library(xlsx)
library(tidySEM)
library(lavaan)
library(ggplot2)
library(dplyr)
library(psych)
library(mirt)
library(knitr)
library(semPlot)
library(semtree)
library(tidyverse)
df1 = read.xlsx(file = "Analise Coleta Ver05.xlsx", encoding = "UTF-8", sheetIndex = 2)
df = df1
head(df)
##   ID idade genero prof Desemp_Aposent_DoLar Empreg_Priv_Publico Socio_Autonomo
## 1  1     3      0    1                    0                   1              0
## 2  2     3      0    4                    0                   0              1
## 3  3     4      0    1                    0                   1              0
## 4  4     3      1    7                    0                   0              0
## 5  5     3      0    1                    0                   1              0
## 6  6     3      1    2                    0                   1              0
##   Estudante escol Escolaridade_Baixa Escolaridade_Media Escolaridade_Alta cnh
## 1         0     6                  0                  0                 1   1
## 2         0     6                  0                  0                 1   1
## 3         0     6                  0                  0                 1   1
## 4         1     6                  0                  0                 1   1
## 5         0     5                  0                  0                 1   1
## 6         0     6                  0                  0                 1   1
##   carros_cas motos_casa pessoas_ca criancas_c adol_casa renda_fam_ Renda_Baixa
## 1          1          0          2          0         0          5           0
## 2          1          1          3          1         0          3           0
## 3          1          0          3          0         0          4           0
## 4          0          0          2          0         0          1           1
## 5          1          0          3          1         0          2           1
## 6          0          0          1          0         0          2           1
##   Renda_Media Renda_Alta PR_Hora_or PR_Hora_O_h PR_Hora_O_min PR_Hora_de
## 1           0          1      07:40           7            40      08:05
## 2           1          0      11:00          11             0      11:25
## 3           1          0      08:00           8             0      08:15
## 4           0          0      08:00           8             0      08:20
## 5           0          0      13:00          13             0      15:00
## 6           0          0      14:00          14             0      14:06
##   PR_Hora_D_h PR_Hora_D_min PR_Dist PR_Motivo PR_Modo PR_CarroMoto_Custo
## 1           8             5    3263         2       6                  1
## 2          11            25    5951         2       6                  0
## 3           8            15    1166         2      11                 NA
## 4           8            20    2621         2       9                 NA
## 5          15             0    9549         2       1                 NA
## 6          14             6     257         1      11                 NA
##   SATISF_PR_CarroMoto_Acid SATISF_PR_CarroMoto_Roubo_Veic
## 1                        3                              2
## 2                        3                              1
## 3                       NA                             NA
## 4                       NA                             NA
## 5                       NA                             NA
## 6                       NA                             NA
##   SATISF_PR_CarroMoto_Roubo_Acesso SATISF_PR_Bici_Acid
## 1                                1                  NA
## 2                                2                  NA
## 3                               NA                  NA
## 4                               NA                   3
## 5                               NA                  NA
## 6                               NA                  NA
##   SATISF_PR_Bici_Roubo_Veic SATISF_PR_Bici_Roubo_Acesso SATISF_PR_Ape_Acid
## 1                        NA                          NA                 NA
## 2                        NA                          NA                 NA
## 3                        NA                          NA                  2
## 4                         4                           5                 NA
## 5                        NA                          NA                 NA
## 6                        NA                          NA                  3
##   PR_APP_Tempo_Espera PR_APP_Tempo_Veic PR_APP_Custo SATISF_PR_APP_Acid
## 1                  NA                NA           NA                 NA
## 2                  NA                NA           NA                 NA
## 3                  NA                NA           NA                 NA
## 4                  NA                NA           NA                 NA
## 5                  NA                NA           NA                 NA
## 6                  NA                NA           NA                 NA
##   SATISF_PR_APP_Roubo_Veic SATISF_PR_APP_Roubo_Acesso PR_TC_Tempo_Caminh_O
## 1                       NA                         NA                   NA
## 2                       NA                         NA                   NA
## 3                       NA                         NA                   NA
## 4                       NA                         NA                   NA
## 5                       NA                         NA                    1
## 6                       NA                         NA                   NA
##   PR_TC_Tempo_Espera PR_TC_Tempo_Veic PR_TC_Tempo_Caminh_D PR_TC_Custo
## 1                 NA               NA                   NA          NA
## 2                 NA               NA                   NA          NA
## 3                 NA               NA                   NA          NA
## 4                 NA               NA                   NA          NA
## 5                  2                5                    2           1
## 6                 NA               NA                   NA          NA
##   SATISF_PR_TC_Acid SATISF_PR_TC_Roubo_Veic SATISF_PR_TC_Roubo_Acesso
## 1                NA                      NA                        NA
## 2                NA                      NA                        NA
## 3                NA                      NA                        NA
## 4                NA                      NA                        NA
## 5                 3                       2                         2
## 6                NA                      NA                        NA
##   SATISF_PR_TC_Limpeza SATISF_PR_TC_Lotacao SATISF_PR_TC_Comodo freq_bus
## 1                   NA                   NA                  NA        0
## 2                   NA                   NA                  NA        0
## 3                   NA                   NA                  NA        1
## 4                   NA                   NA                  NA        1
## 5                    3                    1                   2        1
## 6                   NA                   NA                  NA        0
##   freq_trem freq_carro freq_taxi freq_bike freq_pe freq_app
## 1         0          3         0         0       0        1
## 2         0          3         0         0       0        3
## 3         0          3         0         0       3        1
## 4         0          0         0         3       3        1
## 5         0          3         0         0       2        2
## 6         0          3         1         3       3        3
##   freq_app_BIN_usa_nusa freq_app_BIN_usam_usap A_wifi A_smartphone A_novas_tec
## 1                     1                      0      4            5           1
## 2                     1                      1      5            5           2
## 3                     1                      0      4            5           3
## 4                     1                      0      3            2           2
## 5                     1                      1      5            5           2
## 6                     1                      1      1            5           2
##   A_transporte A_transpor_1 A_transp_pub A_seg_carro A_carro_need A_carro_poss
## 1            3            3            1           4            4            5
## 2            2            2            1           5            5            5
## 3            2            2            1           5            4            5
## 4            3            4            1           4            1            1
## 5            5            3            5           4            4            3
## 6            2            1            1           5            1            2
##   P_transp_p_1 P_colegas_tr P_fam_amigos P_fam_amig_1 P_facil_tran P_poss_usar_
## 1            4            4            4            4            2            3
## 2            1            5            3            5            1            1
## 3            2            4            3            5            4            5
## 4            2            2            5            5            4            5
## 5            3            3            4            4            4            5
## 6            1            5            4            5            4            5
##   P_dificil_us P_transp_p_2 P_evit_trans P_plan_trans  x  y     long      lat
## 1            1            1            2            4 -5 -3 -51.2219 -30.0292
## 2            1            2            1            1 -5 -3 -51.1897 -30.0538
## 3            2            2            2            2 -5 -3 -51.2217 -30.0320
## 4            2            2            5            1 -5 -3 -51.2217 -30.0320
## 5            2            4            4            4 -5 -3 -51.2187 -30.0333
## 6            1            1            4            1 -5 -3 -51.2077 -30.0291
##        CD_GEOCODI        NM_BAIRRO Comerc Serv Paradas   Decliv_ab
## 1 431490205000035 Centro Histórico    211  720       5 0.043623909
## 2 431490205000261  Jardim Botânico     19   33       1 0.009080742
## 3 431490205000037 Centro Histórico     80  518      13 0.019960212
## 4 431490205000037 Centro Histórico     80  518      13 0.019960212
## 5 431490205002165      Farroupilha     77  121       8 0.005543480
## 6 431490205001428    Independência     36   34       1 0.042424815
# Correla??o
cor(na.omit(df$renda_fam_), na.omit(df$PR_Motivo))
## [1] -0.07047039
#Sys.setenv(JAVA_HOME=paste(Sys.getenv("JAVA_HOME"), "jre", sep="\\"))


