Algoritma & Struktur Data
~ Ujian Tengah Semester ~
| Kontak | : \(\downarrow\) |
| yosia.yosia@student.matanauniversity.ac.id | |
| yyosia | |
| RPubs | https://rpubs.com/yosia/ |
Kasus 1
Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property seperti yang dapat kita lihat pada tabel berikut:
Id <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
"Jeffry","Nikita","Kefas","Siana","Lala",
"Fallen","Ardifo","Kevin","Juen","Jerrel",
"Imelda","Widi","Theodora","Elvani","Jonathan",
"Sofia","Abraham","Siti","Niko","Sefli",
"Bene", "Diana", "Pupe", "Andi", "Tatha",
"Endri", "Monika", "Hans", "Debora","Hanifa",
"James", "Jihan", "Friska","Ardiwan", "Bakti",
"Anthon","Amry", "Wiwik", "Bastian", "Budi",
"Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
"Peronia","Lavesh","Alindra","Sweethome", "Asera",
"Teradamai","Albasia", "Adara","Neon","Arana",
"Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price <- sample(c(7000:15000),10000, replace = T)
Date_Sales <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement <- sample(c(1:20), 10000, replace = T)
Data <- data.frame(Id,
Marketing_Name,
Work_Exp,
City,
Cluster,
Price,
Date_Sales,
Advertisement)
library(DT)
datatable(Data)Soal 1
Kategorikan variabel Harga pada dataset di atas menjadi tiga kelompok sebagai berikut:
- \(\text{High} > 12000\)
- \(10000 \le \text{Medium} \le 12000\)
- \(\text{Low} < 10000\)
Tetapkan ke dalam variabel baru yang disebut Kelas dengan menggunakan fungsi kontrol If, else if, dan else.
R
library(DT)
datatable(Data)
Category <- Vectorize(function(Price)
{
if (Price>12000){
print('High')}
else if (Price>=10000 & Price<=12000){
print('Medium')}
else{
print('Low')}
})
Data$Kelas <- Category(Data$Price) datatable(Data)Soal 2
Kategorikan variabel Harga pada dataset di atas menjadi enam kelompok sebagai berikut:
- Booking_fee nya 5 % jika \(\text{Price} < 8000\)
- Booking_fee nya 6 % jika \(8000 \le \text{Price} < 9000\)
- Booking_fee nya 7 % jika \(9000 \le \text{Price} < 10000\)
- Booking_fee nya 8 % jika \(10000 \le \text{Price} < 11000\)
- Booking_fee nya 9 % jika \(11000 \le \text{Price} < 13000\)
- Booking_fee nya 10 % jika \(13000 \le \text{Price} \le 15000\)
Tetapkan ke dalam variabel baru yang disebut Booking_fee dengan menggunakan fungsi kontrol If, else if, dan else.
R
library(DT)
datatable(Data)
Category1 <- Vectorize(function(Price)
{
if (Price<8000){
print("5%")}
else if (Price<9000 & Price >=8000){
print("6%")}
else if (Price<10000 & Price >=9000){
print("7%")}
else if (Price<11000 & Price >=10000){
print("8%")}
else if (Price<13000 & Price >=11000){
print("9%")}
else if (Price<=15000 & Price >=13000){
print("10%")}
})
Data$Booking_Fee <-Category1(Data$Price)datatable(Data)Soal 3
Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for.
R
library(DT)
marketing = "Angel"
for (x in "Angel"){
sales <-(subset(Data, Marketing_Name == x))
}
datatable(sales)Soal 4
Jika Anda akan mendapatkan bonus 2% dari Booking fee per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break.
R
library(DT)
datatable(Data)
y <- subset(Data, subset=(Marketing_Name == "Angel"))
Category2 <- Vectorize(function(Price)
{
if (Price<8000){
print(0.05*Price)}
else if (Price<9000 & Price >=8000){
print(0.06*Price)}
else if (Price<10000 & Price >=9000){
print(0.07*Price)}
else if (Price<11000 & Price >=10000){
print(0.08*Price)}
else if (Price<13000 & Price >=11000){
print(0.09*Price)}
else if (Price<=15000 & Price >=13000){
print(0.1*Price)}
})
y$total_Booking_Fee <-Category2(y$Price)
Bonus1 <- ((0.02+
ifelse(y$Work_Exp>3, 0.01 , 0))* y$total_Booking_Fee)
y$Bonus<- Bonus1datatable(y)total_bonus <- sum(Bonus1)
total_bonus## [1] 3551.139
Soal 5
Pada bagian ini, Anda diharapkan dapa membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.
