lala 7.3 Jakarta Albasia 8593 2019-04-16
## 7110 7110 Lala 7.3 Jakarta Primadona 8932 2019-10-24
## 7160 7160 Lala 7.3 Jakarta Narada 11863 2020-04-29
## 7210 7210 Lala 7.3 Tengerang Mutiara 11476 2018-05-26
## 7260 7260 Lala 7.3 Tengerang Permata 11097 2020-07-16
## 7310 7310 Lala 7.3 Bekasi Narada 14396 2018-12-21
## 7360 7360 Lala 7.3 Jakarta Peronia 7417 2020-09-14
## 7410 7410 Lala 7.3 Jakarta Albasia 8152 2018-02-21
## 7460 7460 Lala 7.3 Bekasi Sweethome 8794 2019-07-06
## 7510 7510 Lala 7.3 Bogor Alindra 7047 2018-08-20
## 7560 7560 Lala 7.3 Jakarta Teradamai 12712 2018-12-22
## 7610 7610 Lala 7.3 Bekasi Asera 10994 2020-06-27
## 7660 7660 Lala 7.3 Jakarta Permata 9448 2019-05-21
## 7710 7710 Lala 7.3 Tengerang Albasia 14119 2018-04-25
## 7760 7760 Lala 7.3 Bekasi Alamanda 8977 2020-06-25
## 7810 7810 Lala 7.3 Tengerang Arana 12157 2019-08-30
## 7860 7860 Lala 7.3 Jakarta Palmyra 8212 2020-06-03
## 7910 7910 Lala 7.3 Depok Tiara 14692 2020-07-12
## 7960 7960 Lala 7.3 Bogor Permata 7490 2019-05-24
## 8010 8010 Lala 7.3 Jakarta Victoria 11113 2019-04-16
## 8060 8060 Lala 7.3 Jakarta Permata 11984 2019-02-03
## 8110 8110 Lala 7.3 Depok Winona 13866 2018-08-19
## 8160 8160 Lala 7.3 Depok Primadona 8621 2018-01-30
## 8210 8210 Lala 7.3 Bogor Teradamai 12270 2018-07-03
## 8260 8260 Lala 7.3 Bogor Sweethome 9260 2018-11-24
## 8310 8310 Lala 7.3 Depok Palmyra 9437 2019-12-14
## 8360 8360 Lala 7.3 Bogor Alamanda 14665 2018-09-08
## 8410 8410 Lala 7.3 Jakarta Asera 11419 2018-07-09
## 8460 8460 Lala 7.3 Depok Peronia 14831 2018-10-01
## 8510 8510 Lala 7.3 Jakarta Narada 13735 2020-04-30
## 8560 8560 Lala 7.3 Jakarta Sweethome 11793 2020-03-29
## 8610 8610 Lala 7.3 Depok Victoria 12082 2019-07-25
## 8660 8660 Lala 7.3 Bekasi Alindra 9739 2018-04-13
## 8710 8710 Lala 7.3 Tengerang Peronia 12553 2018-05-24
## 8760 8760 Lala 7.3 Bogor Alindra 11505 2019-08-12
## 8810 8810 Lala 7.3 Bekasi Alindra 8785 2018-08-08
## 8860 8860 Lala 7.3 Bekasi Neon 7896 2018-06-08
## 8910 8910 Lala 7.3 Depok Mutiara 9219 2018-05-03
## 8960 8960 Lala 7.3 Tengerang Peronia 12213 2018-12-11
## 9010 9010 Lala 7.3 Bogor Permata 14582 2018-09-26
## 9060 9060 Lala 7.3 Jakarta Teradamai 11685 2018-11-20
## 9110 9110 Lala 7.3 Jakarta Neon 14282 2019-06-18
## 9160 9160 Lala 7.3 Depok Mutiara 8316 2019-06-08
## 9210 9210 Lala 7.3 Bekasi Arana 7576 2019-05-22
## 9260 9260 Lala 7.3 Depok Primadona 13372 2019-06-03
## 9310 9310 Lala 7.3 Depok Palmyra 13099 2018-04-28
## 9360 9360 Lala 7.3 Jakarta Neon 8824 2020-02-10
## 9410 9410 Lala 7.3 Bogor Palmyra 13166 2019-09-05
## 9460 9460 Lala 7.3 Jakarta Narada 11265 2019-11-04
## 9510 9510 Lala 7.3 Tengerang Victoria 8865 2018-10-25
## 9560 9560 Lala 7.3 Jakarta Alamanda 10588 2018-05-12
## 9610 9610 Lala 7.3 Depok Alamanda 8230 2019-09-28
## 9660 9660 Lala 7.3 Tengerang Mutiara 12355 2019-05-20
## 9710 9710 Lala 7.3 Bekasi Adara 8009 2019-02-19
## 9760 9760 Lala 7.3 Bogor Tiara 14258 2020-05-03
## 9810 9810 Lala 7.3 Depok Teradamai 13860 2019-09-27
## 9860 9860 Lala 7.3 Bogor Asera 10900 2019-11-17
## 9910 9910 Lala 7.3 Tengerang Teradamai 11355 2018-01-25
## 9960 9960 Lala 7.3 Tengerang Asera 9298 2018-04-20
## Advertisement Class Booking_Fee
## 10 4 High 0.10
## 60 19 High 0.09
## 110 3 High 0.10
## 160 19 Low 0.05
## 210 19 Medium 0.08
## 260 18 Low 0.06
## 310 14 High 0.10
## 360 13 Low 0.06
## 410 10 Medium 0.09
## 460 3 Medium 0.08
## 510 1 High 0.09
## 560 11 High 0.10
## 610 11 High 0.09
## 660 9 Low 0.05
## 710 3 Low 0.06
## 760 12 Low 0.07
## 810 1 High 0.10
## 860 18 Low 0.05
## 910 10 Low 0.07
## 960 2 Low 0.05
## 1010 2 Low 0.06
## 1060 17 High 0.09
## 1110 20 Medium 0.09
## 1160 10 High 0.09
## 1210 6 High 0.10
## 1260 3 High 0.10
## 1310 14 Low 0.07
## 1360 10 High 0.10
## 1410 7 Medium 0.08
## 1460 12 Low 0.06
## 1510 8 Low 0.06
## 1560 14 Medium 0.08
## 1610 13 Low 0.07
## 1660 16 Medium 0.09
## 1710 7 High 0.10
## 1760 8 High 0.10
## 1810 19 Low 0.06
## 1860 20 Medium 0.08
## 1910 15 Low 0.05
## 1960 12 Low 0.05
## 2010 20 Low 0.06
## 2060 5 Low 0.05
## 2110 14 High 0.09
## 2160 10 High 0.10
## 2210 7 Medium 0.08
## 2260 4 Low 0.05
## 2310 11 Low 0.06
## 2360 17 Medium 0.08
## 2410 1 Low 0.05
## 2460 6 High 0.09
## 2510 5 Low 0.06
## 2560 2 Low 0.05
## 2610 15 High 0.10
## 2660 7 Low 0.06
## 2710 11 Low 0.07
## 2760 8 Low 0.07
## 2810 13 Low 0.05
## 2860 3 High 0.10
## 2910 15 Medium 0.09
## 2960 5 High 0.10
## 3010 2 Low 0.06
## 3060 20 High 0.10
## 3110 9 High 0.10
## 3160 15 High 0.10
## 3210 1 Medium 0.08
## 3260 13 Low 0.07
## 3310 20 High 0.10
## 3360 1 High 0.10
## 3410 