df$CD_GEOCODI = NULL
df$NM_BAIRRO = NULL
df$PR_Hora_or = NULL
df$PR_Hora_de = NULL


# traz registros com algum valor nas colunas
 df = df[!is.na(df[, c("A_carro_poss", "A_carro_need", "A_seg_carro", "SATISF_PR_CarroMoto_Acid", "SATISF_PR_CarroMoto_Roubo_Veic",
                         "A_transp_pub", "A_transpor_1", "A_transporte", "P_transp_p_1", "P_colegas_tr", "P_fam_amigos", "P_facil_tran", 
                        "P_poss_usar_", "P_transp_p_2", "P_evit_trans", "P_plan_trans", "Comerc", "Serv", "Paradas", "Decliv_ab", "idade",
                        "genero", "prof", "escol", "cnh", "carros_cas", "motos_casa", "pessoas_ca", "criancas_c", "adol_casa", "renda_fam_")]),]

# mant~em apenas linhas completas
df = df[complete.cases(df[1:31]),]

df = df[, c("A_carro_poss", "A_carro_need", "A_seg_carro", "SATISF_PR_CarroMoto_Acid", "SATISF_PR_CarroMoto_Roubo_Veic",
                      "A_transp_pub", "A_transpor_1", "A_transporte", "P_transp_p_1", "P_colegas_tr", "P_fam_amigos", "P_facil_tran", 
                      "P_poss_usar_", "P_transp_p_2", "P_evit_trans", "P_plan_trans", "Comerc", "Serv", "Paradas", "Decliv_ab", "idade",
                      "genero", "prof", "escol", "cnh", "carros_cas", "motos_casa", "pessoas_ca", "criancas_c", "adol_casa", "renda_fam_")]

