Algoritma & Struktur Data

~ Ujian Tengah Semester ~


Kontak : \(\downarrow\)
Email
RPubs https://rpubs.com/yeninawn/

Kasus 1

Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property seperti yang dapat kita lihat pada tabel berikut:

Id             <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
                        "Jeffry","Nikita","Kefas","Siana","Lala",
                        "Fallen","Ardifo","Kevin","Juen","Jerrel",
                        "Imelda","Widi","Theodora","Elvani","Jonathan",
                        "Sofia","Abraham","Siti","Niko","Sefli",
                        "Bene", "Diana", "Pupe", "Andi", "Tatha",
                        "Endri", "Monika", "Hans", "Debora","Hanifa",
                        "James", "Jihan", "Friska","Ardiwan", "Bakti",
                        "Anthon","Amry", "Wiwik", "Bastian", "Budi",
                        "Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp       <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
                        5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
                        3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
                        4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
                        6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City           <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster        <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
                           "Peronia","Lavesh","Alindra","Sweethome", "Asera",
                           "Teradamai","Albasia", "Adara","Neon","Arana",
                           "Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price          <- sample(c(7000:15000),10000, replace = T)
Date_Sales     <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement  <- sample(c(1:20), 10000, replace = T)
Data           <- data.frame(Id, 
                             Marketing_Name,
                             Work_Exp,
                             City,
                             Cluster,
                             Price,
                             Date_Sales,
                             Advertisement)
library(DT)
datatable(Data)

Soal 1

Kategorikan variabel Harga pada dataset di atas menjadi tiga kelompok sebagai berikut:

  • \(\text{High} > 12000\)
  • \(10000 \le \text{Medium} \le 12000\)
  • \(\text{Low} < 10000\)

Tetapkan ke dalam variabel baru yang disebut Kelas dengan menggunakan fungsi kontrol If, else if, dan else.

R

library(DT)
Data$Kelas=ifelse((Data$Price>12000),"High",
           ifelse((Data$Price>=10000 & Data$Price<=12000),"Medium",
                               "Low"
                                ))
datatable(Data) 

Soal 2

Kategorikan variabel Harga pada dataset di atas menjadi enam kelompok sebagai berikut:

  • Booking_fee nya 5 % jika \(\text{Price} < 8000\)
  • Booking_fee nya 6 % jika \(8000 \le \text{Price} < 9000\)
  • Booking_fee nya 7 % jika \(9000 \le \text{Price} < 10000\)
  • Booking_fee nya 8 % jika \(10000 \le \text{Price} < 11000\)
  • Booking_fee nya 9 % jika \(11000 \le \text{Price} < 13000\)
  • Booking_fee nya 10 % jika \(13000 \le \text{Price} \le 15000\)

Tetapkan ke dalam variabel baru yang disebut Booking_fee dengan menggunakan fungsi kontrol If, else if, dan else.

R

Data$Booking_Fee=ifelse((Data$Price<8000),(5/100)*Data$Price, 
                 ifelse((Data$Price>=8000 & Data$Price<9000),(6/100)*Data$Price,
                 ifelse((Data$Price>=9000 & Data$Price<10000),(7/100)*Data$Price,
                 ifelse((Data$Price>=10000 & Data$Price<11000),(8/100)*Data$Price,
                 ifelse((Data$Price>=11000 & Data$Price<13000),(9/100)*Data$Price, (10/100)*Data$Price)))))
subset(Data, select=c(6,10))

Soal 3

Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for.