12 High 0.09
## 3460 18 High 0.10
## 3510 5 High 0.09
## 3560 12 Low 0.07
## 3610 11 Medium 0.09
## 3660 8 Low 0.05
## 3710 12 High 0.10
## 3760 1 High 0.09
## 3810 6 Medium 0.09
## 3860 19 High 0.09
## 3910 5 Low 0.07
## 3960 6 Low 0.06
## 4010 3 Medium 0.09
## 4060 18 High 0.10
## 4110 17 High 0.10
## 4160 17 Medium 0.08
## 4210 9 Low 0.07
## 4260 6 High 0.09
## 4310 2 Medium 0.08
## 4360 20 Low 0.07
## 4410 16 Low 0.06
## 4460 16 Low 0.05
## 4510 20 High 0.10
## 4560 14 Medium 0.08
## 4610 5 High 0.10
## 4660 13 Low 0.05
## 4710 8 Low 0.05
## 4760 3 High 0.09
## 4810 20 Medium 0.08
## 4860 3 Medium 0.08
## 4910 16 Medium 0.08
## 4960 6 Medium 0.09
## 5010 19 Medium 0.09
## 5060 4 Medium 0.08
## 5110 9 Medium 0.08
## 5160 1 Low 0.07
## 5210 15 High 0.10
## 5260 7 Medium 0.09
## 5310 1 Low 0.07
## 5360 15 Low 0.06
## 5410 2 Low 0.05
## 5460 9 High 0.10
## 5510 7 Medium 0.08
## 5560 6 Low 0.07
## 5610 16 High 0.10
## 5660 13 Low 0.06
## 5710 13 Low 0.06
## 5760 12 Low 0.05
## 5810 19 High 0.10
## 5860 12 Low 0.05
## 5910 14 High 0.10
## 5960 3 High 0.09
## 6010 3 Low 0.07
## 6060 13 Medium 0.09
## 6110 14 High 0.09
## 6160 8 Low 0.05
## 6210 16 Medium 0.08
## 6260 7 High 0.10
## 6310 20 Low 0.07
## 6360 7 Medium 0.09
## 6410 13 Low 0.06
## 6460 5 Medium 0.09
## 6510 10 High 0.10
## 6560 14 Medium 0.08
## 6610 18 Low 0.06
## 6660 6 High 0.10
## 6710 6 High 0.10
## 6760 10 Medium 0.08
## 6810 11 Low 0.06
## 6860 12 Medium 0.08
## 6910 6 High 0.09
## 6960 1 Low 0.05
## 7010 8 Medium 0.08
## 7060 11 Low 0.06
## 7110 1 Low 0.06
## 7160 6 Medium 0.09
## 7210 18 Medium 0.09
## 7260 7 Medium 0.09
## 7310 7 High 0.10
## 7360 11 Low 0.05
## 7410 17 Low 0.06
## 7460 16 Low 0.06
## 7510 19 Low 0.05
## 7560 8 High 0.09
## 7610 4 Medium 0.08
## 7660 7 Low 0.07
## 7710 10 High 0.10
## 7760 19 Low 0.06
## 7810 17 High 0.09
## 7860 1 Low 0.06
## 7910 7 High 0.10
## 7960 9 Low 0.05
## 8010 9 Medium 0.09
## 8060 7 Medium 0.09
## 8110 3 High 0.10
## 8160 4 Low 0.06
## 8210 14 High 0.09
## 8260 14 Low 0.07
## 8310 17 Low 0.07
## 8360 20 High 0.10
## 8410 17 Medium 0.09
## 8460 19 High 0.10
## 8510 10 High 0.10
## 8560 12 Medium 0.09
## 8610 12 High 0.09
## 8660 8 Low 0.07
## 8710 19 High 0.09
## 8760 4 Medium 0.09
## 8810 3 Low 0.06
## 8860 3 Low 0.05
## 8910 10 Low 0.07
## 8960 3 High 0.09
## 9010 13 High 0.10
## 9060 7 Medium 0.09
## 9110 11 High 0.10
## 9160 4 Low 0.06
## 9210 10 Low 0.05
## 9260 10 High 0.10
## 9310 5 High 0.10
## 9360 18 Low 0.06
## 9410 2 High 0.10
## 9460 3 Medium 0.09
## 9510 3 Low 0.06
## 9560 14 Medium 0.08
## 9610 13 Low 0.06
## 9660 13 High 0.09
## 9710 7 Low 0.06
## 9760 20 High 0.10
## 9810 11 High 0.10
## 9860 10 Medium 0.08
## 9910 3 Medium 0.09
## 9960 14 Low 0.07
# Contoh mengumpulkan data penjualan Jeffry
library(DT)
penjual = "Jeffry"
for (x in penjual){
print(subset(Data, subset=(Marketing_Name == x)))
}## Id Marketing_Name Work_Exp City Cluster Price Date_Sales
## 6 6 Jeffry 4.7 Depok Alamanda 7856 2018-02-17
## 56 56 Jeffry 4.7 Tengerang Alindra 12960 2018-01-20
## 106 106 Jeffry 4.7 Tengerang Permata 13052 2018-11-06
## 156 156 Jeffry 4.7 Bogor Sweethome 10238 2018-08-05
## 206 206 Jeffry 4.7 Tengerang Tiara 8553 2020-06-08
## 256 256 Jeffry 4.7 Jakarta Asera 13589 2019-09-03
## 306 306 Jeffry 4.7 Depok Sweethome 12918 2018-04-21
## 356 356 Jeffry 4.7 Bekasi Teradamai 13269 2020-04-28
## 406 406 Jeffry 4.7 Bekasi Victoria 10587 2020-01-19
## 456 456 Jeffry 4.7 Bekasi Mutiara 14217 2018-04-22
## 506 506 Jeffry 4.7 Tengerang Tiara 9274 2019-11-18
## 556 556 Jeffry 4.7 Depok Winona 8095 2018-01-10
## 606 606 Jeffry 4.7 Jakarta Mutiara 11740 2019-11-10
## 656 656 Jeffry 4.7 Bekasi Primadona 13816 2019-08-02
## 706 706 Jeffry 4.7 Bogor Permata 13740 2019-03-27
## 756 756 Jeffry 4.7 Bogor Arana 8104 2019-04-28
## 806 806 Jeffry 4.7 Jakarta Alamanda 11770 2020-07-26
## 856 856 Jeffry 4.7 Bogor Adara 12495 2018-10-16
## 906 906 Jeffry 4.7 Tengerang Permata 12402 2018-05-15
## 956 956 Jeffry 4.7 Depok Lavesh 9454 2018-09-05
## 1006 1006 Jeffry 4.7 Bekasi Tiara 11718 2019-01-25
## 1056 1056 Jeffry 4.7 Jakarta Neon 14104 2019-09-17
## 1106 1106 Jeffry 4.7 Depok Alindra 7397 2018-02-03
## 1156 1156 Jeffry 4.7 Tengerang Adara 9747 2019-12-27
## 1206 1206 Jeffry 4.7 Tengerang Peronia 10847 2019-06-17
## 1256 1256 Jeffry 4.7 Depok Sweethome 10055 2019-12-23
## 1306 1306 Jeffry 4.7 Bekasi Winona 11449 2019-07-07
## 1356 1356 Jeffry 4.7 Jakarta Alindra 10516 2019-11-24
## 1406 1406 Jeffry 4.7 Jakarta Adara 8956 2018-07-09
## 1456 1456 Jeffry 4.7 Depok Permata 10168 2019-04-15
## 1506 1506 Jeffry 