names(df) = c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17",
              "V18", "V19", "V20", "V21", "V22", "V23", "V24", "V25", "V26", "V27", "V28", "V29", "V30", "V31")
df = df[complete.cases(df[17:18]),]
#View(df)
glimpse(df)
## Rows: 127
## Columns: 31
## $ V1  <dbl> 5, 5, 4, 5, 5, 5, 5, 5, 5, 2, 4, 5, 5, 3, 5, 5, 1, 5, 4, 5, 5, 5, …
## $ V2  <dbl> 4, 5, 2, 4, 5, 5, 5, 5, 5, 3, 3, 3, 1, 4, 5, 5, 3, 5, 4, 3, 3, 3, …
## $ V3  <dbl> 4, 5, 3, 4, 5, 3, 5, 4, 4, 3, 3, 5, 5, 3, 2, 3, 3, 4, 4, 4, 4, 4, …
## $ V4  <dbl> 3, 3, 2, 2, 4, 4, 4, 5, 3, 3, 1, 5, 3, 3, 3, 3, 3, 5, 4, 3, 5, 4, …
## $ V5  <dbl> 2, 1, 3, 1, 3, 2, 4, 3, 2, 2, 1, 5, 5, 3, 2, 3, 3, 4, 4, 4, 5, 3, …
## $ V6  <dbl> 1, 1, 5, 1, 1, 2, 1, 2, 3, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, …
## $ V7  <dbl> 3, 2, 4, 1, 1, 3, 1, 3, 4, 3, 2, 1, 1, 2, 2, 1, 3, 4, 3, 3, 1, 3, …
## $ V8  <dbl> 3, 2, 4, 1, 1, 3, 1, 3, 4, 3, 2, 1, 1, 2, 2, 1, 3, 4, 2, 2, 1, 2, …
## $ V9  <dbl> 4, 1, 4, 2, 3, 1, 1, 4, 3, 2, 1, 4, 1, 3, 2, 1, 3, 2, 4, 1, 1, 2, …
## $ V10 <dbl> 4, 5, 3, 3, 3, 1, 1, 3, 3, 2, 3, 3, 3, 3, 5, 5, 2, 4, 3, 3, 3, 3, …
## $ V11 <dbl> 4, 3, 4, 4, 4, 2, 3, 4, 3, 2, 4, 1, 1, 3, 4, 3, 3, 4, 3, 5, 2, 4, …
## $ V12 <dbl> 2, 1, 4, 2, 3, 1, 3, 3, 3, 2, 1, 1, 1, 3, 2, 2, 4, 2, 1, 3, 2, 3, …
## $ V13 <dbl> 3, 1, 4, 2, 3, 2, 4, 1, 3, 2, 5, 4, 2, 3, 5, 5, 5, 2, 3, 4, 4, 5, …
## $ V14 <dbl> 1, 2, 4, 3, 3, 2, 1, 3, 4, 2, 1, 1, 1, 4, 3, 1, 3, 4, 2, 5, 3, 3, …
## $ V15 <dbl> 2, 1, 4, 3, 3, 1, 1, 4, 4, 2, 3, 1, 2, 3, 3, 1, 2, 5, 3, 5, 2, 3, …
## $ V16 <dbl> 4, 1, 4, 2, 1, 1, 1, 3, 3, 2, 1, 1, 3, 4, 3, 1, 3, 5, 3, 5, 3, 3, …
## $ V17 <dbl> 211, 19, 335, 77, 30, 77, 12, 60, 77, 0, 3, 14, 375, 405, 1, 3, 12…
## $ V18 <dbl> 720, 33, 315, 121, 39, 121, 70, 37, 121, 0, 0, 15, 1568, 263, 2, 0…
## $ V19 <dbl> 5, 1, 26, 8, 3, 8, 2, 5, 8, 0, 1, 8, 22, 36, 1, 1, 0, 2, 8, 9, 10,…
## $ V20 <dbl> 0.043623909, 0.009080742, 0.000211000, 0.000000000, 0.013432000, 0…
## $ V21 <dbl> 3, 3, 3, 6, 3, 6, 3, 6, 4, 5, 4, 7, 4, 6, 3, 3, 4, 6, 5, 5, 4, 4, …
## $ V22 <dbl> 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, …
## $ V23 <dbl> 1, 4, 1, 1, 7, 2, 2, 1, 1, 1, 1, 1, 7, 2, 2, 8, 2, 2, 1, 1, 4, 1, …
## $ V24 <dbl> 6, 6, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, …
## $ V25 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ V26 <dbl> 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 2, 2, 2, 1, …
## $ V27 <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ V28 <dbl> 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 5, 3, 3, 3, 3, 4, 4, 3, 2, 1, …
## $ V29 <dbl> 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 1, 0, 1, 1, 0, 0, …
## $ V30 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ V31 <dbl> 5, 3, 3, 5, 5, 3, 3, 5, 2, 2, 3, 3, 4, 5, 3, 3, 4, 2, 3, 4, 5, 3, …
#df$V17 = log10(df$V17)
#df$V18 = log10(df$V18)
#df$V19 = log10(df$V19)
library(corrplot)
M<-cor(df)
#View(M)
corrplot(M, method="pie")

#corrplot(M, method="number")
#corrplot(M, method = 'color', order = 'alphabet') 
#corrplot(M)
#corrplot(M, order = 'AOE')
#corrplot(M, method = 'square', order = 'FPC', type = 'lower', diag = FALSE)
#corrplot.mixed(M, order = 'AOE')
#corrplot.mixed(M, lower = 'shade', upper = 'pie', order = 'hclust')
#corrplot(M, order = 'hclust', addrect = 2)


#col1 = colorRampPalette(c('#7F0000', 'red', '#FF7F00', 'yellow', 'white',cyan', '#007FFF', 'blue', '#00007F'))
#col2 = colorRampPalette(c('red', 'white', 'blue'))  

library(RColorBrewer)
#corrplot(M, order = 'AOE', addCoef.col = 'black', tl.pos = 'd', cl.pos = 'n', col = brewer.pal(n = 10, name = 'PRGn'))