R

for (x in "Lala"){
   print(subset(Data, subset=(Marketing_Name == x)))}  # tuliskan koding R kalian disini
##        Id Marketing_Name Work_Exp      City   Cluster Price Date_Sales
## 10     10           Lala      7.3     Bogor   Mutiara  9885 2019-07-31
## 60     60           Lala      7.3     Bogor      Neon 10491 2020-07-31
## 110   110           Lala      7.3     Bogor   Palmyra 13485 2020-01-10
## 160   160           Lala      7.3   Jakarta     Asera 11623 2018-02-24
## 210   210           Lala      7.3 Tengerang     Tiara  9010 2019-06-30
## 260   260           Lala      7.3     Depok    Winona  7912 2018-09-09
## 310   310           Lala      7.3 Tengerang   Mutiara  9015 2019-04-16
## 360   360           Lala      7.3     Depok   Permata 14869 2019-03-23
## 410   410           Lala      7.3     Depok  Victoria  7402 2020-08-10
## 460   460           Lala      7.3     Depok   Palmyra 14466 2020-08-23
## 510   510           Lala      7.3 Tengerang   Palmyra 12842 2019-07-14
## 560   560           Lala      7.3     Depok Sweethome  7219 2018-02-17
## 610   610           Lala      7.3   Jakarta   Peronia 13413 2018-03-01
## 660   660           Lala      7.3 Tengerang    Lavesh 10921 2019-12-21
## 710   710           Lala      7.3     Depok   Peronia  8511 2019-10-06
## 760   760           Lala      7.3    Bekasi  Victoria 11409 2019-08-03
## 810   810           Lala      7.3    Bekasi     Tiara  9455 2019-09-10
## 860   860           Lala      7.3     Bogor   Mutiara 13344 2020-02-08
## 910   910           Lala      7.3    Bekasi     Asoka  9111 2019-01-19
## 960   960           Lala      7.3 Tengerang Primadona 11228 2020-08-29
## 1010 1010           Lala      7.3     Bogor     Arana  8139 2018-08-23
## 1060 1060           Lala      7.3    Bekasi   Albasia 10928 2020-06-13
## 1110 1110           Lala      7.3     Depok     Adara  9594 2018-01-18
## 1160 1160           Lala      7.3     Depok   Albasia  8957 2019-08-20
## 1210 1210           Lala      7.3   Jakarta   Palmyra 12032 2019-01-08
## 1260 1260           Lala      7.3 Tengerang      Neon 13620 2019-06-01
## 1310 1310           Lala      7.3    Bekasi    Winona  9409 2018-12-18
## 1360 1360           Lala      7.3 Tengerang     Tiara 12692 2019-10-29
## 1410 1410           Lala      7.3   Jakarta    Winona 11961 2020-05-31
## 1460 1460           Lala      7.3     Bogor   Peronia 11007 2019-08-17
## 1510 1510           Lala      7.3    Bekasi   Albasia 10781 2018-07-24
## 1560 1560           Lala      7.3   Jakarta     Asera 12036 2020-03-31
## 1610 1610           Lala      7.3     Bogor   Alindra 10868 2018-04-26
## 1660 1660           Lala      7.3 Tengerang   Peronia  7035 2018-02-25
## 1710 1710           Lala      7.3    Bekasi     Tiara 11666 2018-05-03
## 1760 1760           Lala      7.3 Tengerang  Victoria 11589 2020-02-28
## 1810 1810           Lala      7.3    Bekasi     Adara  7080 2020-03-26
## 1860 1860           Lala      7.3    Bekasi  Alamanda  7864 2020-02-10
## 1910 1910           Lala      7.3     Bogor    Lavesh 13273 2019-10-29
## 1960 1960           Lala      7.3     Depok Sweethome  8333 2019-04-25
## 2010 2010           Lala      7.3   Jakarta  Alamanda 12517 2018-09-04
## 2060 2060           Lala      7.3 Tengerang     Asera  9171 2020-04-08
## 2110 2110           Lala      7.3 Tengerang Sweethome 12506 2020-09-24
## 2160 2160           Lala      7.3   Jakarta      Neon  7349 2019-02-12
## 2210 2210           Lala      7.3    Bekasi     Arana 14828 2018-06-26
## 2260 2260           Lala      7.3    Bekasi   Permata  7214 2018-10-25
## 2310 2310           Lala      7.3    Bekasi   Permata 13406 2018-07-04
## 2360 2360           Lala      7.3     Bogor   Peronia  9417 2018-02-19
## 2410 2410           Lala      7.3    Bekasi Primadona 12046 2018-06-05
## 2460 2460           Lala      7.3   Jakarta     Tiara 12513 2018-08-07
## 2510 2510           Lala      7.3     Bogor  Victoria  7264 2020-09-15
## 2560 2560           Lala      7.3   Jakarta Primadona  9088 2018-10-21
## 2610 2610           Lala      7.3   Jakarta     Asera  8720 2019-08-25
## 2660 2660           Lala      7.3   Jakarta    Narada 10187 2018-10-19
## 2710 2710           Lala      7.3 Tengerang   Alindra 10743 2020-09-24
## 2760 2760           Lala      7.3     Depok Sweethome 11023 2018-11-01
## 2810 2810           Lala      7.3     Depok Sweethome 10226 2020-04-22
## 2860 2860           Lala      7.3     Depok      Neon  8831 2019-04-16
## 2910 2910           Lala      7.3    Bekasi     Adara 13047 2018-08-07
## 2960 2960           Lala      7.3    Bekasi   Mutiara  7271 2018-02-18
## 3010 3010           Lala      7.3    Bekasi     Arana 11847 2020-06-01
## 3060 3060           Lala      7.3   Jakarta Teradamai  7806 2019-08-23
## 3110 3110           Lala      7.3     Depok Sweethome 12412 2019-12-31
## 3160 3160           Lala      7.3   Jakarta  Alamanda  7847 2020-01-18
## 3210 3210           Lala      7.3    Bekasi    Lavesh 14342 2019-02-10
## 3260 3260           Lala      7.3    Bekasi   Peronia  8977 2019-09-27
## 3310 3310           Lala      7.3 Tengerang Primadona  7101 2019-12-04
## 3360 3360           Lala      7.3   Jakarta      Neon 12343 2020-07-14
## 3410 3410           Lala      7.3    Bekasi   Permata 14715 2019-12-15
## 3460 3460           Lala      7.3    Bekasi     Asera  9912 2020-07-09
## 3510 3510           Lala      7.3     Depok   Permata 11653 2019-03-27
## 3560 3560           Lala      7.3   Jakarta    Narada  9375 2019-06-13
## 3610 3610           Lala      7.3     Depok   Palmyra 12309 2019-07-22
## 3660 3660           Lala      7.3     Bogor   Mutiara  9306 2020-06-23
## 3710 3710           Lala      7.3 Tengerang    Lavesh 11358 2020-08-08
## 3760 3760           Lala      7.3     Depok   Albasia 11370 2019-10-01