4.7 Tengerang Tiara 13466 2019-04-04
## 1556 1556 Jeffry 4.7 Bekasi Palmyra 13076 2019-04-30
## 1606 1606 Jeffry 4.7 Jakarta Asera 8705 2019-08-16
## 1656 1656 Jeffry 4.7 Depok Primadona 12248 2018-06-12
## 1706 1706 Jeffry 4.7 Tengerang Asoka 10750 2018-04-17
## 1756 1756 Jeffry 4.7 Depok Sweethome 9640 2020-01-20
## 1806 1806 Jeffry 4.7 Jakarta Teradamai 9593 2019-07-12
## 1856 1856 Jeffry 4.7 Tengerang Peronia 12893 2019-12-08
## 1906 1906 Jeffry 4.7 Bogor Palmyra 8614 2019-01-26
## 1956 1956 Jeffry 4.7 Jakarta Permata 13894 2018-05-04
## 2006 2006 Jeffry 4.7 Bekasi Lavesh 13540 2019-10-04
## 2056 2056 Jeffry 4.7 Jakarta Mutiara 8097 2019-09-25
## 2106 2106 Jeffry 4.7 Depok Tiara 13548 2018-09-19
## 2156 2156 Jeffry 4.7 Tengerang Alindra 10106 2019-12-16
## 2206 2206 Jeffry 4.7 Jakarta Alamanda 10359 2018-02-07
## 2256 2256 Jeffry 4.7 Depok Victoria 12682 2020-09-06
## 2306 2306 Jeffry 4.7 Depok Arana 9676 2019-12-04
## 2356 2356 Jeffry 4.7 Jakarta Albasia 9455 2020-04-15
## 2406 2406 Jeffry 4.7 Bogor Teradamai 12724 2018-06-15
## 2456 2456 Jeffry 4.7 Jakarta Lavesh 12479 2020-03-05
## 2506 2506 Jeffry 4.7 Tengerang Adara 14439 2020-05-11
## 2556 2556 Jeffry 4.7 Bekasi Permata 7227 2018-08-19
## 2606 2606 Jeffry 4.7 Bekasi Alamanda 13070 2019-09-29
## 2656 2656 Jeffry 4.7 Bogor Sweethome 8366 2019-01-04
## 2706 2706 Jeffry 4.7 Bekasi Lavesh 7388 2020-01-09
## 2756 2756 Jeffry 4.7 Bekasi Teradamai 11183 2018-04-07
## 2806 2806 Jeffry 4.7 Bekasi Mutiara 10983 2019-06-19
## 2856 2856 Jeffry 4.7 Bogor Primadona 12133 2019-11-26
## 2906 2906 Jeffry 4.7 Tengerang Narada 8779 2020-01-06
## 2956 2956 Jeffry 4.7 Bogor Alamanda 13234 2018-10-05
## 3006 3006 Jeffry 4.7 Jakarta Teradamai 12579 2018-12-03
## 3056 3056 Jeffry 4.7 Tengerang Neon 9745 2018-12-27
## 3106 3106 Jeffry 4.7 Bekasi Alamanda 14293 2019-01-04
## 3156 3156 Jeffry 4.7 Bogor Teradamai 7751 2019-01-05
## 3206 3206 Jeffry 4.7 Tengerang Neon 13012 2019-05-06
## 3256 3256 Jeffry 4.7 Tengerang Narada 8555 2018-03-07
## 3306 3306 Jeffry 4.7 Bekasi Alamanda 13324 2020-07-19
## 3356 3356 Jeffry 4.7 Bekasi Winona 14760 2018-11-16
## 3406 3406 Jeffry 4.7 Bekasi Primadona 7515 2020-05-29
## 3456 3456 Jeffry 4.7 Jakarta Asoka 8277 2019-02-01
## 3506 3506 Jeffry 4.7 Tengerang Palmyra 8818 2019-08-18
## 3556 3556 Jeffry 4.7 Tengerang Tiara 14636 2019-07-08
## 3606 3606 Jeffry 4.7 Depok Adara 14665 2019-12-29
## 3656 3656 Jeffry 4.7 Jakarta Primadona 7110 2018-07-23
## 3706 3706 Jeffry 4.7 Bekasi Adara 11376 2019-08-11
## 3756 3756 Jeffry 4.7 Bekasi Neon 13560 2019-03-11
## 3806 3806 Jeffry 4.7 Bogor Asoka 11773 2018-07-09
## 3856 3856 Jeffry 4.7 Depok Palmyra 14764 2020-06-21
## 3906 3906 Jeffry 4.7 Depok Tiara 8523 2019-06-29
## 3956 3956 Jeffry 4.7 Jakarta Mutiara 14326 2019-05-07
## 4006 4006 Jeffry 4.7 Depok Asoka 11348 2020-01-20
## 4056 4056 Jeffry 4.7 Bogor Winona 13383 2018-09-21
## 4106 4106 Jeffry 4.7 Bogor Sweethome 13653 2020-04-13
## 4156 4156 Jeffry 4.7 Tengerang Albasia 12536 2018-07-18
## 4206 4206 Jeffry 4.7 Jakarta Albasia 9591 2018-01-10
## 4256 4256 Jeffry 4.7 Bekasi Alindra 8844 2019-03-13
## 4306 4306 Jeffry 4.7 Bekasi Lavesh 7793 2019-12-28
## 4356 4356 Jeffry 4.7 Depok Sweethome 11668 2020-05-08
## 4406 4406 Jeffry 4.7 Tengerang Lavesh 8874 2020-03-11
## 4456 4456 Jeffry 4.7 Jakarta Alamanda 14523 2019-03-28
## 4506 4506 Jeffry 4.7 Bogor Teradamai 14326 2020-03-05
## 4556 4556 Jeffry 4.7 Depok Albasia 10314 2019-06-04
## 4606 4606 Jeffry 4.7 Bogor Teradamai 12509 2019-12-24
## 4656 4656 Jeffry 4.7 Tengerang Primadona 9597 2019-11-20
## 4706 4706 Jeffry 4.7 Tengerang Permata 11012 2018-06-24
## 4756 4756 Jeffry 4.7 Jakarta Arana 13527 2019-01-26
## 4806 4806 Jeffry 4.7 Jakarta Asera 9108 2019-08-16
## 4856 4856 Jeffry 4.7 Jakarta Primadona 9911 2018-09-21
## 4906 4906 Jeffry 4.7 Bekasi Arana 8222 2019-06-27
## 4956 4956 Jeffry 4.7 Depok Albasia 14580 2019-10-23
## 5006 5006 Jeffry 4.7 Jakarta Arana 12875 2018-06-16
## 5056 5056 Jeffry 4.7 Tengerang Mutiara 10357 2019-02-06
## 5106 5106 Jeffry 4.7 Tengerang Lavesh 13034 2018-06-02
## 5156 5156 Jeffry 4.7 Depok Teradamai 13814 2019-11-13
## 5206 5206 Jeffry 4.7 Depok Sweethome 11495 2018-04-10
## 5256 5256 Jeffry 4.7 Bogor Neon 10621 2019-03-18
## 5306 5306 Jeffry 4.7 Tengerang Neon 14132 2019-12-18
## 5356 5356 Jeffry 4.7 Bekasi Lavesh 14417 2018-09-05
## 5406 5406 Jeffry 4.7 Bogor Asoka 11941 2020-08-26
## 5456 5456 Jeffry 4.7 Bekasi Peronia 14437 2018-07-05
## 5506 5506 Jeffry 4.7 Bogor Asoka 10822 2020-01-18
## 5556 5556 Jeffry 4.7 Depok Asera 10223 2018-09-18
## 5606 5606 