# cor.mtest <- function(mat, ...) {
#   mat <- as.matrix(mat)
#   n <- ncol(mat)
#   p.mat<- matrix(NA, n, n)
#   diag(p.mat) <- 0
#   for (i in 1:(n - 1)) {
#     for (j in (i + 1):n) {
#       tmp <- cor.test(mat[, i], mat[, j], ...)
#       p.mat[i, j] <- p.mat[j, i] <- tmp$p.value
#     }
#   }
#   colnames(p.mat) <- rownames(p.mat) <- colnames(mat)
#   p.mat
# }
# p.mat <- cor.mtest(df)
# 
# col <- colorRampPalette(c("#BB4444", "#EE9988", "#FFFFFF", "#77AADD", "#4477AA"))
# corrplot(M, method="color", col=col(200),  
#          type="upper", order="hclust", 
#          addCoef.col = "black",
#          tl.col="black", tl.srt=45,
#          p.mat = p.mat, sig.level = 0.01, insig = "blank", 
#          diag=FALSE 
# )

Modelo Original

modelo='
Car =~ V1 + V2 + V3 + V4 + V5 + Amb
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13  + V14 + V15 + V16 + Amb
Amb =~ V17 + V18 + V19 + V20
Socio =~ V21 + V22 + V23 + V24 + V25 + V26 + V27 + V28 + V29 + V30 + V31 + Amb
'

fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 1244 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        68
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               983.304
##   Degrees of freedom                               428
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Car =~                                                                 
##     V1                 1.000                               1.099    0.906
##     V2                 0.604       NA                      0.663    0.547
##     V3                 0.359       NA                      0.394    0.432
##     V4                 0.172       NA                      0.189    0.203
##     V5                -0.023       NA                     -0.025   -0.020
##     Amb                2.400       NA                      0.041    0.041
##   TP =~                                                                  
##     V6                 1.000                               0.484    0.489
##     V7                 1.583       NA                      0.766    0.679
##     V8                 1.662       NA                      0.804    0.745
##     V9                 0.936       NA                      0.453    0.421
##     V10                0.495       NA                      0.239    0.211
##     V11                0.670       NA                      0.324    0.299
##     V12                1.306       NA                      0.632    0.486
##     V13                0.810       NA                      0.392    0.294
##     V14                2.070       NA                      1.002    0.847
##     V15                1.683       NA                      0.814    0.679
##     V16                2.052       NA                      0.993    0.821
##     Amb               34.110       NA                      0.256    0.256
##   Amb =~                                                                 
##     V17                1.000                              64.473    0.778
##     V18                3.529       NA                    227.541    0.997
##     V19                0.051       NA                      3.276    0.425
##     V20                0.000       NA                      0.002    0.134
##   Socio =~                                                               
##     V21                1.000                               0.042    0.032
##     V22                0.472       NA                      0.020    0.040
##     V23               -1.067       NA                     -0.045   -0.021
##     V24                0.241       NA                      0.010    0.019
##     V25               -0.104       NA                     -0.004   -0.035
##     V26               -1.716       NA                     -0.073   -0.105
##     V27               -0.221       NA                     -0.009   -0.023
##     V28               -3.045       NA                     -0.129   -0.125
##     V29               -2.936       NA                     -0.125   -0.179
##     V30               -2.518       NA                     -0.107   -0.336
##     V31                0.134       NA                      0.006    0.006
##     Amb            -1779.038       NA                     -1.172   -1.172
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Car ~~                                                                 
##     TP                -0.163       NA                     -0.306   -0.306
##     Socio             -0.003       NA                     -0.058   -0.058
##   TP ~~                                                                  
##     Socio              0.002       NA                      0.093    0.093
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .V1                 0.264       NA                      0.264    0.179
##    .V2                 1.032       NA                      1.032    0.701
##    .V3                 0.679       NA                      0.679    0.814
##    .V4                 0.835       NA                      0.835    0.959
##    .V5                 1.542       NA                      1.542    1.000
##    .V6                 0.746       NA                      0.746    0.761
##    .V7                 0.685       NA                      0.685    0.538
##    .V8                 0.519       NA                      0.519    0.445
##    .V9                 0.952       NA                      0.952    0.823
##    .V10                1.225       NA                      1.225    0.955
##    .V11                1.072       NA                      1.072    0.911
##    .V12                1.291       NA                      1.291    0.764
##    .V13                1.625       NA                      1.625    0.914
##    .V14                0.395       NA                      0.395    0.282
##    .V15                0.774       NA                      0.774    0.538
##    .V16                0.476       NA                      0.476    0.325
##    .V17             2706.102       NA                   2706.102    0.394
##    .V18              277.036       NA                    277.036    0.005
##    .V19               48.620       NA                     48.620    0.819
##    .V20                0.000       NA                      0.000    0.982
##    .V21                1.727       NA                      1.727    0.999
##    .V22                0.249       NA                      0.249    0.998
##    .V23                4.719       NA                      4.719    1.000
##    .V24                0.278       NA                      0.278    1.000
##    .V25                0.015       NA                      0.015    0.999
##    .V26                0.475       NA                      0.475    0.989
##    .V27                0.163       NA                      0.163    0.999
##    .V28                1.060       NA                      1.060    0.984
##    .V29                0.470       NA                      0.470    0.968
##    .V30                0.090       NA                      0.090    0.887
##    .V31                0.977       NA                      0.977    1.000
##     Car                1.208       NA                      1.000    1.000
##     TP                 0.234       NA                      1.000    1.000
##    .Amb            -1600.562       NA                     -0.385   -0.385
##     Socio              0.002       NA                      1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