## 3810 3810           Lala      7.3    Bekasi  Victoria 10070 2020-08-11
## 3860 3860           Lala      7.3    Bekasi     Arana  9088 2019-11-15
## 3910 3910           Lala      7.3    Bekasi   Palmyra  8680 2018-03-11
## 3960 3960           Lala      7.3    Bekasi    Lavesh 13806 2018-08-31
## 4010 4010           Lala      7.3     Bogor    Narada  7595 2019-02-09
## 4060 4060           Lala      7.3   Jakarta     Tiara 11971 2020-01-30
## 4110 4110           Lala      7.3    Bekasi   Mutiara  7500 2019-04-16
## 4160 4160           Lala      7.3    Bekasi    Lavesh 13432 2018-05-08
## 4210 4210           Lala      7.3     Bogor   Palmyra 10037 2018-01-28
## 4260 4260           Lala      7.3    Bekasi    Lavesh 10222 2018-04-10
## 4310 4310           Lala      7.3   Jakarta   Alindra 11519 2019-08-07
## 4360 4360           Lala      7.3    Bekasi   Permata 13193 2018-08-30
## 4410 4410           Lala      7.3     Bogor    Lavesh 11098 2018-11-23
## 4460 4460           Lala      7.3     Bogor Primadona 11539 2020-02-05
## 4510 4510           Lala      7.3     Depok  Alamanda 10358 2018-11-09
## 4560 4560           Lala      7.3    Bekasi  Alamanda 11207 2018-09-02
## 4610 4610           Lala      7.3     Depok  Victoria  9908 2020-02-11
## 4660 4660           Lala      7.3 Tengerang   Alindra  7012 2018-11-04
## 4710 4710           Lala      7.3 Tengerang     Tiara 10111 2018-03-05
## 4760 4760           Lala      7.3 Tengerang     Arana 11319 2020-04-23
## 4810 4810           Lala      7.3    Bekasi     Asera  7734 2019-01-08
## 4860 4860           Lala      7.3     Depok     Asera  9012 2019-05-05
## 4910 4910           Lala      7.3     Depok  Alamanda 10380 2020-08-08
## 4960 4960           Lala      7.3     Bogor Sweethome 13188 2018-08-21
## 5010 5010           Lala      7.3     Depok Sweethome 11991 2019-06-30
## 5060 5060           Lala      7.3     Bogor   Peronia 12388 2019-09-27
## 5110 5110           Lala      7.3 Tengerang   Mutiara 13797 2020-05-24
## 5160 5160           Lala      7.3   Jakarta    Winona 10966 2018-01-04
## 5210 5210           Lala      7.3     Bogor   Permata 13714 2019-02-14
## 5260 5260           Lala      7.3   Jakarta   Alindra  8595 2018-10-20
## 5310 5310           Lala      7.3     Depok     Asera 13616 2019-09-08
## 5360 5360           Lala      7.3   Jakarta    Lavesh 11925 2019-01-04
## 5410 5410           Lala      7.3     Depok  Victoria 11680 2019-10-26
## 5460 5460           Lala      7.3 Tengerang     Tiara  7328 2018-05-31
## 5510 5510           Lala      7.3     Bogor   Peronia 11095 2018-01-19
## 5560 5560           Lala      7.3    Bekasi Sweethome  7862 2018-08-07
## 5610 5610           Lala      7.3   Jakarta Teradamai  9220 2020-06-24
## 5660 5660           Lala      7.3 Tengerang     Adara  9785 2020-03-01
## 5710 5710           Lala      7.3   Jakarta   Palmyra 13043 2019-03-09
## 5760 5760           Lala      7.3     Bogor    Lavesh 14707 2018-10-14
## 5810 5810           Lala      7.3     Bogor    Winona  8411 2019-10-25
## 5860 5860           Lala      7.3 Tengerang     Asoka 13536 2018-08-24
## 5910 5910           Lala      7.3 Tengerang     Arana 14204 2018-06-02
## 5960 5960           Lala      7.3     Depok   Mutiara  8834 2020-09-10
## 6010 6010           Lala      7.3     Depok  Alamanda 13216 2018-12-21
## 6060 6060           Lala      7.3     Bogor    Lavesh  7481 2020-03-29
## 6110 6110           Lala      7.3    Bekasi Sweethome  9061 2019-01-27
## 6160 6160           Lala      7.3     Bogor     Tiara  7328 2019-04-04
## 6210 6210           Lala      7.3    Bekasi     Tiara 13265 2020-06-16
## 6260 6260           Lala      7.3     Bogor     Tiara  8803 2019-02-25
## 6310 6310           Lala      7.3    Bekasi Sweethome 13868 2020-02-17
## 6360 6360           Lala      7.3   Jakarta   Permata  9700 2019-08-27
## 6410 6410           Lala      7.3   Jakarta   Alindra 10520 2018-09-18
## 6460 6460           Lala      7.3 Tengerang      Neon  9323 2019-03-16
## 6510 6510           Lala      7.3 Tengerang Primadona 11493 2020-04-30
## 6560 6560           Lala      7.3    Bekasi   Permata  8922 2019-01-12
## 6610 6610           Lala      7.3     Depok    Narada 13462 2019-12-12
## 6660 6660           Lala      7.3 Tengerang     Arana  7220 2018-01-17
## 6710 6710           Lala      7.3     Bogor     Adara  9662 2018-06-22
## 6760 6760           Lala      7.3     Depok  Victoria  8659 2019-01-20
## 6810 6810           Lala      7.3     Bogor   Palmyra 14038 2018-08-23
## 6860 6860           Lala      7.3   Jakarta Sweethome  8218 2020-07-04
## 6910 6910           Lala      7.3    Bekasi Primadona  7827 2020-01-24
## 6960 6960           Lala      7.3     Depok Sweethome 14028 2018-11-12
## 7010 7010           Lala      7.3 Tengerang    Narada  7788 2018-05-05
## 7060 7060           Lala      7.3   Jakarta  Alamanda 11165 2019-05-18
## 7110 7110           Lala      7.3   Jakarta     Asoka 13076 2019-10-29
## 7160 7160           Lala      7.3     Depok     Tiara 10827 2018-06-21
## 7210 7210           Lala      7.3     Depok Sweethome  7305 2018-02-03
## 7260 7260           Lala      7.3     Bogor     Asera 12257 2019-06-09
## 7310 7310           Lala      7.3 Tengerang   Albasia  8464 2020-01-18
## 7360 7360           Lala      7.3    Bekasi     Adara  8884 2019-02-16
## 7410 7410           Lala      7.3 Tengerang     Tiara 13453 2019-02-16
## 7460 7460           Lala      7.3    Bekasi     Asera 11998 2018-10-24
## 7510 7510           Lala      7.3    Bekasi   Permata  8841 2020-07-20
## 7560 7560           Lala      7.3    Bekasi    Lavesh  8837 2019-04-02
## 7610 7610           Lala      7.3   Jakarta   Peronia 10761 2018-01-18
## 7660 7660           Lala      7.3     Bogor    Lavesh  9200 2019-09-23
## 7710 7710           Lala      