- Siapa nama marketing pemasaran terbaik?
- Kota dan Cluster mana yang paling menguntungkan?
- Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
- Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
- Hitung Total Pendapatan (dalam Bulanan)
R
Siapa nama marketing pemasaran terbaik?
Marketing_Sales <- aggregate(Price ~ Marketing_Name,
data = Data,
sum)
Best_Marketing <- Marketing_Sales[
order(Marketing_Sales$Price,
decreasing = T),] %>%
head (1) %>%
print()## Marketing_Name Price
## 33 Lala 2273638
Kota dan Cluster mana yang paling menguntungkan?
City_Cluster <- aggregate(Price ~ City + Cluster,
data = Data,
sum)
Untung_City_Cluster <- City_Cluster [
order(City_Cluster$Price, decreasing = T),] %>%
head(1)%>%
print()## City Cluster Price
## 51 Bekasi Neon 1407094
Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
Data$Advertisement <- as.numeric(Data$Advertisement)
Data$Biaya_rata_rata_Iklan <- Data$Advertisement * 4
TotalBiaya <- sum(Data$Biaya_rata_rata_Iklan)
paste("Total biaya iklan ", TotalBiaya)## [1] "Total biaya iklan 420016"
Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
Marketing_Rata2Iklan <- aggregate(Biaya_rata_rata_Iklan ~ Marketing_Name,
data = Data, mean)
library(DT)
datatable(Marketing_Rata2Iklan)Hitung Total Pendapatan (dalam Bulanan)
Advertisement.average_A <- aggregate(Advertisement ~ Marketing_Name, data = Data, sum)
Advertisement_average <- Advertisement.average_A[
order(Advertisement.average_A$Advertisement,
decreasing = T),] %>%
head (1) %>%
print()## Marketing_Name Advertisement
## 35 Matius 2271
Kasus 2
Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:
- Marital_Status : menetapkan status perkawinan acak (“Ya”, “Tidak”)
- Address : berikan alamat acak (JABODETABEK)
- Work_Location : menetapkan lokasi kerja secara acak (JABODETABEK)
- Age : menetapkan urutan angka acak (dari 19 hingga 60)
- Academic : menetapkan tingkat akademik acak (“J.School”, “H.School”, “Sarjana”, “Magister”, “Phd”)
- Job : 10 pekerjaan acak untuk setiap tingkat akademik
- Grade : 5 nilai acak untuk setiap Pekerjaan
- Income : tetapkan pendapatan yang mungkin untuk setiap Pekerjaan
- Spending : tetapkan kemungkinan pengeluaran untuk setiap Pekerjaan
- Number_of_children: menetapkan nomor acak di antara 0 dan 10 (sesuai dengan status perkawinan)
- Private_vehicle : menetapkan kemungkinan kendaraan pribadi untuk setiap orang (“Mobil”, “sepeda motor”, “Umum”)
- Home : “Sewa”, “Milik”, “Kredit”
Soal 1
Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!