Modelo 1

modelo='
Car =~ V1 + V2 + V3
TP =~ V6 + V7 + V8 
Amb =~ V17 + V18 + V19 
Socio =~ V21 + V22 + V23 
'

fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 182 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               167.080
##   Degrees of freedom                                48
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car =~                                                                   
##     V1                 1.000                                 1.185    0.977
##     V2                 0.526     0.150    3.499    0.000     0.623    0.513
##     V3                 0.307     0.098    3.140    0.002     0.364    0.398
##   TP =~                                                                    
##     V6                 1.000                                 0.538    0.543
##     V7                 1.672     0.278    6.010    0.000     0.899    0.797
##     V8                 1.836     0.319    5.749    0.000     0.988    0.915
##   Amb =~                                                                   
##     V17                1.000                                 8.036    0.097
##     V18               -0.294     0.286   -1.027    0.304    -2.363   -0.010
##     V19                6.649   153.966    0.043    0.966    53.433    6.701
##   Socio =~                                                                 
##     V21                1.000                                 0.955    0.727
##     V22                0.041     0.062    0.666    0.505     0.039    0.079
##     V23               -1.056     0.561   -1.881    0.060    -1.009   -0.464
## 
## Covariances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                   
##     TP                -0.179     0.069   -2.578    0.010    -0.280   -0.280
##     Amb               -0.218     5.104   -0.043    0.966    -0.023   -0.023
##     Socio              0.123     0.136    0.903    0.366     0.108    0.108
##   TP ~~                                                                    
##     Amb                0.076     1.767    0.043    0.966     0.017    0.017
##     Socio              0.007     0.064    0.112    0.911     0.014    0.014
##   Amb ~~                                                                   
##     Socio              0.265     6.198    0.043    0.966     0.035    0.035
## 
## Variances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##    .V1                 0.068     0.344    0.198    0.843     0.068    0.046
##    .V2                 1.084     0.166    6.522    0.000     1.084    0.737
##    .V3                 0.703     0.094    7.459    0.000     0.703    0.841
##    .V6                 0.691     0.093    7.401    0.000     0.691    0.705
##    .V7                 0.463     0.108    4.300    0.000     0.463    0.364
##    .V8                 0.190     0.112    1.706    0.088     0.190    0.163
##    .V17             6770.635  1717.877    3.941    0.000  6770.635    0.991
##    .V18            52661.995  6609.239    7.968    0.000 52661.995    1.000
##    .V19            -2791.549 66013.553   -0.042    0.966 -2791.549  -43.906
##    .V21                0.817     0.487    1.677    0.093     0.817    0.472
##    .V22                0.248     0.031    7.936    0.000     0.248    0.994
##    .V23                3.703     0.706    5.243    0.000     3.703    0.784
##     Car                1.403     0.390    3.598    0.000     1.000    1.000
##     TP                 0.289     0.094    3.082    0.002     1.000    1.000
##     Amb               64.578  1497.673    0.043    0.966     1.000    1.000
##     Socio              0.913     0.513    1.780    0.075     1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

Modelo 2

modelo='
Car =~ V1 + V2 
TP =~ V6 + V7 
Amb =~ V17 + V18 
Socio =~ V21 + V22 
'

fit2 = cfa(modelo,data = df)
summary(fit2,standardized = TRUE)
## lavaan 0.6-9 ended normally after 85 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        22
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               205.993
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   Car =~                                                                  
##     V1                 1.000                                0.735    0.605
##     V2                 1.371    0.585    2.344    0.019     1.008    0.830
##   TP =~                                                                   
##     V6                 1.000                                1.032    1.018
##     V7                 0.460    0.218    2.107    0.035     0.475    0.419
##   Amb =~                                                                  
##     V17                1.000                                0.732    0.013
##     V18               -1.778    1.010   -1.760    0.078    -1.301   -0.008
##   Socio =~                                                                
##     V21                1.000                                1.555    1.182
##     V22                0.011    0.305    0.037    0.970     0.018    0.035
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                  
##     TP                -0.214    0.107   -1.990    0.047    -0.282   -0.282
##     Amb               -2.661    3.880   -0.686    0.493    -4.948   -4.948
##     Socio              0.118    0.108    1.092    0.275     0.103    0.103
##   TP ~~                                                                   
##     Amb               17.111    5.469    3.129    0.002    22.651   22.651
##     Socio             -0.071    0.119   -0.603    0.547    -0.045   -0.045
##   Amb ~~                                                                  
##     Socio             -2.154    5.759   -0.374    0.708    -1.892   -1.892
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .V1                 0.933    0.252    3.701    0.000     0.933    0.633
##    .V2                 0.459    0.424    1.085    0.278     0.459    0.312
##    .V6                -0.037    0.461   -0.080    0.937    -0.037   -0.036
##    .V7                 1.057    0.165    6.417    0.000     1.057    0.824
##    .V17             3413.855  638.350    5.348    0.000  3413.855    1.000
##    .V18            26333.992 3627.310    7.260    0.000 26333.992    1.000
##    .V21               -0.688   64.605   -0.011    0.992    -0.688   -0.398
##    .V22                0.249    0.032    7.698    0.000     0.249    0.999
##     Car                0.540    0.265    2.036    0.042     1.000    1.000
##     TP                 1.065    0.479    2.225    0.026     1.000    1.000
##     Amb                0.536  473.302    0.001    0.999     1.000    1.000
##     Socio              2.418   64.605    0.037    0.970     1.000    1.000
semPaths(fit2,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