7.3    Bekasi Primadona 14370 2020-03-07
## 7760 7760           Lala      7.3     Depok     Adara  8096 2019-09-30
## 7810 7810           Lala      7.3 Tengerang  Alamanda 10240 2020-05-27
## 7860 7860           Lala      7.3   Jakarta   Palmyra 10927 2019-12-02
## 7910 7910           Lala      7.3     Bogor  Alamanda 13425 2020-06-27
## 7960 7960           Lala      7.3     Depok  Victoria 11453 2019-06-24
## 8010 8010           Lala      7.3   Jakarta     Adara 10770 2020-08-21
## 8060 8060           Lala      7.3    Bekasi     Asera  9426 2019-02-19
## 8110 8110           Lala      7.3    Bekasi   Mutiara  9225 2018-01-18
## 8160 8160           Lala      7.3     Depok    Winona 12299 2020-05-22
## 8210 8210           Lala      7.3 Tengerang    Narada  7257 2020-07-29
## 8260 8260           Lala      7.3    Bekasi Teradamai 14547 2020-01-18
## 8310 8310           Lala      7.3     Depok   Albasia  7140 2019-05-07
## 8360 8360           Lala      7.3 Tengerang     Adara 12996 2019-02-24
## 8410 8410           Lala      7.3 Tengerang   Permata 10080 2018-07-26
## 8460 8460           Lala      7.3     Depok Sweethome 13323 2019-01-31
## 8510 8510           Lala      7.3 Tengerang   Palmyra 10274 2019-11-04
## 8560 8560           Lala      7.3    Bekasi     Adara  8922 2020-04-22
## 8610 8610           Lala      7.3     Bogor     Asoka 13694 2018-07-02
## 8660 8660           Lala      7.3   Jakarta   Permata 10516 2018-12-21
## 8710 8710           Lala      7.3     Depok    Lavesh  9971 2019-09-15
## 8760 8760           Lala      7.3     Bogor    Lavesh  9094 2019-05-08
## 8810 8810           Lala      7.3   Jakarta   Albasia 13355 2020-08-27
## 8860 8860           Lala      7.3    Bekasi Primadona  7286 2020-05-20
## 8910 8910           Lala      7.3   Jakarta   Albasia 14916 2019-02-21
## 8960 8960           Lala      7.3    Bekasi     Adara 11412 2019-11-29
## 9010 9010           Lala      7.3    Bekasi   Palmyra  7064 2018-05-29
## 9060 9060           Lala      7.3   Jakarta Sweethome 12844 2019-07-09
## 9110 9110           Lala      7.3 Tengerang  Alamanda 11182 2019-12-01
## 9160 9160           Lala      7.3    Bekasi   Permata  7177 2020-08-08
## 9210 9210           Lala      7.3    Bekasi Primadona 14423 2020-08-30
## 9260 9260           Lala      7.3   Jakarta   Permata 12833 2020-01-23
## 9310 9310           Lala      7.3     Bogor     Tiara  7395 2019-05-06
## 9360 9360           Lala      7.3     Bogor     Asoka  7826 2018-10-20
## 9410 9410           Lala      7.3   Jakarta Sweethome 14963 2018-11-18
## 9460 9460           Lala      7.3 Tengerang   Palmyra 14332 2019-11-10
## 9510 9510           Lala      7.3 Tengerang Sweethome  7429 2020-04-24
## 9560 9560           Lala      7.3     Depok   Albasia  7820 2019-01-19
## 9610 9610           Lala      7.3 Tengerang    Narada 12737 2020-04-25
## 9660 9660           Lala      7.3     Depok   Permata 12636 2018-07-19
## 9710 9710           Lala      7.3 Tengerang Sweethome 14142 2018-10-02
## 9760 9760           Lala      7.3    Bekasi   Mutiara  9508 2019-12-07
## 9810 9810           Lala      7.3    Bekasi   Peronia 10655 2019-12-16
## 9860 9860           Lala      7.3    Bekasi     Arana 14834 2019-08-02
## 9910 9910           Lala      7.3    Bekasi   Palmyra  9015 2020-09-24
## 9960 9960           Lala      7.3 Tengerang      Neon 13594 2020-03-01
##      Advertisement  Kelas Booking_Fee
## 10               7    Low      691.95
## 60              13 Medium      839.28
## 110              8   High     1348.50
## 160             15 Medium     1046.07
## 210             10    Low      630.70
## 260             14    Low      395.60
## 310              7    Low      631.05
## 360             17   High     1486.90
## 410              5    Low      370.10
## 460             13   High     1446.60
## 510              9   High     1155.78
## 560              1    Low      360.95
## 610              7   High     1341.30
## 660             18 Medium      873.68
## 710              7    Low      510.66
## 760             17 Medium     1026.81
## 810             19    Low      661.85
## 860              2   High     1334.40
## 910              6    Low      637.77
## 960             16 Medium     1010.52
## 1010            19    Low      488.34
## 1060            16 Medium      874.24
## 1110            19    Low      671.58
## 1160            12    Low      537.42
## 1210             1   High     1082.88
## 1260            17   High     1362.00
## 1310            15    Low      658.63
## 1360             4   High     1142.28
## 1410            14 Medium     1076.49
## 1460            15 Medium      990.63
## 1510            12 Medium      862.48
## 1560             9   High     1083.24
## 1610            11 Medium      869.44
## 1660             5    Low      351.75
## 1710             1 Medium     1049.94
## 1760             7 Medium     1043.01
## 1810            10    Low      354.00
## 1860            12    Low      393.20
## 1910            19   High     1327.30
## 1960             5    Low      499.98
## 2010             5   High     1126.53
## 2060            11    Low      641.97
## 2110            13   High     1125.54
## 2160            15    Low      367.45
## 2210            14   High     1482.80
## 2260             4    Low      360.70
## 2310            14   High     1340.60
## 2360             3    Low      659.19
## 2410            14   High     1084.14
## 2460             3   High     1126.17
## 2510             5    Low      363.20
## 2560            11    Low      636.16
## 2610            17    Low      523.20
## 2660             6 Medium      814.96
## 2710             5 Medium      859.44
## 2760             1 Medium      992.07
## 2810            17 Medium      818.08
## 2860            16    Low      529.86
## 2910             