Jeffry 4.7 Depok Mutiara 11924 2019-10-22
## 5656 5656 Jeffry 4.7 Depok Adara 13163 2020-07-25
## 5706 5706 Jeffry 4.7 Bogor Alindra 9360 2019-03-03
## 5756 5756 Jeffry 4.7 Bekasi Permata 11429 2018-08-10
## 5806 5806 Jeffry 4.7 Tengerang Adara 14130 2019-07-15
## 5856 5856 Jeffry 4.7 Bogor Tiara 10551 2020-06-08
## 5906 5906 Jeffry 4.7 Bekasi Arana 13128 2019-05-07
## 5956 5956 Jeffry 4.7 Bekasi Arana 12667 2019-08-11
## 6006 6006 Jeffry 4.7 Depok Narada 13578 2018-01-14
## 6056 6056 Jeffry 4.7 Bogor Mutiara 7363 2019-11-28
## 6106 6106 Jeffry 4.7 Depok Albasia 7200 2019-12-14
## 6156 6156 Jeffry 4.7 Bekasi Neon 11609 2019-06-01
## 6206 6206 Jeffry 4.7 Bogor Palmyra 12108 2019-06-02
## 6256 6256 Jeffry 4.7 Bekasi Teradamai 7228 2019-12-20
## 6306 6306 Jeffry 4.7 Depok Alamanda 10433 2018-12-28
## 6356 6356 Jeffry 4.7 Jakarta Victoria 14514 2019-05-15
## 6406 6406 Jeffry 4.7 Jakarta Asera 14956 2018-08-02
## 6456 6456 Jeffry 4.7 Bekasi Tiara 14376 2020-09-18
## 6506 6506 Jeffry 4.7 Bogor Tiara 9052 2018-01-29
## 6556 6556 Jeffry 4.7 Tengerang Sweethome 7488 2018-05-24
## 6606 6606 Jeffry 4.7 Depok Teradamai 7358 2019-01-19
## 6656 6656 Jeffry 4.7 Tengerang Alindra 8056 2019-08-15
## 6706 6706 Jeffry 4.7 Jakarta Narada 7449 2020-07-02
## 6756 6756 Jeffry 4.7 Bogor Teradamai 10044 2020-03-18
## 6806 6806 Jeffry 4.7 Bekasi Sweethome 11241 2020-08-05
## 6856 6856 Jeffry 4.7 Jakarta Adara 12449 2019-08-08
## 6906 6906 Jeffry 4.7 Bekasi Peronia 7244 2018-11-22
## 6956 6956 Jeffry 4.7 Jakarta Lavesh 11169 2020-02-04
## 7006 7006 Jeffry 4.7 Depok Victoria 12826 2020-06-14
## 7056 7056 Jeffry 4.7 Tengerang Alindra 11604 2018-09-17
## 7106 7106 Jeffry 4.7 Tengerang Narada 11800 2019-11-17
## 7156 7156 Jeffry 4.7 Bogor Adara 10414 2018-06-28
## 7206 7206 Jeffry 4.7 Bogor Tiara 7618 2020-04-09
## 7256 7256 Jeffry 4.7 Bogor Alamanda 11830 2018-12-09
## 7306 7306 Jeffry 4.7 Tengerang Permata 12145 2018-08-28
## 7356 7356 Jeffry 4.7 Bogor Alamanda 8349 2018-11-15
## 7406 7406 Jeffry 4.7 Depok Peronia 14714 2018-06-25
## 7456 7456 Jeffry 4.7 Jakarta Primadona 13763 2019-09-27
## 7506 7506 Jeffry 4.7 Jakarta Palmyra 7771 2018-02-24
## 7556 7556 Jeffry 4.7 Bogor Lavesh 7817 2020-07-15
## 7606 7606 Jeffry 4.7 Bogor Asoka 7759 2019-01-08
## 7656 7656 Jeffry 4.7 Jakarta Neon 13812 2019-08-01
## 7706 7706 Jeffry 4.7 Depok Teradamai 14727 2019-01-16
## 7756 7756 Jeffry 4.7 Jakarta Adara 14396 2020-01-19
## 7806 7806 Jeffry 4.7 Jakarta Victoria 7275 2019-01-13
## 7856 7856 Jeffry 4.7 Bekasi Arana 11698 2018-12-14
## 7906 7906 Jeffry 4.7 Jakarta Asoka 10012 2019-02-19
## 7956 7956 Jeffry 4.7 Tengerang Teradamai 8803 2020-07-18
## 8006 8006 Jeffry 4.7 Bogor Asera 7212 2020-04-01
## 8056 8056 Jeffry 4.7 Bekasi Primadona 7911 2018-07-14
## 8106 8106 Jeffry 4.7 Depok Winona 11325 2018-07-02
## 8156 8156 Jeffry 4.7 Jakarta Mutiara 10797 2018-01-17
## 8206 8206 Jeffry 4.7 Bogor Teradamai 8887 2020-09-23
## 8256 8256 Jeffry 4.7 Depok Palmyra 13998 2019-06-26
## 8306 8306 Jeffry 4.7 Bogor Alindra 10856 2018-06-16
## 8356 8356 Jeffry 4.7 Bekasi Lavesh 11962 2018-12-13
## 8406 8406 Jeffry 4.7 Depok Mutiara 11578 2019-09-22
## 8456 8456 Jeffry 4.7 Bogor Lavesh 7612 2019-04-23
## 8506 8506 Jeffry 4.7 Bekasi Victoria 11769 2018-03-17
## 8556 8556 Jeffry 4.7 Bekasi Alamanda 14512 2020-05-01
## 8606 8606 Jeffry 4.7 Bekasi Alamanda 14323 2018-11-27
## 8656 8656 Jeffry 4.7 Tengerang Asera 13543 2019-03-22
## 8706 8706 Jeffry 4.7 Bekasi Winona 10802 2018-06-03
## 8756 8756 Jeffry 4.7 Depok Neon 12754 2018-05-17
## 8806 8806 Jeffry 4.7 Depok Mutiara 8091 2018-05-14
## 8856 8856 Jeffry 4.7 Tengerang Sweethome 11322 2019-06-09
## 8906 8906 Jeffry 4.7 Depok Peronia 12487 2020-01-09
## 8956 8956 Jeffry 4.7 Tengerang Teradamai 7858 2019-07-26
## 9006 9006 Jeffry 4.7 Bogor Mutiara 10753 2019-02-11
## 9056 9056 Jeffry 4.7 Bekasi Primadona 9193 2020-09-15
## 9106 9106 Jeffry 4.7 Tengerang Winona 9555 2020-07-27
## 9156 9156 Jeffry 4.7 Depok Asoka 12705 2019-10-24
## 9206 9206 Jeffry 4.7 Depok Alindra 9667 2018-09-08
## 9256 9256 Jeffry 4.7 Tengerang Asera 13717 2018-01-30
## 9306 9306 Jeffry 4.7 Depok Lavesh 10608 2020-08-23
## 9356 9356 Jeffry 4.7 Bekasi Narada 11169 2018-05-07
## 9406 9406 Jeffry 4.7 Tengerang Neon 10003 2019-10-03
## 9456 9456 Jeffry 4.7 Jakarta Arana 14217 2020-03-02
## 9506 9506 Jeffry 4.7 Tengerang Neon 14062 2020-08-02
## 9556 9556 Jeffry 4.7 Depok Peronia 10845 2020-07-16
## 9606 9606 Jeffry 4.7 Bogor Asera 11142 2019-07-19
## 9656 9656 Jeffry 4.7 Bekasi Permata 10720 2018-04-29
## 9706 9706 Jeffry 4.7 Depok Asoka 10234 2018-02-26