R
Marital_Status <- sample(c("yes","no"),50000, replace = T)
Address <- sample(c("Jakarta","Bogor", "Depok", "Tangerang", "Bekasi"),50000, replace = T)
Work_Location <- sample(c("Jakarta", "Bogor", "Depok", "Tangerang", "Bekasi"),50000, replace = T)
Age <- sample(19:60,50000,replace = T)
Academic <- sample(c("J.School","H.School","Undergraduate","Master","PhD"),50000,T)
Job <- ifelse (Academic=="J.School",
sample(c("Office Boy/Office Girl", "Pemelihara Anjing", "ART", "Buruh Pabrik", "Ojek Online", "Security", "Packing Barang","Pelayan Restoran", "Kasir", "Sopir")),
ifelse(Academic=="H.School",
sample(c("Asisten Administrasi", "Marketing","Drafter", "Guru Les", "Operator Labotarium", "Polisi","Data Entry", "Teknisi Listrik",
"Customer Service", "ABK")),
ifelse(Academic=="Undergraduate",
sample(c("Guru", "Pilot","Akuntan", "Nakhoda",
"Software Developer", "Masinis",
"Arsitektur", "PNS",
"Data Analyst", "Dokter")),
ifelse(Academic=="Master",
sample(c("Aktuaris", "Dosen",
"Data Scientist", "Dokter Spesialis",
"Computer Science & Engineering", "Enterpreneur",
"Notaris", "Biomedical Engineering",
"Psikolog", "Technology Management")),
sample(c("CEO", "Hakim", "Researcher", "Manager",
"Senior Marketing Profesional", "Anggota Dewan",
"Menteri", "Neuroscientist",
"Rektor", "Direktur"))
))))
Grade <- sample(1:5 ,50000,replace = T)
Salary_function <- function(x){
J.School <- sample(c(500000:2000000))
H.School <- sample(c(2000000:4000000))
Undergraduate <- sample(c(4000000:10000000))
Master <- sample(c(10000000:20000000))
PhD <- sample(c(20000000:50000000))
Basic_Salary<-ifelse(x=="J.School",
J.School,
ifelse(x=="H.School",
H.School,
ifelse(x=="Undergraduate",
Undergraduate,
ifelse(x=="Master",
Master,
PhD))))
}
Income <- Salary_function(Academic)
Spending <- 0.8*Income
Number_of_Children <- ifelse(Marital_Status=="yes",
sample(c(0:10)),
0)
Private_Vehicle <- sample(c('Car','Motorcycle','Public'),50000,replace = T)
Home <- sample(c("Sewa", "Milik", "Kredit"),50000, replace = T)
Asuransi_ABC <- data.frame(Marital_Status,
Address,
Work_Location,
Age,
Academic,
Job,
Grade,
Income,
Spending,
Number_of_Children,
Private_Vehicle,
Home)
library(DT)
datatable(Asuransi_ABC)Soal 2
Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?
R
summary(Asuransi_ABC)## Marital_Status Address Work_Location Age
## Length:50000 Length:50000 Length:50000 Min. :19.00
## Class :character Class :character Class :character 1st Qu.:29.00
## Mode :character Mode :character Mode :character Median :39.00
## Mean :39.46
## 3rd Qu.:50.00
## Max. :60.00
## Academic Job Grade Income
## Length:50000 Length:50000 Min. :1.000 Min. : 500104
## Class :character Class :character 1st Qu.:2.000 1st Qu.: 2480004
## Mode :character Mode :character Median :3.000 Median : 6967016
## Mean :3.001 Mean :12176264
## 3rd Qu.:4.000 3rd Qu.:17382337
## Max. :5.000 Max. :49996194
## Spending Number_of_Children Private_Vehicle Home
## Min. : 400083 Min. : 0.000 Length:50000 Length:50000
## 1st Qu.: 1984003 1st Qu.: 0.000 Class :character Class :character
## Median : 5573612 Median : 0.000 Mode :character Mode :character
## Mean : 9741011 Mean : 2.518
## 3rd Qu.:13905870 3rd Qu.: 5.000
## Max. :39996955 Max. :10.000
#yang penting adalah pengeluaran, pemasukan, Home.
#Spending karena mempengaruhi pemasukan perusahaan ( Jika terlalu boros)
#Income karena harus menyetarakan pemasukan pelanggan dengan biaya asuransinya
#Home karena kalau rumahnya milik tidak ada tanggungan lain ,
#Jika sewa atau kredit akan mempengaruhi pembayaran asuransi Python
Soal 3
Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?
R
kategori <- Vectorize(function(Income)
{
if (Income > 4000000){
print('Yes')}
else {
print('No')}
})
Asuransi_ABC$dipertahankan <- kategori(Asuransi_ABC$Income)subset(Asuransi_ABC, select = c(6,8, 13)) %>% datatable()