5   High     1304.70
## 2960             9    Low      363.55
## 3010            10 Medium     1066.23
## 3060            20    Low      390.30
## 3110            14   High     1117.08
## 3160             2    Low      392.35
## 3210             2   High     1434.20
## 3260            12    Low      538.62
## 3310            16    Low      355.05
## 3360            13   High     1110.87
## 3410            14   High     1471.50
## 3460             7    Low      693.84
## 3510             2 Medium     1048.77
## 3560            16    Low      656.25
## 3610             4   High     1107.81
## 3660            11    Low      651.42
## 3710            17 Medium     1022.22
## 3760            20 Medium     1023.30
## 3810            12 Medium      805.60
## 3860            19    Low      636.16
## 3910             2    Low      520.80
## 3960            11   High     1380.60
## 4010             7    Low      379.75
## 4060             2 Medium     1077.39
## 4110            13    Low      375.00
## 4160            10   High     1343.20
## 4210             8 Medium      802.96
## 4260            11 Medium      817.76
## 4310             1 Medium     1036.71
## 4360            19   High     1319.30
## 4410            14 Medium      998.82
## 4460            19 Medium     1038.51
## 4510             9 Medium      828.64
## 4560            19 Medium     1008.63
## 4610            11    Low      693.56
## 4660             2    Low      350.60
## 4710             8 Medium      808.88
## 4760            13 Medium     1018.71
## 4810            15    Low      386.70
## 4860            15    Low      630.84
## 4910             7 Medium      830.40
## 4960             8   High     1318.80
## 5010             4 Medium     1079.19
## 5060             5   High     1114.92
## 5110             1   High     1379.70
## 5160             8 Medium      877.28
## 5210            19   High     1371.40
## 5260             4    Low      515.70
## 5310             2   High     1361.60
## 5360            20 Medium     1073.25
## 5410             5 Medium     1051.20
## 5460             6    Low      366.40
## 5510             6 Medium      998.55
## 5560            18    Low      393.10
## 5610             3    Low      645.40
## 5660            14    Low      684.95
## 5710             6   High     1304.30
## 5760             6   High     1470.70
## 5810            11    Low      504.66
## 5860            15   High     1353.60
## 5910            16   High     1420.40
## 5960             8    Low      530.04
## 6010            14   High     1321.60
## 6060            16    Low      374.05
## 6110            19    Low      634.27
## 6160            14    Low      366.40
## 6210            18   High     1326.50
## 6260            14    Low      528.18
## 6310            20   High     1386.80
## 6360             8    Low      679.00
## 6410            13 Medium      841.60
## 6460            19    Low      652.61
## 6510             7 Medium     1034.37
## 6560             2    Low      535.32
## 6610             3   High     1346.20
## 6660             4    Low      361.00
## 6710             7    Low      676.34
## 6760            14    Low      519.54
## 6810            17   High     1403.80
## 6860             2    Low      493.08
## 6910             1    Low      391.35
## 6960             8   High     1402.80
## 7010             8    Low      389.40
## 7060            10 Medium     1004.85
## 7110             4   High     1307.60
## 7160            17 Medium      866.16
## 7210             5    Low      365.25
## 7260             3   High     1103.13
## 7310             9    Low      507.84
## 7360             3    Low      533.04
## 7410            18   High     1345.30
## 7460             9 Medium     1079.82
## 7510            15    Low      530.46
## 7560             7    Low      530.22
## 7610            17 Medium      860.88
## 7660            11    Low      644.00
## 7710            15   High     1437.00
## 7760            15    Low      485.76
## 7810             5 Medium      819.20
## 7860            16 Medium      874.16
## 7910            19   High     1342.50
## 7960             3 Medium     1030.77
## 8010            19 Medium      861.60
## 8060             3    Low      659.82
## 8110            11    Low      645.75
## 8160            19   High     1106.91
## 8210            16    Low      362.85
## 8260             8   High     1454.70
## 8310            10    Low      357.00
## 8360            12   High     1169.64
## 8410            18 Medium      806.40
## 8460             5   High     1332.30
## 8510            14 Medium      821.92
## 8560            15    Low      535.32
## 8610            14   High     1369.40
## 8660             2 Medium      841.28
## 8710             8    Low      697.97
## 8760            11    Low      636.58
## 8810             5   High     1335.50
## 8860             8    Low      364.30
## 8910             7   High     1491.60
## 8960            12 Medium     1027.08
## 9010            17    Low      353.20
## 9060             1   High     1155.96
## 9110             5 Medium     1006.38
## 9160             5    Low      358.85
## 9210             9   High     1442.30
## 9260            14   High     1154.97
## 9310             2    Low      369.75
## 9360             3    Low      391.30
## 9410             3   High     1496.30
## 9460            11   High     1433.20
## 9510             6    Low      371.45
## 9560             2    Low      391.00
## 9610            20   High     1146.33
## 9660            16   High     1137.24
## 9710             1   High     1414.20
## 9760            10    Low      665.56
## 9810            10 Medium      852.40
## 9860            14   High     1483.40
## 9910            11    Low      631.05
## 9960            12   High     1359.40