## 9756 9756 Jeffry 4.7 Bogor Peronia 14886 2020-03-13
## 9806 9806 Jeffry 4.7 Bogor Alamanda 13385 2018-07-18
## 9856 9856 Jeffry 4.7 Jakarta Sweethome 11345 2019-11-02
## 9906 9906 Jeffry 4.7 Depok Mutiara 14814 2018-10-12
## 9956 9956 Jeffry 4.7 Jakarta Teradamai 11948 2018-05-07
## Advertisement Class Booking_Fee
## 6 3 Low 0.05
## 56 9 High 0.09
## 106 2 High 0.10
## 156 9 Medium 0.08
## 206 9 Low 0.06
## 256 16 High 0.10
## 306 13 High 0.09
## 356 8 High 0.10
## 406 7 Medium 0.08
## 456 2 High 0.10
## 506 1 Low 0.07
## 556 18 Low 0.06
## 606 16 Medium 0.09
## 656 1 High 0.10
## 706 16 High 0.10
## 756 8 Low 0.06
## 806 2 Medium 0.09
## 856 5 High 0.09
## 906 4 High 0.09
## 956 9 Low 0.07
## 1006 8 Medium 0.09
## 1056 3 High 0.10
## 1106 8 Low 0.05
## 1156 11 Low 0.07
## 1206 14 Medium 0.08
## 1256 4 Medium 0.08
## 1306 18 Medium 0.09
## 1356 12 Medium 0.08
## 1406 5 Low 0.06
## 1456 9 Medium 0.08
## 1506 1 High 0.10
## 1556 16 High 0.10
## 1606 20 Low 0.06
## 1656 11 High 0.09
## 1706 7 Medium 0.08
## 1756 19 Low 0.07
## 1806 12 Low 0.07
## 1856 8 High 0.09
## 1906 19 Low 0.06
## 1956 3 High 0.10
## 2006 8 High 0.10
## 2056 10 Low 0.06
## 2106 18 High 0.10
## 2156 8 Medium 0.08
## 2206 9 Medium 0.08
## 2256 10 High 0.09
## 2306 2 Low 0.07
## 2356 11 Low 0.07
## 2406 2 High 0.09
## 2456 8 High 0.09
## 2506 12 High 0.10
## 2556 17 Low 0.05
## 2606 12 High 0.10
## 2656 16 Low 0.06
## 2706 11 Low 0.05
## 2756 10 Medium 0.09
## 2806 14 Medium 0.08
## 2856 4 High 0.09
## 2906 6 Low 0.06
## 2956 19 High 0.10
## 3006 12 High 0.09
## 3056 5 Low 0.07
## 3106 5 High 0.10
## 3156 9 Low 0.05
## 3206 20 High 0.10
## 3256 6 Low 0.06
## 3306 17 High 0.10
## 3356 13 High 0.10
## 3406 1 Low 0.05
## 3456 12 Low 0.06
## 3506 14 Low 0.06
## 3556 2 High 0.10
## 3606 17 High 0.10
## 3656 3 Low 0.05
## 3706 6 Medium 0.09
## 3756 10 High 0.10
## 3806 19 Medium 0.09
## 3856 9 High 0.10
## 3906 1 Low 0.06
## 3956 5 High 0.10
## 4006 10 Medium 0.09
## 4056 4 High 0.10
## 4106 3 High 0.10
## 4156 16 High 0.09
## 4206 1 Low 0.07
## 4256 19 Low 0.06
## 4306 2 Low 0.05
## 4356 9 Medium 0.09
## 4406 5 Low 0.06
## 4456 19 High 0.10
## 4506 12 High 0.10
## 4556 7 Medium 0.08
## 4606 13 High 0.09
## 4656 14 Low 0.07
## 4706 17 Medium 0.09
## 4756 13 High 0.10
## 4806 7 Low 0.07
## 4856 8 Low 0.07
## 4906 9 Low 0.06
## 4956 11 High 0.10
## 5006 19 High 0.09
## 5056 4 Medium 0.08
## 5106 19 High 0.10
## 5156 3 High 0.10
## 5206 9 Medium 0.09
## 5256 9 Medium 0.08
## 5306 6 High 0.10
## 5356 3 High 0.10
## 5406 5 Medium 0.09
## 5456 5 High 0.10
## 5506 19 Medium 0.08
## 5556 15 Medium 0.08
## 5606 18 Medium 0.09
## 5656 14 High 0.10
## 5706 2 Low 0.07
## 5756 13 Medium 0.09
## 5806 10 High 0.10
## 5856 13 Medium 0.08
## 5906 19 High 0.10
## 5956 10 High 0.09
## 6006 6 High 0.10
## 6056 11 Low 0.05
## 6106 6 Low 0.05
## 6156 20 Medium 0.09
## 6206 5 High 0.09
## 6256 19 Low 0.05
## 6306 17 Medium 0.08
## 6356 8 High 0.10
## 6406 7 High 0.10
## 6456 1 High 0.10
## 6506 16 Low 0.07
## 6556 6 Low 0.05
## 6606 1 Low 0.05
## 6656 14 Low 0.06
## 6706 2 Low 0.05
## 6756 16 Medium 0.08
## 6806 8 Medium 0.09
## 6856 9 High 0.09
## 6906 10 Low 0.05
## 6956 14 Medium 0.09
## 7006 13 High 0.09
## 7056 8 Medium 0.09
## 7106 15 Medium 0.09
## 7156 19 Medium 0.08
## 7206 13 Low 0.05
## 7256 10 Medium 0.09
## 7306 10 High 0.09
## 7356 14 Low 0.06
## 7406 17 High 0.10
## 7456 10 High 0.10
## 7506 17 Low 0.05
## 7556 19 Low 0.05
## 7606 11 Low 0.05
## 7656 14 High 0.10
## 7706 2 High 0.10
## 7756 16 High 0.10
## 7806 4 Low 0.05
## 7856 16 Medium 0.09
## 7906 20 Medium 0.08
## 7956 17 Low 0.06
## 8006 7 Low 0.05
## 8056 20 Low 0.05
## 8106 10 Medium 0.09
## 8156 18 Medium 0.08
## 8206 15 Low 0.06
## 8256 3 High 0.10
## 8306 2 Medium 0.08
## 8356 18 Medium 0.09
## 8406 5 Medium 0.09
## 8456 13 Low 0.05
## 8506 15 Medium 0.09
## 8556 7 High 0.10
## 8606 13 High 0.10
## 8656 14 High 0.10
## 8706 10 Medium 0.08
## 8756 20 High 0.09
## 8806 7 Low 0.06
## 8856 9 Medium 0.09
## 8906 9 High 0.09
## 8956 11 Low 0.05
## 9006 8 Medium 0.08
## 9056 14 Low 0.07
## 9106 9 Low 0.07
## 9156 1 High 0.09
## 9206 9 Low 0.07
## 9256 19 High 0.10
## 9306 15 Medium 0.08
## 9356 11 Medium 0.09
## 9406 9 Medium 0.08
## 9456 12 High 0.10
## 9506 7 High 0.10
## 9556 3 Medium 0.08
## 9606 1 Medium 0.09
## 9656 6 Medium 0.08
## 9706 7 Medium 0.08
## 9756 13 High 0.10
## 9806 16 High 0.10
## 9856 15 Medium 0.09
## 9906 4 High 0.10
## 9956 5 Medium 0.09
Soal 4
Jika Anda akan mendapatkan bonus 2% dari Booking fee per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break.