Comparacão de Modelos (Indicadores de Qualidade do Modelo)

  • CHISQ: (Indicador de Aderência do modelo) Ideal < 2
  • AIC: (Indicador de Aderência do modelo) Quanto Menor melhor | Quanto menor mais aderente é o modelo
  • BIC: (Indicador de Aderência do modelo) Quanto Menor melhor | Quanto menor mais aderente é o modelo
  • CFI: (Comparação de Modelos) > 0.95 para aceitacão
  • TLI: (Comparação de Modelos) > 0.95 para aceitacão
  • RMSEA: < 0.6
  • SMMR: Desejável < 0.9
library("semTools")
summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq df pvalue rmsea   cfi     tli  srmr       aic       bic
## fit2 205.993  14   .000 .329  .000  -1.127  .182  5445.918† 5508.490†
## fit1 167.080† 48   .000 .140† .699†   .586† .121† 7324.386  7409.712

Modelo 3

modelo='
Car =~ V1 + V2 + V3 + V4 + V5
TP =~ V6 + V7 + V8 
Amb =~ V17 + V18 + V19 
Socio =~ V21 + V22 + V23 
'

fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 196 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        34
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               236.142
##   Degrees of freedom                                71
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car =~                                                                   
##     V1                 1.000                                 1.129    0.931
##     V2                 0.575     0.146    3.949    0.000     0.649    0.535
##     V3                 0.339     0.097    3.497    0.000     0.383    0.419
##     V4                 0.163     0.083    1.966    0.049     0.184    0.198
##     V5                -0.028     0.104   -0.269    0.788    -0.032   -0.026
##   TP =~                                                                    
##     V6                 1.000                                 0.538    0.543
##     V7                 1.670     0.278    6.013    0.000     0.899    0.797
##     V8                 1.837     0.319    5.752    0.000     0.988    0.915
##   Amb =~                                                                   
##     V17                1.000                                 7.937    0.096
##     V18               -0.298     0.286   -1.040    0.298    -2.362   -0.010
##     V19                6.825   162.263    0.042    0.966    54.165    6.789
##   Socio =~                                                                 
##     V21                1.000                                 0.962    0.732
##     V22                0.041     0.061    0.673    0.501     0.040    0.079
##     V23               -1.041     0.553   -1.881    0.060    -1.001   -0.461
## 
## Covariances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                   
##     TP                -0.179     0.069   -2.589    0.010    -0.295   -0.295
##     Amb               -0.210     5.044   -0.042    0.967    -0.023   -0.023
##     Socio              0.130     0.135    0.962    0.336     0.120    0.120
##   TP ~~                                                                    
##     Amb                0.073     1.764    0.042    0.967     0.017    0.017
##     Socio              0.007     0.064    0.107    0.915     0.013    0.013
##   Amb ~~                                                                   
##     Socio              0.259     6.204    0.042    0.967     0.034    0.034
## 
## Variances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##    .V1                 0.197     0.272    0.725    0.468     0.197    0.134
##    .V2                 1.051     0.161    6.541    0.000     1.051    0.714
##    .V3                 0.688     0.093    7.421    0.000     0.688    0.824
##    .V4                 0.836     0.106    7.912    0.000     0.836    0.961
##    .V5                 1.541     0.193    7.968    0.000     1.541    0.999
##    .V6                 0.691     0.093    7.401    0.000     0.691    0.705
##    .V7                 0.464     0.108    4.315    0.000     0.464    0.365
##    .V8                 0.189     0.112    1.697    0.090     0.189    0.162
##    .V17             6772.120  1720.071    3.937    0.000  6772.120    0.991
##    .V18            52661.995  6609.307    7.968    0.000 52661.995    1.000
##    .V19            -2870.173 69654.363   -0.041    0.967 -2870.173  -45.094
##    .V21                0.804     0.492    1.633    0.102     0.804    0.465
##    .V22                0.248     0.031    7.936    0.000     0.248    0.994
##    .V23                3.718     0.701    5.300    0.000     3.718    0.788
##     Car                1.274     0.327    3.902    0.000     1.000    1.000
##     TP                 0.289     0.094    3.083    0.002     1.000    1.000
##     Amb               62.991  1499.971    0.042    0.967     1.000    1.000
##     Socio              0.926     0.519    1.784    0.074     1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq df pvalue rmsea   cfi     tli  srmr       aic       bic
## fit2 205.993† 14   .000 .329  .000  -1.127  .182  5445.918† 5508.490†
## fit1 236.142  71   .000 .135† .628†   .523† .124† 8086.159  8182.861