Soal 4

Jika Anda akan mendapatkan bonus 2% dari Booking fee per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break.

R

sales="Julian"
a<-subset(Data, subset=(Marketing_Name == sales))

b = ifelse((a$Work_Exp < 3),
     (a$Booking_Fee)*(2/100),
     (a$Booking_Fee)*(3/100))
b=a$Bonus
a
Bonus=sum(a$Bonus)
Bonus
## [1] 0

Soal 5

Pada bagian ini, Anda diharapkan dapa membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.

  • Siapa nama marketing pemasaran terbaik?
  • Kota dan Cluster mana yang paling menguntungkan?
  • Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
  • Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
  • Hitung Total Pendapatan (dalam Bulanan)

R

Angel = subset(Data, subset=(Marketing_Name == "Angel"))
Sherly = subset(Data, subset=(Marketing_Name == "Sherly"))
Vanessa = subset(Data, subset=(Marketing_Name == "Vanessa"))
Irene = subset(Data, subset=(Marketing_Name == "Irene"))
Julian= subset(Data, subset=(Marketing_Name == "Julian"))
Jeffry= subset(Data, subset=(Marketing_Name == "Jeffry"))
Nikita= subset(Data, subset=(Marketing_Name == "Nikita"))
Kefas= subset(Data, subset=(Marketing_Name == "Kefas"))
Siana= subset(Data, subset=(Marketing_Name == "Siana"))
Lala= subset(Data, subset=(Marketing_Name == "Lala"))
Fallen= subset(Data, subset=(Marketing_Name == "Fallen"))
Ardifo= subset(Data, subset=(Marketing_Name == "Ardifo"))
Kevin= subset(Data, subset=(Marketing_Name == "Kevin"))
Juen= subset(Data, subset=(Marketing_Name == "Juen"))
Jerrel= subset(Data, subset=(Marketing_Name == "Jerrel"))
Imelda= subset(Data, subset=(Marketing_Name == "Imelda"))
Widi= subset(Data, subset=(Marketing_Name == "Widi"))
Theodora= subset(Data, subset=(Marketing_Name == "Theodora"))
Elvani= subset(Data, subset=(Marketing_Name == "Elvani"))
Jonathan= subset(Data, subset=(Marketing_Name == "Jonathan"))
Sofia=subset(Data, subset=(Marketing_Name == "Sofia"))
Abraham=subset(Data, subset=(Marketing_Name == "Abraham"))
Siti= subset(Data, subset=(Marketing_Name == "Siti"))
Niko=subset(Data, subset=(Marketing_Name == "Niko"))
Sefli=subset(Data, subset=(Marketing_Name == "Sefli"))
Bene= subset(Data, subset=(Marketing_Name == "Bene"))
Diana = subset(Data, subset=(Marketing_Name == "Diana"))
Pupe = subset(Data, subset=(Marketing_Name == "Pupe"))
Andi = subset(Data, subset=(Marketing_Name == "Andi"))
Tatha = subset(Data, subset=(Marketing_Name == "Tatha"))
Endri = subset(Data, subset=(Marketing_Name == "Endri"))
Monika = subset(Data, subset=(Marketing_Name == "Monika"))
Hans = subset(Data, subset=(Marketing_Name == "Hans"))
Debora = subset(Data, subset=(Marketing_Name == "Debora"))
Hanifa = subset(Data, subset=(Marketing_Name == "Hanifa"))
James = subset(Data, subset=(Marketing_Name == "James"))
Jihan = subset(Data, subset=(Marketing_Name == "Jihan"))
Friska = subset(Data, subset=(Marketing_Name == "Friska"))
Ardiwan = subset(Data, subset=(Marketing_Name == "Ardiwan"))
Bakti = subset(Data, subset=(Marketing_Name == "Bakti"))
Anthon = subset(Data, subset=(Marketing_Name == "Anthon"))
Amry = subset(Data, subset=(Marketing_Name == "Amry"))
Wiwik = subset(Data, subset=(Marketing_Name == "Wiwik"))
Bastian = subset(Data, subset=(Marketing_Name == "Bastian"))
Budi = subset(Data, subset=(Marketing_Name == "Budi"))
Leo = subset(Data, subset=(Marketing_Name == "Leo"))
Simon = subset(Data, subset=(Marketing_Name == "Simon"))
Matius = subset(Data, subset=(Marketing_Name == "Matius"))
Arry = subset(Data, subset=(Marketing_Name == "Arry"))
Eliando = subset(Data, subset=(Marketing_Name == "Eliando"))