R
penjual= "Lala"
r <- subset(Data, subset=(Marketing_Name == penjual))
p= ifelse((r$Work_Exp <3 ),
(r$Price * r$Booking_Fee) *(2/100),
(r$Price * r$Booking_Fee) *(3/100))
r$Bonus =p
rBonus = sum(r$Bonus)
Bonus## [1] 5404.431
Soal 5
Pada bagian ini, Anda diharapkan dapa membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.
- Siapa nama marketing pemasaran terbaik?
- Kota dan Cluster mana yang paling menguntungkan?
- Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
- Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
- Hitung Total Pendapatan (dalam Bulanan)
R
sales = c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando")
Angel = subset(Data, subset=(Marketing_Name == "Angel"))
Sherly = subset(Data, subset=(Marketing_Name == "Sherly"))
Vanessa = subset(Data, subset=(Marketing_Name == "Vanessa"))
Irene = subset(Data, subset=(Marketing_Name == "Irene"))
Julian = subset(Data, subset=(Marketing_Name == "Julian"))
Jeffry = subset(Data, subset=(Marketing_Name == "Jeffry"))
Nikita = subset(Data, subset=(Marketing_Name == "Nikita"))
Kefas = subset(Data, subset=(Marketing_Name == "Kefas"))
Siana = subset(Data, subset=(Marketing_Name == "Siana"))
Lala = subset(Data, subset=(Marketing_Name == "Lala"))
Fallen = subset(Data, subset=(Marketing_Name == "Fallen"))
Ardifo = subset(Data, subset=(Marketing_Name == "Ardifo"))
Kevin = subset(Data, subset=(Marketing_Name == "Kevin"))
Juen = subset(Data, subset=(Marketing_Name == "Juen"))
Jerrel = subset(Data, subset=(Marketing_Name == "Jurrel"))
Imelda = subset(Data, subset=(Marketing_Name == "Imelda"))
Widi = subset(Data, subset=(Marketing_Name == "Widi"))
Theodora = subset(Data, subset=(Marketing_Name == "Theodora"))
Elvani = subset(Data, subset=(Marketing_Name == "Elvani"))
Jonathan = subset(Data, subset=(Marketing_Name == "Jonathan"))
Sofia = subset(Data, subset=(Marketing_Name == "Sofial"))
Abraham = subset(Data, subset=(Marketing_Name == "Abraham"))
Siti = subset(Data, subset=(Marketing_Name == "Siti"))
Niko = subset(Data, subset=(Marketing_Name == "Niko"))
Sefli = subset(Data, subset=(Marketing_Name == "Sefli"))
Bene = subset(Data, subset=(Marketing_Name == "Bene"))
Diana = subset(Data, subset=(Marketing_Name == "Diana"))
Pupe = subset(Data, subset=(Marketing_Name == "Pupe"))
Andi = subset(Data, subset=(Marketing_Name == "Andi"))
Tatha = subset(Data, subset=(Marketing_Name == "Tatha"))
Endri = subset(Data, subset=(Marketing_Name == "Endri"))
Monika = subset(Data, subset=(Marketing_Name == "Monika"))
Hans = subset(Data, subset=(Marketing_Name == "Hans"))
Debora = subset(Data, subset=(Marketing_Name == "Debora"))
Hanifa = subset(Data, subset=(Marketing_Name == "hanifa"))
James = subset(Data, subset=(Marketing_Name == "James"))
Jihan = subset(Data, subset=(Marketing_Name == "Jihan"))
Friska = subset(Data, subset=(Marketing_Name == "Friska"))
Ardiwan = subset(Data, subset=(Marketing_Name == "Ardiwan"))
Bakti = subset(Data, subset=(Marketing_Name == "Bakti"))
Anthon = subset(Data, subset=(Marketing_Name == "Anthon"))
Amry = subset(Data, subset=(Marketing_Name == "Amry"))
Wiwik = subset(Data, subset=(Marketing_Name == "Wiwik"))
Bastian = subset(Data, subset=(Marketing_Name == "Bastian"))
Budi = subset(Data, subset=(Marketing_Name == "Budi"))
Leo = subset(Data, subset=(Marketing_Name == "Leo"))
Simon = subset(Data, subset=(Marketing_Name == "Simon"))
Matius = subset(Data, subset=(Marketing_Name == "Matius"))
Arry = subset(Data, subset=(Marketing_Name == "Arry"))
Eliando = subset(Data, subset=(Marketing_Name == "Eliando"))
total =
c(sum(Angel$Price),sum(Sherly$Price),sum(Vanessa$Price),sum(Irene$Price),
sum(Julian$Price),sum(Jeffry$Price),sum(Nikita$Price),sum(Kefas$Price),sum(Siana$Price),
sum(Lala$Price),sum(Fallen$Price),sum(Ardifo$Price),sum(Kevin$Price),sum(Juen$Price),
sum(Jerrel$Price),sum(Imelda$Price),sum(Widi$Price),sum(Theodora$Price),sum(Elvani$Price),
sum(Jonathan$Price),sum(Sofia$Price),sum(Abraham$Price),sum(Siti$Price),sum(Niko$Price),
sum(Sefli$Price),sum(Bene$Price),sum(Diana$Price),sum(Pupe$Price),sum(Andi$Price),
sum(Tatha$Price),sum(Endri$Price),sum(Monika$Price),sum(Hans$Price),sum(Debora$Price),
sum(Hanifa),sum(James$Price),sum(Jihan$Price),sum(Friska$Price),sum(Ardiwan$Price),
sum(Bakti$Price),sum(Anthon$Price),sum(Amry$Price),sum(Wiwik$Price),sum(Bastian$Price),
sum(Budi$Price),sum(Leo$Price),sum(Simon$Price),sum(Matius$Price),sum(Arry$Price),
sum(Eliando$Price))
marketing = data.frame(sales,total)
marketing# Siapa nama marketing pemasaran terbaik?
terbaik = which.max(marketing$total)
paling_terbaik = marketing[terbaik,]
paling_terbaikcity = c("Jakarta","Bogor","Tangerang","Depok","Bekasi")
Jakarta = subset(Data, subset=(City == "Jakarta"))
Bogor = subset(Data, subset=(City == "Bogor"))
Tangerang = subset(Data, subset=(City == "Tangerang"))
Depok = subset(Data, subset=(City == "Depok"))
Bekasi = subset(Data, subset=(City == "Bekasi"))
rata_city = c(sum(Jakarta$Price)/length(Jakarta$Id),sum(Bogor$Price)/length(Bogor$Id),
sum(Tangerang$Price)/length(Tangerang$Id),sum(Depok$Price)/length(Depok$Id),
sum(Bekasi$Price)/length(Bekasi$Id))
kota= data.frame(city,rata_city)
kota# Kota dan Cluster mana yang paling menguntungkan?
