B. Description of design and rationale for the intervention
This intervention takes the general form of an AB Design. The goal is to help this student to gain more confidence in interacting with others. For this, students engage in…
C. Lesson plan
This is how the lesson (or activtiy) will be structured:
| Step 1 |
|
powerpoint |
| Step 2 |
input 1 |
Web |
| Reflection |
|
|
| (…) |
(…) |
(…) |
| Step k |
|
|
More on lesson plan…
D. What got observed?
I let the student self-rate the level of confidence on a scale from 0 (zero confidence) to 20 (extremely confident), using a mobile app on her phone. The measurement interval was 5 times per day, over 5 days. The intervention took place at the last class of day 3.
Video recording:

It is not possible to run a (youtube) video or such in the document, but clicking on the image will bring the viewer to the video on youtube.
Justification for the measure:
What is warranting the use of this variable as an indicator for measuring the effect of the intervention?
The data points could get entered directly in this document, like so:
AB <- c((A, value) (A, value), ...., (B, value), (B, value)...)
E. Findings
The AB observations look like this:
graph(design = "AB", data = AB)

From this it seems that the intervention was successful.
Let’s look at the variability of the scores.
graph.VAR(design = "AB", VAR = "TR", CL = "bmead", data = AB)

Information about variability in the data is displayed by three methods. Range bar graphs consist of a vertical line for each phase, created by connecting three points: an estimate of central tendency ((trimmed) mean, (broadened) median, M-estimator), the minimum and the maximum. Range lines consist of a pair of lines parallel to the X-axis, passing through the lowest and highest values for each phase, and superimposed on the raw data. Trended ranges display changes in variability within phases. For all these methods, the influence of outliers may be lessend by using a trimmed range, in which only a sample of the data set is used.
F. Conclusions based on the observations and analyses
The intervention in this case was/was not successful….
F. Caveats and suggestions for improvements
- What more do we need to find out?
- What might have gone wrong?
- How certain are we that this is the correct conclusion?