Nama_Sales=c("Angel","Sherly","Vanessa","Irene","Julian","Jeffry","Nikita","Kefas","Siana","Lala","Fallen","Ardifo","Kevin","Juen","Jerrel","Imelda","Widi","Theodora","Elvani","Jonathan","Sofia","Abraham","Siti","Niko","Sefli","Bene","Diana","Pupe","Andi","Tatha","Endri","Monika","Hans","Debora","Hanifa","James","Jihan","Friska","Ardiwan","Bakti","Anthon","Amry","Wiwik","Bastian","Budi","Leo","Simon","Matius","Arry","Eliando")


totalsales = c(sum(Angel$Price),sum(Sherly$Price),sum(Vanessa$Price),sum(Irene$Price),sum(Julian$Price),sum(Jeffry$Price),sum(Nikita$Price),sum(Kefas$Price),sum(Siana$Price),sum(Lala$Price),sum(Fallen$Price),sum(Ardifo$Price),sum(Kevin$Price),sum(Juen$Price),sum(Jerrel$Price),sum(Imelda$Price),sum(Widi$Price),sum(Theodora$Price),sum(Elvani$Price),sum(Jonathan$Price),sum(Sofia$Price),sum(Abraham$Price),sum(Siti$Price),sum(Niko$Price),sum(Sefli$Price),sum(Bene$Price),sum(Diana$Price),sum(Pupe$Price),sum(Andi$Price),sum(Tatha$Price),sum(Endri$Price),sum(Monika$Price),sum(Hans$Price),sum(Debora$Price),sum(Hanifa$Price),sum(James$Price),sum(Jihan$Price),sum(Friska$Price),sum(Ardiwan$Price),sum(Bakti$Price),sum(Anthon$Price),sum(Amry$Price),sum( Wiwik$Price), sum(Bastian$Price),sum(Budi$Price),sum(Leo$Price),sum(Simon$Price),sum(Matius$Price),sum(Arry$Price),sum( Eliando$Price))

marketingdata=data.frame(Nama_Sales, totalsales)
marketingdata
#Nama Marketing Pemasaran yang Baik
marketingdata[which.max(marketingdata$totalsales),]
#Kota dan Cluster paling menguntungkan
profitable=Data[c("City","Cluster","Price")]
profitable[which.max(profitable$Price),]
#Total Biaya iklan Lala
Advertise=subset(Data,subset=(Marketing_Name=="Lala"))
biaya_Advertise=(Advertise$Advertisement*4)
Totalbiaya=print(sum(biaya_Advertise))
## [1] 8208
ratarata_biaya= for (i in Nama_Sales){
  r=subset(Data, subset=(Marketing_Name==i))
  b=sum(r$Advertisement*4)
  print(cat(sum(b)/length(r$Id), (cat(x, "Rata rata biaya iklan"))))}
## Lala Rata rata biaya iklan39.48NULL
## Lala Rata rata biaya iklan41.06NULL
## Lala Rata rata biaya iklan39.28NULL
## Lala Rata rata biaya iklan42.18NULL
## Lala Rata rata biaya iklan45.14NULL
## Lala Rata rata biaya iklan40.22NULL
## Lala Rata rata biaya iklan43.34NULL
## Lala Rata rata biaya iklan42.32NULL
## Lala Rata rata biaya iklan41.76NULL
## Lala Rata rata biaya iklan41.04NULL
## Lala Rata rata biaya iklan42.88NULL
## Lala Rata rata biaya iklan43.76NULL
## Lala Rata rata biaya iklan43.4NULL
## Lala Rata rata biaya iklan42.44NULL
## Lala Rata rata biaya iklan42.86NULL
## Lala Rata rata biaya iklan42.8NULL
## Lala Rata rata biaya iklan41.92NULL
## Lala Rata rata biaya iklan41.86NULL
## Lala Rata rata biaya iklan41.44NULL
## Lala Rata rata biaya iklan40.12NULL
## Lala Rata rata biaya iklan45.06NULL
## Lala Rata rata biaya iklan43.44NULL
## Lala Rata rata biaya iklan40.5NULL
## Lala Rata rata biaya iklan39.68NULL
## Lala Rata rata biaya iklan43.24NULL
## Lala Rata rata biaya iklan41.2NULL
## Lala Rata rata biaya iklan40.86NULL
## Lala Rata rata biaya iklan44.14NULL
## Lala Rata rata biaya iklan41.76NULL
## Lala Rata rata biaya iklan42.34NULL
## Lala Rata rata biaya iklan41.78NULL
## Lala Rata rata biaya iklan40.42NULL
## Lala Rata rata biaya iklan41.3NULL
## Lala Rata rata biaya iklan43.06NULL
## Lala Rata rata biaya iklan43.96NULL
## Lala Rata rata biaya iklan42.32NULL
## Lala Rata rata biaya iklan43.06NULL
## Lala Rata rata biaya iklan39.98NULL
## Lala Rata rata biaya iklan44.6NULL
## Lala Rata rata biaya iklan42.54NULL
## Lala Rata rata biaya iklan41.3NULL
## Lala Rata rata biaya iklan40.24NULL
## Lala Rata rata biaya iklan40.1NULL
## Lala Rata rata biaya iklan43.88NULL
## Lala Rata rata biaya iklan40.96NULL
## Lala Rata rata biaya iklan41.9NULL
## Lala Rata rata biaya iklan42.38NULL
## Lala Rata rata biaya iklan41.76NULL
## Lala Rata rata biaya iklan44.58NULL
## Lala Rata rata biaya iklan44.4NULL