menguntungkan = which.max(kota$rata_city)
kota_menguntungkan = kota[menguntungkan,]
kota_menguntungkancluster = c("Victoria","Palmyra","Winona","Tiara", "Narada",
"Peronia","Lavesh","Alindra","Sweethome", "Asera",
"Teradamai","Albasia", "Adara","Neon","Arana",
"Asoka", "Primadona", "Mutiara","Permata","Alamanda")
Victoria = subset(Data, subset=(Marketing_Name == "Victoria"))
Palmyra = subset(Data, subset=(Marketing_Name == "Palmyra"))
Winona = subset(Data, subset=(Marketing_Name == "Winora"))
Tiara = subset(Data, subset=(Marketing_Name == "Tiara"))
Narada = subset(Data, subset=(Marketing_Name == "Narada"))
Peronia = subset(Data, subset=(Marketing_Name == "Peronia"))
Lavesh = subset(Data, subset=(Marketing_Name == "Lavesh"))
Alinda = subset(Data, subset=(Marketing_Name == "Alinda"))
Sweethome = subset(Data, subset=(Marketing_Name == "Sweethome"))
Asera = subset(Data, subset=(Marketing_Name == "Asera"))
Teradamai = subset(Data, subset=(Marketing_Name == "Terdamai"))
Albastia = subset(Data, subset=(Marketing_Name == "Albastia"))
Adara = subset(Data, subset=(Marketing_Name == "Adara"))
Neon = subset(Data, subset=(Marketing_Name == "Neon"))
Arana = subset(Data, subset=(Marketing_Name == "Arana"))
Asoka = subset(Data, subset=(Marketing_Name == "Asoka"))
Primadona = subset(Data, subset=(Marketing_Name == "Primadona"))
Mutiara = subset(Data, subset=(Marketing_Name == "Mutiara"))
Permata = subset(Data, subset=(Marketing_Name == "Permata"))
Alamanda = subset(Data, subset=(Marketing_Name == "Alamanda"))
rata = c(sum(Victoria$Price) / length(Victoria$Id),sum(Palmyra$Price) / length(Palmyra$Id),
sum(Winona$Price)/length(Winona$Id),sum(Tiara$Price)/length(Tiara$Id),
sum(Narada$Price)/length(Narada$Id),sum(Peronia$Price)/length(Peronia$Id),
sum(Lavesh$Price)/length(Lavesh$Id),sum(Alinda$Price)/length(Alinda$Id),
sum(Sweethome$Price)/length(Sweethome$Id),sum(Asera$Price)/length(Asera$Id),
sum(Teradamai$Price)/length(Teradamai$Id),sum(Albastia$Price)/length(Albastia$Id),
sum(Adara$Price)/length(Adara$Id),sum(Neon$Price)/length(Neon$Id),
sum(Arana$Price)/length(Arana$Id),sum(Asoka$Price)/length(Asoka$Id),
sum(Primadona$Price)/length(Primadona$Id),sum(Mutiara$Price)/length(Mutiara$Id),
sum(Permata$Price)/length(Permata$Id),sum(Alamanda$Price)/length(Alamanda$Id)
)
clus_ter = data.frame(cluster,rata)
cluster_terbaik = clus_ter[which.max(clus_ter$rata),]# biaya iklan
sales="Lala"
table_sales = subset(Data, subset = (Marketing_Name == sales))
iklan = (table_sales$Advertisement * 4)
total_iklan = print(sum(iklan))## [1] 8156
Kasus 2
Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:
- Marital_Status : menetapkan status perkawinan acak (“Ya”, “Tidak”)
- Address : berikan alamat acak (JABODETABEK)
- Work_Location : menetapkan lokasi kerja secara acak (JABODETABEK)
- Age : menetapkan urutan angka acak (dari 19 hingga 60)
- Academic : menetapkan tingkat akademik acak (“J.School”, “H.School”, “Sarjana”, “Magister”, “Phd”)
- Job : 10 pekerjaan acak untuk setiap tingkat akademik
- Grade : 5 nilai acak untuk setiap Pekerjaan
- Income : tetapkan pendapatan yang mungkin untuk setiap Pekerjaan
- Spending : tetapkan kemungkinan pengeluaran untuk setiap Pekerjaan
- Number_of_children: menetapkan nomor acak di antara 0 dan 10 (sesuai dengan status perkawinan)
- Private_vehicle : menetapkan kemungkinan kendaraan pribadi untuk setiap orang (“Mobil”, “sepeda motor”, “Umum”)
- Home : “Sewa”, “Milik”, “Kredit”
Soal 1
Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!
R
ID <- (1:50000)
Marital_Status <- sample(c("Yes","No"), 50000, replace= T)
Address <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),50000, replace = T)
Work_Location <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),50000, replace = T)
Age <- sample(c(19:60),50000, replace = T)
Academic <- sample(c("J.School","H.School","Sarjana","Magister","Phd"),50000, replace = T)
Grade = sample(c("A","B","C","D","E"),50000, replace = T)
Private_vehicle = sample(c("Mobil", "Sepeda motor", "Umum"),50000, replace = T)
Home = sample(c("Sewa", "Milik", "Kredit"),50000, replace = T)
Case <- data.frame(Id,
Marital_Status,
Address,
Work_Location,
Age,
Academic,
Grade,
Private_vehicle,
Home)
CaseKuliah =c("Wirausaha","Guru","Programmer","Dokter","Chef","Polisi","Lawyer","Aktuaris")Job = ifelse(Academic == "J.School","Student",
ifelse(Academic == "H.School","Student",
sample(Kuliah, replace = T)))
Case <- data.frame(Id,
Marital_Status,
Address,
Work_Location,
Age,
Academic,
Grade,
Private_vehicle,
Home,
Job)
Income = ifelse(Case$Job == "Wirausaha", 20000:25000,
ifelse(Case$Job == "Guru", 5000,
ifelse(Case$Job == "Programer", 15000,
ifelse(Case$Job == "Dokter", 20000,
ifelse(Case$Job == "Chef", 9000,
ifelse(Case$Job == "Polisi", 14000,
ifelse(Case$Job == "Lawyer", 16000,
ifelse(Case$Job == "Aktuaris", 19000,5000
))))))))
Spending = ifelse(Case$Job == "Wirausaha", 10000,
ifelse(Case$Job == "Guru", 3000,
ifelse(Case$Job == "Programer", 10000,
ifelse(Case$Job == "Dokter", 10000,
ifelse(Case$Job == "Chef", 5000,
ifelse(Case$Job == "Polisi", 4000,
ifelse(Case$Job == "Lawyer", 6000,
ifelse(Case$Job == "Aktuaris", 9000,1000
))))))))
Case$Income = Income
Case$Spending = Spending
Number_of_children = ifelse(Case$Marital_Status == "Yes", sample(c(0:10),50000,replace= T),0)
Case$Number_of_children = Number_of_children
CaseSoal 2
Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?
CaseNumber = function(x)
{ min = min(x)
max = max(x)
median = x[median.default(x)]
modus = x[which.max(x)]
rata = round(sum(x)/length(x), digits=2)
varians = sum((x-rata)^2) / (length(x)-1)
sd = sqrt(sum((x-rata)^2) / (length(x)-1))
return(cat(c("Minimum :", min,"\n",
"Maksimum :", max,"\n",
"Median :", median,"\n",
"Modus :", modus,"\n",
"rata :", rata,"\n",
"varians :", varians,"\n",
"Standard Deviasi :", sd,"\n"
)))
}# summary
CaseNumber(Case$Age)## Minimum : 19
## Maksimum : 60
## Median : 47
## Modus : 60
## rata : 39.47
## varians : 147.333075061501
## Standard Deviasi : 12.138083665122
CaseNumber(Case$Income)## Minimum : 5000
## Maksimum : 25000
## Median : 5000
## Modus : 25000
## rata : 10104.7
## varians : 52965396.300606
## Standard Deviasi : 7277.7329094029
CaseNumber(Case$Spending)## Minimum : 1000
## Maksimum : 10000
## Median : 5000
## Modus : 10000
## rata : 4379.98
## varians : 13722029.6401928
## Standard Deviasi : 3704.32580103219
CaseNumber(Case$Number_of_children)## Minimum : 0
## Maksimum : 10
## Median :
## Modus : 10
## rata : 2.54
## varians : 11.332607452149
## Standard Deviasi : 3.36639383497372
typeof(Case$Marital_Status)## [1] "character"
typeof(Case$Address)## [1] "character"
typeof(Case$Work_Location)## [1] "character"
typeof(Case$Grade)## [1] "character"
typeof(Case$Private_vehicle)## [1] "character"
typeof(Case$Home)## [1] "character"
typeof(Case$Academic)## [1] "character"
typeof(Case$Job)## [1] "character"
Soal 3
Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?
