Loading Library
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.5 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.0.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
library(ggplot2)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
Data Preparation
library(readr)
setwd("C:/Users/Jerem/Downloads")
#rerading dataset into spotify
nations <- read_csv("~/Montgomery College/Fall 2021/DATA 110/Datasets/nations.csv")
## Rows: 5275 Columns: 10
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (5): iso2c, iso3c, country, region, income
## dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
#view(nations)
Data Preparation Summary
nations %>% head() %>% knitr::kable()
| AD |
AND |
Andorra |
1996 |
NA |
64291 |
10.9 |
2.8 |
Europe & Central Asia |
High income |
| AD |
AND |
Andorra |
1994 |
NA |
62707 |
10.9 |
3.2 |
Europe & Central Asia |
High income |
| AD |
AND |
Andorra |
2003 |
NA |
74783 |
10.3 |
2.0 |
Europe & Central Asia |
High income |
| AD |
AND |
Andorra |
1990 |
NA |
54511 |
11.9 |
4.3 |
Europe & Central Asia |
High income |
| AD |
AND |
Andorra |
2009 |
NA |
85474 |
9.9 |
1.7 |
Europe & Central Asia |
High income |
| AD |
AND |
Andorra |
2011 |
NA |
82326 |
NA |
1.6 |
Europe & Central Asia |
High income |
Mutating Variable
nations1 <- mutate(nations, GDP = gdp_percap*population/10**12)
Chart One
nations2 <- filter(nations1, country == "Brazil" | country == "Japan" | country == "France" | country == "United States")
ggplot(nations2, aes(x = year, y = GDP, color = country)) +
geom_point() +
geom_line() +
ggtitle("National Economic Performance") +
labs(x = "Years",
y = "GDP ($Trillions)") +
scale_color_brewer(palette = "Set1")

Grouping and Summarize Variables
nations3 <- nations1 %>%
group_by(region, year) %>%
summarise(GDP = sum(GDP, na.rm = TRUE))
## `summarise()` has grouped output by 'region'. You can override using the `.groups` argument.
Chart Two
ggplot(nations3, aes(x = year, y = GDP)) +
geom_area(color = "white", aes(fill = region)) +
ggtitle("GDP by Region") +
labs(x = "Years",
y = "GDP ($ Trillions)") +
scale_color_brewer(palette = "Set2")