Kasus 2

Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:

  • Marital_Status : menetapkan status perkawinan acak (“Ya”, “Tidak”)
  • Address : berikan alamat acak (JABODETABEK)
  • Work_Location : menetapkan lokasi kerja secara acak (JABODETABEK)
  • Age : menetapkan urutan angka acak (dari 19 hingga 60)
  • Academic : menetapkan tingkat akademik acak (“J.School”, “H.School”, “Sarjana”, “Magister”, “Phd”)
  • Job : 10 pekerjaan acak untuk setiap tingkat akademik
  • Grade : 5 nilai acak untuk setiap Pekerjaan
  • Income : tetapkan pendapatan yang mungkin untuk setiap Pekerjaan
  • Spending : tetapkan kemungkinan pengeluaran untuk setiap Pekerjaan
  • Number_of_children: menetapkan nomor acak di antara 0 dan 10 (sesuai dengan status perkawinan)
  • Private_vehicle : menetapkan kemungkinan kendaraan pribadi untuk setiap orang (“Mobil”, “sepeda motor”, “Umum”)
  • Home : “Sewa”, “Milik”, “Kredit”

Soal 1

Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!

R

Id=(1:50000)
Marital_Status= sample(c("Ya","Tidak"), 50000, replace = T)
Address=sample(c("Jakarta","Bogor","Depok","Tangerang","Bekasi"),50000, replace=T)
Work_Location=sample(c("Jakarta","Bogor","Depok","Tangerang","Bekasi"),50000, replace = T)
Age=sample(c(19:60),50000,replace=T)
Academic=sample(c("J.School","H.School","Sarjana","Magister","Phd"),50000,replace=T)
Job= ifelse(Academic=="J.School", sample(c("Satpam", "Penjaga Toko","Baby Sitter", 
                                           "Ibu Rumah Tangga","Office Boy","Office Girl",
                                           "Buruh", "Supir",
                                           "Pedagang Keliling",
                                           "tukang cuci"),length(Academic=="J.School"),replace=T),
            ifelse(Academic == "H.School",sample(c("Penulis","Karyawan Pabrik","Sukarelawan",
                                                   "Trader","Kasir","Pedagang","Sales","Security",
                                                   "Pelayan Resto","Guru Les"),
                                                 length(Academic=="H.School"),replace=T),
                   ifelse(Academic == "Sarjana",sample(c("Karyawan Swasta","Polisi",
                                        "Anggota Partai","Pejabat","Wirausaha",
                                        "Pengamat Hukum","Praktisi","Guru Bahasa","Politisi",
                                        "Anggota Partai"),length(Academic == "Sarjana"),replace=T),
                      ifelse(Academic == "Magister",sample(c("CEO","Guru Besar","Youtuber",
                                                             "Ketua DPR","Wakil Ketua DPR",
                                                             "Dosen tetap",
                                                             "Karyawan Tetap","Motivator",
                                                             "Pengusaha","Direktur Utama"),
                                                           length(Academic=="Magister"),replace=T),
                             sample(c("kepala sekolah","ketua pbb",
                                                           "menteri","ketua partai","dokter ahli",
                                                           "perawat tetap","designer",
                                                           "editor","rektor",
                                                           "asisten presiden"),
                                                         length(Academic=="Phd"),replace=T)))))
Income=sample(c(5000:15000),50000,replace=T)
Spending=sample(c(5000:12000),50000,replace=T)
Grade=sample(c("A+","A-","B+","B-","C"),50000, replace=T)
Number_of_Children=sample(c(0:10),50000,replace=T)
Private_Vehicle=sample(c("Mobil","Sepeda Motor","Kendaraan Umum"), 50000, replace =T)
Home=sample(c("Sewa","Milik Sendiri","Kredit"),50000, replace=T)




Number_of_Children <- ifelse(Marital_Status == "Yes", (sample(c(0:10))),0)

Customer=data.frame(Id,Marital_Status,Address, 
                    Work_Location,Age,Academic,
                    Job,Grade,Income,Spending, Number_of_Children, 
                    Private_Vehicle,Home)
library(DT)
datatable(Customer)

Soal 2

Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?

R

ringkasan=summary(Customer)
datatable(ringkasan)

Soal 3

Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?

R

Customer$NetWorth=Customer$Income=Customer$Spending
subset(Customer, NetWorth>=7000)

Referensi

  1. ref 1
  2. ref 2
  3. ref 3