LS0tCnRpdGxlOiAiSW50ZXJ2ZW50aW9uIFJlcG9ydCBTaW5nbGUgU3R1ZGVudCIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3IgaW5jbHVkZT1GQUxTRX0KIyBXZSBuZWVkIHRpZHl2ZXJzZSBmb3IgZGF0YSBoYW5kbGluZyBhbmQgdmlzdWFsaXNhdGlvbi4gCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KFNDVkEpCmBgYAoKIyMjIEEuIFN0dWRlbnQgaW5mb3JtYXRpb24KCiFbc3R1ZGVudCBpbWFnZV0oaHR0cHM6Ly9pY2hlZi5iYmNpLmNvLnVrL25ld3MvNjYwL2Nwc3Byb2RwYi85NjYyL3Byb2R1Y3Rpb24vXzEwNTQ4OTQ4M19lcmFzbXVzLmpwZykKCnwgVmFyaWFibGUgICAgICAgICAgfCBWYWx1ZSAgICAgICAgICAgICB8CnwtLS0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tLS18CnwgTmFtZS9JRCAgICAgICAgICAgfCBEZWJiaWUgRG9lICAgICAgICB8CnwgQ2xhc3MvY291cnNlL3VuaXQgfCBDb2xsYWJvcmF0aW9uIDEwMSB8CnwgR2VuZGVyICAgICAgICAgICAgfCBGZW1hbGUgICAgICAgICAgICB8CnwgQWdlICAgICAgICAgICAgICAgfCAxMyAgICAgICAgICAgICAgICB8CnwgTmF0aXZlIGxhbmd1YWdlICAgfCBFbmdsaXNoICAgICAgICAgICB8CgojIyMgQi4gRGVzY3JpcHRpb24gb2YgZGVzaWduIGFuZCByYXRpb25hbGUgZm9yIHRoZSBpbnRlcnZlbnRpb24KClRoaXMgaW50ZXJ2ZW50aW9uIHRha2VzIHRoZSBnZW5lcmFsIGZvcm0gb2YgYW4gW0FCIERlc2lnbl0oaHR0cHM6Ly9naXRodWIuc3lkbmV5LmVkdS5hdS9jcmxpL3NpbmdsZS1jYXNlLW1vZGVsL3dpa2kvYmFzaWMtQUItZGVzaWduLWhlbHApLiBUaGUgZ29hbCBpcyB0byBoZWxwIHRoaXMgc3R1ZGVudCB0byBnYWluIG1vcmUgY29uZmlkZW5jZSBpbiBpbnRlcmFjdGluZyB3aXRoIG90aGVycy4gRm9yIHRoaXMsIHN0dWRlbnRzIGVuZ2FnZSBpbi4uLgoKPCEtLS0gVGhlIGludGVydmVudGlvbiB0b29rIHRoZSBmb2xsb3dpbmcgZm9ybTogLi4uCgogICAgQHN0YXJ0dW1sIAogICAgc2tpbnBhcmFtIHBhY2thZ2VTdHlsZSByZWN0YW5nbGUKICAgIGFjdG9yIFR1dG9yCiAgICByZWN0YW5nbGUgUnVsZUVkaXRvciB7CiAgICAgICAgVHV0b3IgLSAoQWNjZXNzIGVkaXRvcikKICAgICAgICAoQWNjZXNzIGVkaXRvcikgLmRvd24uPiAoUmVuZGVyIHJ1bGUgcmVwb3NpdG9yeSkgOmluY2x1ZGUKICAgICAgICBub3RlIHJpZ2h0IG9mIChSZW5kZXIgcnVsZSByZXBvc2l0b3J5KSAKICAgICAgICAgICAgV2lsbCBub3QgYmUgcmVuZGVyZWQgCiAgICAgICAgICAgIGlmIHRoZXJlIGFyZSBubwogICAgICAgICAgICBleGlzdGluZyBydWxlcwogICAgICAgIGVuZCBub3RlCiAgICB9CiAgICBAZW5kdW1sCgohW2ludGVydmVudGlvbiBkZXNpZ25dKGh0dHBzOi8vd3d3LnBsYW50dW1sLmNvbS9wbGFudHVtbC9pbWcvVFAxMTJhOG4zNEp0RVNLaVRRNDdTMjZ3eTA4Z2tBdmpfMVBoLXNiSkxDSXhzc1FYODFYOGVGRGM0a1lnWUNiSWhtNTR2VUJaUUJBdk9aSnNPV1JVb0lDbUNiaW5TR1hDUEFvYVo3cmphLVlaT3JpM1J2cGx4NGJlZkd4Q0M1YlJvd00wNUt3TF9NWU9rdElCeW9LY011d0VDdEJMY3NDZ2RKLWNNRlhlR3RNaXdQWWFLSi1TMVVkcUZ3RlVOV1NWR1dfWHMwdFRwRXZCX0dib1JYOUN3dlctRWp6ejRIeTdOTG5LUmJhekpZLVlMTmtxQnRpMykgLS0+IAoKIyMjIEMuIExlc3NvbiBwbGFuCgpUaGlzIGlzIGhvdyB0aGUgbGVzc29uIChvciBhY3RpdnRpeSkgd2lsbCBiZSBzdHJ1Y3R1cmVkOgoKfCBUZWFjaGVyIGFjdGlvbiB8IFN0dWRlbnQgYWN0aW9uIHwgTWF0ZXJpYWxzICB8CnwtLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tfAp8IFN0ZXAgMSAgICAgICAgIHwgICAgICAgICAgICAgICAgfCBwb3dlcnBvaW50IHwKfCBTdGVwIDIgICAgICAgICB8IGlucHV0IDEgICAgICAgIHwgV2ViICAgICAgICB8CnwgUmVmbGVjdGlvbiAgICAgfCAgICAgICAgICAgICAgICB8ICAgICAgICAgICAgfAp8ICguLi4pICAgICAgICAgIHwgKC4uLikgICAgICAgICAgfCAoLi4uKSAgICAgIHwKfCBTdGVwIGsgICAgICAgICB8ICAgICAgICAgICAgICAgIHwgICAgICAgICAgICB8CgotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KCk1vcmUgb24gbGVzc29uIHBsYW4uLi4KCiMjIyBELiBXaGF0IGdvdCBvYnNlcnZlZD8KCkkgbGV0IHRoZSBzdHVkZW50IHNlbGYtcmF0ZSB0aGUgbGV2ZWwgb2YgY29uZmlkZW5jZSBvbiBhIHNjYWxlIGZyb20gMCAoemVybyBjb25maWRlbmNlKSB0byAyMCAoZXh0cmVtZWx5IGNvbmZpZGVudCksIHVzaW5nIGEgbW9iaWxlIGFwcCBvbiBoZXIgcGhvbmUuIFRoZSBtZWFzdXJlbWVudCBpbnRlcnZhbCB3YXMgNSB0aW1lcyBwZXIgZGF5LCBvdmVyIDUgZGF5cy4gVGhlIGludGVydmVudGlvbiB0b29rIHBsYWNlIGF0IHRoZSBsYXN0IGNsYXNzIG9mIGRheSAzLgoKVmlkZW8gcmVjb3JkaW5nOgoKWyFbSU1BR0UgQUxUIFRFWFQgSEVSRV0oaHR0cDovL2ltZy55b3V0dWJlLmNvbS92aS9BMlI2RjNrUkFRYy8wLmpwZyldKGh0dHA6Ly93d3cueW91dHViZS5jb20vd2F0Y2g/dj1BMlI2RjNrUkFRYykKCkl0IGlzIG5vdCBwb3NzaWJsZSB0byBydW4gYSAoeW91dHViZSkgdmlkZW8gb3Igc3VjaCBpbiB0aGUgZG9jdW1lbnQsIGJ1dCBjbGlja2luZyBvbiB0aGUgaW1hZ2Ugd2lsbCBicmluZyB0aGUgdmlld2VyIHRvIHRoZSB2aWRlbyBvbiB5b3V0dWJlLgoKKipKdXN0aWZpY2F0aW9uIGZvciB0aGUgbWVhc3VyZToqKgoKV2hhdCBpcyB3YXJyYW50aW5nIHRoZSB1c2Ugb2YgdGhpcyB2YXJpYWJsZSBhcyBhbiBpbmRpY2F0b3IgZm9yIG1lYXN1cmluZyB0aGUgZWZmZWN0IG9mIHRoZSBpbnRlcnZlbnRpb24/CgpUaGUgZGF0YSBwb2ludHMgY291bGQgZ2V0IGVudGVyZWQgZGlyZWN0bHkgaW4gdGhpcyBkb2N1bWVudCwgbGlrZSBzbzoKCmBgYApBQiA8LSBjKChBLCB2YWx1ZSkgKEEsIHZhbHVlKSwgLi4uLiwgKEIsIHZhbHVlKSwgKEIsIHZhbHVlKS4uLikgCmBgYAoKCgpgYGB7ciBlY2hvPUZBTFNFfQpkYXRhKEFCKSAjIFRoZSBhY3R1YWwgZGF0YSBzb3VyY2UgaXMgYSBkYXRhIHNldCBmcm9tIHRoZSBTQ1ZBIHBhY2thZ2UgYWRkZWQgaGVyZS4KaGVhZChBQikKdGFpbChBQikKYGBgCgojIyMgRS4gRmluZGluZ3MKClRoZSBBQiBvYnNlcnZhdGlvbnMgbG9vayBsaWtlIHRoaXM6CgpgYGB7cn0KZ3JhcGgoZGVzaWduID0gIkFCIiwgZGF0YSA9IEFCKQpgYGAKCkZyb20gdGhpcyBpdCBzZWVtcyB0aGF0IHRoZSBpbnRlcnZlbnRpb24gd2FzIHN1Y2Nlc3NmdWwuCgpMZXQncyBsb29rIGF0IHRoZSB2YXJpYWJpbGl0eSBvZiB0aGUgc2NvcmVzLgoKYGBge3J9CmdyYXBoLlZBUihkZXNpZ24gPSAiQUIiLCBWQVIgPSAiVFIiLCBDTCA9ICJibWVhZCIsIGRhdGEgPSBBQikKYGBgCgpJbmZvcm1hdGlvbiBhYm91dCB2YXJpYWJpbGl0eSBpbiB0aGUgZGF0YSBpcyBkaXNwbGF5ZWQgYnkgdGhyZWUgbWV0aG9kcy4gUmFuZ2UgYmFyIGdyYXBocyBjb25zaXN0IG9mIGEgdmVydGljYWwgbGluZSBmb3IgZWFjaCBwaGFzZSwgY3JlYXRlZCBieSBjb25uZWN0aW5nIHRocmVlIHBvaW50czogYW4gZXN0aW1hdGUgb2YgY2VudHJhbCB0ZW5kZW5jeSAoKHRyaW1tZWQpIG1lYW4sIChicm9hZGVuZWQpIG1lZGlhbiwgTS1lc3RpbWF0b3IpLCB0aGUgbWluaW11bSBhbmQgdGhlIG1heGltdW0uIFJhbmdlIGxpbmVzIGNvbnNpc3Qgb2YgYSBwYWlyIG9mIGxpbmVzIHBhcmFsbGVsIHRvIHRoZSBYLWF4aXMsIHBhc3NpbmcgdGhyb3VnaCB0aGUgbG93ZXN0IGFuZCBoaWdoZXN0IHZhbHVlcyBmb3IgZWFjaCBwaGFzZSwgYW5kIHN1cGVyaW1wb3NlZCBvbiB0aGUgcmF3IGRhdGEuIFRyZW5kZWQgcmFuZ2VzIGRpc3BsYXkgY2hhbmdlcyBpbiB2YXJpYWJpbGl0eSB3aXRoaW4gcGhhc2VzLiBGb3IgYWxsIHRoZXNlIG1ldGhvZHMsIHRoZSBpbmZsdWVuY2Ugb2Ygb3V0bGllcnMgbWF5IGJlIGxlc3NlbmQgYnkgdXNpbmcgYSB0cmltbWVkIHJhbmdlLCBpbiB3aGljaCBvbmx5IGEgc2FtcGxlIG9mIHRoZSBkYXRhIHNldCBpcyB1c2VkLgoKIyMjIEYuIENvbmNsdXNpb25zIGJhc2VkIG9uIHRoZSBvYnNlcnZhdGlvbnMgYW5kIGFuYWx5c2VzCgpUaGUgaW50ZXJ2ZW50aW9uIGluIHRoaXMgY2FzZSB3YXMvd2FzIG5vdCBzdWNjZXNzZnVsLi4uLgoKIyMjIEYuIENhdmVhdHMgYW5kIHN1Z2dlc3Rpb25zIGZvciBpbXByb3ZlbWVudHMKCi0gICBXaGF0IG1vcmUgZG8gd2UgbmVlZCB0byBmaW5kIG91dD8KLSAgIFdoYXQgbWlnaHQgaGF2ZSBnb25lIHdyb25nPwotICAgSG93IGNlcnRhaW4gYXJlIHdlIHRoYXQgdGhpcyBpcyB0aGUgY29ycmVjdCBjb25jbHVzaW9uPwo=