R
yes = subset(Case, subset=(Marital_Status == "Yes"))
no = subset(Case, subset=(Marital_Status == "No"))
a = subset(Case, subset=(Grade == "A"))
b = subset(Case, subset=(Grade == "B"))
c = subset(Case, subset=(Grade == "C"))
d = subset(Case, subset=(Grade == "D"))
e = subset(Case, subset=(Grade == "E"))
aJa =subset(Case, subset=(Address == "Jakarta"))
aBo =subset(Case, subset=(Address == "Bogor"))
aDe =subset(Case, subset=(Address == "Depok"))
aTg =subset(Case, subset=(Address == "tangerang"))
aBe =subset(Case, subset=(Address == "Bekasi"))
kJa =subset(Case, subset=(Work_Location == "Jakarta"))
kBo =subset(Case, subset=(Work_Location == "Bogor"))
kDe =subset(Case, subset=(Work_Location == "Depok"))
kTg =subset(Case, subset=(Work_Location == "Tangerang"))
kBe =subset(Case, subset=(Work_Location == "Bekasi"))
J =subset(Case, subset=(Academic == "J.School"))
H =subset(Case, subset=(Academic == "H.School"))
S =subset(Case, subset=(Academic == "Sarjana"))
M =subset(Case, subset=(Academic == "Magister"))
P =subset(Case, subset=(Academic == "Phd"))
mobil = subset(Case, subset=(Private_vehicle == "Mobil"))
motor = subset(Case, subset=(Private_vehicle == "Sepeda motor"))
umum = subset(Case, subset=(Private_vehicle == "Umum"))
sewa = subset(Case, subset=(Home == "Sewa"))
milik = subset(Case, subset=(Home == "Milik"))
kredit = subset(Case, subset=(Home == "Kredit"))
wirausaha = subset(Case, subset=(Job == "Wirausaha"))
guru = subset(Case, subset=(Job == "Guru"))
programer = subset(Case, subset=(Job == "Programer"))
dokter = subset(Case, subset=(Job == "Dokter"))
chef = subset(Case, subset=(Job == "Chef"))
polisi = subset(Case, subset=(Job == "Polisi"))
lawyer = subset(Case, subset=(Job == "Lawyer"))
aktuaris = subset(Case, subset=(Job == "Aktuaris"))Case_Word = function(x){
mertial = function(x,y){
if(x>y){
print("Yes")}
else{print("No")} }
marrige = mertial(length(yes$No), length(no$No))
alamat=
function(a,b,c,d,e){
if(a > max(c(b,c,d,e))){
print("Jakarta")}
else if(b > max(c(a,c,d,e))){
print("Bogor")}
else if(c > max(c(a,b,d,e))){
print("Depok")}
else if(c > max(c(a,b,c,e))){
print("Tangerang")}
else{print("Bekasi")}
}
address = alamat(length(aJa$No), length(aBo$No), length(aDe$No), length(aTg$No), length(aBe$No))
Kerja=
function(a,b,c,d,e){
if(a > max(c(b,c,d,e))){
print("Jakarta")}
else if(b > max(c(a,c,d,e))){
print("Bogor")}
else if(c > max(c(a,b,d,e))){
print("Depok")}
else if(c > max(c(a,b,c,e))){
print("Tangerang")}
else{print("Bekasi")}
}
work = Kerja(length(kJa$No), length(kBo$No), length(kDe$No), length(kTg$No), length(kBe$No))
akademis=
function(a,b,c,d,e){
if(a > max(c(b,c,d,e))){
print("J.School")}
else if(b > max(c(a,c,d,e))){
print("H.School")}
else if(c > max(c(a,b,d,e))){
print("Sarjana")}
else if(c > max(c(a,b,c,e))){
print("Magister")}
else{print("Phd")}
}
academic = akademis(length(J$No), length(H$No), length(S$No), length(M$No), length(P$No))
nilai=
function(a,b,c,d,e){
if(a > max(c(b,c,d,e))){
print("A")}
else if(b > max(c(a,c,d,e))){
print("B")}
else if(c > max(c(a,b,d,e))){
print("C")}
else if(c > max(c(a,b,c,e))){
print("D")}
else{print("E")}
}
ga = length(a$Address)
gb = length(b$No)
gc = length(c$No)
gd = length(d$No)
ge = length(e$No)
grade = nilai(ga,gb,gc,gd,ge)
vehicle=
function(a,b,c){
if(a > max(c(b,c))){
print("mobil")}
else if(b > max(c(a,c))){
print("motor")}
else{print("umum")}}
kendaraan = vehicle(length(mobil$No), length(motor$No), length(umum$No))
rumah=
function(a,b,c){
if(a > max(c(b,c))){
print("sewa")}
else if(b > max(c(a,c))){
print("milik")}
else{print("kredit")}}
home = rumah(length(sewa$No), length(milik$No), length(kredit$No))
pekerjaan = function(a,b,c,d,e,f,g,h){
if(a > max(c(b,c,d,e,f,g,h,i))){
print("wirausaha")}
else if(a > max(c(a,c,d,e,f,g,h))){
print("guru")}
else if(a > max(c(a,b,d,e,f,g,h))){
print("programer")}
else if(a > max(c(a,b,c,e,f,g,h))){
print("dokter")}
else if(a > max(c(a,b,c,d,f,g,h))){
print("chef")}
else if(a > max(c(a,b,c,d,e,g,h))){
print("polisi")}
else if(a > max(c(a,b,c,d,e,f,h))){
print("lawyer")}
else{print("aktuaris")}}
job = pekerjaan(length(wirausaha$No), length(guru$No), length(programer$No),
length(dokter$No), length(chef$No), length(polisi$No),
length(lawyer$No), length(aktuaris$No))
return(cat(c("marrige", marrige,"\n",
"alamat", address,"\n",
"kerja", work,"\n",
"akademis", academic,"\n",
"grade", grade,"\n",
"kendaraan", kendaraan,"\n",
"home", home,"\n",
"pekerjaan", job
)))
}CaseNumber(Case$Age)## Minimum : 19
## Maksimum : 60
## Median : 47
## Modus : 60
## rata : 39.47
## varians : 147.333075061501
## Standard Deviasi : 12.138083665122
CaseNumber(Case$Income)## Minimum : 5000
## Maksimum : 25000
## Median : 5000
## Modus : 25000
## rata : 10104.7
## varians : 52965396.300606
## Standard Deviasi : 7277.7329094029
CaseNumber(Case$Spending)## Minimum : 1000
## Maksimum : 10000
## Median : 5000
## Modus : 10000
## rata : 4379.98
## varians : 13722029.6401928
## Standard Deviasi : 3704.32580103219
CaseNumber(Case$Number_of_children)## Minimum : 0
## Maksimum : 10
## Median :
## Modus : 10
## rata : 2.54
## varians : 11.332607452149
## Standard Deviasi : 3.36639383497372