Modelo 4

modelo='
Car =~ V1 + V2 + V3 + V4 + V5
TP =~ V6 + V7 + V8 + V9 + V10
Amb =~ V17 + V18 + V19 
Socio =~ V21 + V22 + V23 
'

fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 184 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        38
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               271.860
##   Degrees of freedom                                98
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car =~                                                                   
##     V1                 1.000                                 1.139    0.939
##     V2                 0.565     0.146    3.873    0.000     0.644    0.531
##     V3                 0.333     0.097    3.437    0.001     0.379    0.415
##     V4                 0.160     0.082    1.945    0.052     0.182    0.195
##     V5                -0.029     0.103   -0.286    0.775    -0.033   -0.027
##   TP =~                                                                    
##     V6                 1.000                                 0.535    0.541
##     V7                 1.751     0.293    5.972    0.000     0.937    0.831
##     V8                 1.775     0.299    5.945    0.000     0.950    0.880
##     V9                 0.801     0.214    3.749    0.000     0.429    0.398
##     V10                0.327     0.205    1.589    0.112     0.175    0.154
##   Amb =~                                                                   
##     V17                1.000                                 8.242    0.100
##     V18               -0.286     0.287   -0.999    0.318    -2.360   -0.010
##     V19                6.285   136.010    0.046    0.963    51.799    6.513
##   Socio =~                                                                 
##     V21                1.000                                 0.960    0.730
##     V22                0.041     0.061    0.676    0.499     0.040    0.080
##     V23               -1.044     0.555   -1.883    0.060    -1.003   -0.462
## 
## Covariances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                   
##     TP                -0.174     0.069   -2.528    0.011    -0.284   -0.284
##     Amb               -0.229     5.017   -0.046    0.964    -0.024   -0.024
##     Socio              0.129     0.135    0.953    0.341     0.118    0.118
##   TP ~~                                                                    
##     Amb                0.088     1.921    0.046    0.964     0.020    0.020
##     Socio              0.009     0.064    0.133    0.894     0.017    0.017
##   Amb ~~                                                                   
##     Socio              0.281     6.143    0.046    0.964     0.035    0.035
## 
## Variances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##    .V1                 0.173     0.283    0.613    0.540     0.173    0.118
##    .V2                 1.057     0.161    6.549    0.000     1.057    0.718
##    .V3                 0.691     0.093    7.433    0.000     0.691    0.828
##    .V4                 0.837     0.106    7.918    0.000     0.837    0.962
##    .V5                 1.541     0.193    7.968    0.000     1.541    0.999
##    .V6                 0.694     0.093    7.428    0.000     0.694    0.708
##    .V7                 0.393     0.097    4.044    0.000     0.393    0.309
##    .V8                 0.263     0.092    2.869    0.004     0.263    0.226
##    .V9                 0.974     0.126    7.728    0.000     0.974    0.841
##    .V10                1.251     0.158    7.938    0.000     1.251    0.976
##    .V17             6767.103  1695.589    3.991    0.000  6767.103    0.990
##    .V18            52662.035  6609.076    7.968    0.000 52662.035    1.000
##    .V19            -2619.844 57971.338   -0.045    0.964 -2619.844  -41.413
##    .V21                0.807     0.491    1.645    0.100     0.807    0.467
##    .V22                0.248     0.031    7.935    0.000     0.248    0.994
##    .V23                3.715     0.702    5.292    0.000     3.715    0.787
##     Car                1.298     0.336    3.862    0.000     1.000    1.000
##     TP                 0.287     0.093    3.073    0.002     1.000    1.000
##     Amb               67.929  1472.553    0.046    0.963     1.000    1.000
##     Socio              0.923     0.517    1.785    0.074     1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq df pvalue rmsea   cfi     tli  srmr       aic       bic
## fit2 205.993† 14   .000 .329  .000  -1.127  .182  5445.918† 5508.490†
## fit1 271.860  98   .000 .118† .631†   .548† .117† 8844.809  8952.888

Modelo 5

modelo='
Car =~ V1 + V2 + V3 + V4 + V5
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 
Amb =~ V17 + V18 + V19 
Socio =~ V21 + V22 + V23 
'

fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 199 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        42
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               330.470
##   Degrees of freedom                               129
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car =~                                                                   
##     V1                 1.000                                 1.138    0.938
##     V2                 0.567     0.146    3.883    0.000     0.645    0.532
##     V3                 0.333     0.097    3.441    0.001     0.379    0.415
##     V4                 0.160     0.082    1.948    0.051     0.182    0.195
##     V5                -0.030     0.103   -0.287    0.774    -0.034   -0.027
##   TP =~                                                                    
##     V6                 1.000                                 0.553    0.559
##     V7                 1.668     0.268    6.232    0.000     0.923    0.818
##     V8                 1.720     0.272    6.311    0.000     0.952    0.881
##     V9                 0.775     0.203    3.818    0.000     0.429    0.399
##     V10                0.346     0.198    1.744    0.081     0.191    0.169
##     V11                0.359     0.191    1.885    0.059     0.199    0.183
##     V12                1.202     0.259    4.649    0.000     0.665    0.512
##   Amb =~                                                                   
##     V17                1.000                                 8.034    0.097
##     V18               -0.289     0.286   -1.010    0.313    -2.323   -0.010
##     V19                6.616   149.887    0.044    0.965    53.156    6.682
##   Socio =~                                                                 
##     V21                1.000                                 0.962    0.731
##     V22                0.042     0.061    0.683    0.494     0.040    0.081
##     V23               -1.041     0.553   -1.881    0.060    -1.001   -0.461
## 
## Covariances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                   
##     TP                -0.181     0.070   -2.570    0.010    -0.287   -0.287
##     Amb               -0.218     4.980   -0.044    0.965    -0.024   -0.024
##     Socio              0.130     0.136    0.956    0.339     0.118    0.118
##   TP ~~                                                                    
##     Amb                0.088     2.020    0.044    0.965     0.020    0.020
##     Socio              0.000     0.066    0.002    0.998     0.000    0.000
##   Amb ~~                                                                   
##     Socio              0.267     6.104    0.044    0.965     0.035    0.035
## 
## Variances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##    .V1                 0.177     0.281    0.630    0.529     0.177    0.120
##    .V2                 1.056     0.161    6.540    0.000     1.056    0.717
##    .V3                 0.691     0.093    7.434    0.000     0.691    0.828
##    .V4                 0.837     0.106    7.917    0.000     0.837    0.962
##    .V5                 1.541     0.193    7.968    0.000     1.541    0.999
##    .V6                 0.674     0.091    7.402    0.000     0.674    0.688
##    .V7                 0.420     0.086    4.873    0.000     0.420    0.330
##    .V8                 0.260     0.078    3.331    0.001     0.260    0.223
##    .V9                 0.973     0.126    7.739    0.000     0.973    0.841
##    .V10                1.245     0.157    7.933    0.000     1.245    0.971
##    .V11                1.138     0.144    7.927    0.000     1.138    0.966
##    .V12                1.248     0.166    7.530    0.000     1.248    0.738
##    .V17             6770.020  1689.185    4.008    0.000  6770.020    0.991
##    .V18            52662.229  6609.151    7.968    0.000 52662.229    1.000
##    .V19            -2762.254 63912.083   -0.043    0.966 -2762.254  -43.648
##    .V21                0.804     0.492    1.634    0.102     0.804    0.465
##    .V22                0.248     0.031    7.935    0.000     0.248    0.993
##    .V23                3.719     0.701    5.304    0.000     3.719    0.788
##     Car                1.294     0.335    3.864    0.000     1.000    1.000
##     TP                 0.306     0.095    3.207    0.001     1.000    1.000
##     Amb               64.549  1464.716    0.044    0.965     1.000    1.000
##     Socio              0.925     0.519    1.784    0.074     1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq  df pvalue rmsea   cfi     tli  srmr       aic       bic
## fit2 205.993†  14   .000 .329  .000  -1.127  .182  5445.918† 5508.490†
## fit1 330.470  129   .000 .111† .621†   .551† .116† 9625.288  9744.743

Modelo 6

modelo='
Car =~ V1 + V2 + V3 + V4 + V5
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13 + V14 
Amb =~ V17 + V18 + V19 
Socio =~ V21 + V22 + V23 
'

fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 206 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        46
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               403.415
##   Degrees of freedom                               164
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car =~                                                                   
##     V1                 1.000                                 1.116    0.920
##     V2                 0.588     0.147    3.989    0.000     0.656    0.541
##     V3                 0.346     0.098    3.527    0.000     0.386    0.422
##     V4                 0.169     0.085    1.996    0.046     0.188    0.202
##     V5                -0.027     0.106   -0.257    0.797    -0.030   -0.025
##   TP =~                                                                    
##     V6                 1.000                                 0.573    0.579
##     V7                 1.569     0.243    6.467    0.000     0.900    0.798
##     V8                 1.621     0.242    6.691    0.000     0.930    0.861
##     V9                 0.766     0.193    3.969    0.000     0.439    0.408
##     V10                0.349     0.190    1.832    0.067     0.200    0.177
##     V11                0.413     0.184    2.247    0.025     0.237    0.218
##     V12                1.247     0.247    5.047    0.000     0.715    0.550
##     V13                0.595     0.228    2.609    0.009     0.341    0.256
##     V14                1.474     0.243    6.060    0.000     0.845    0.715
##   Amb =~                                                                   
##     V17                1.000                                 8.075    0.098
##     V18               -0.287     0.287   -1.000    0.317    -2.321   -0.010
##     V19                6.514   144.551    0.045    0.964    52.600    6.627
##   Socio =~                                                                 
##     V21                1.000                                 0.964    0.733
##     V22                0.042     0.061    0.686    0.493     0.040    0.081
##     V23               -1.036     0.551   -1.880    0.060    -0.999   -0.460
## 
## Covariances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                   
##     TP                -0.192     0.072   -2.653    0.008    -0.300   -0.300
##     Amb               -0.219     4.918   -0.045    0.964    -0.024   -0.024
##     Socio              0.132     0.135    0.974    0.330     0.122    0.122
##   TP ~~                                                                    
##     Amb                0.097     2.180    0.045    0.964     0.021    0.021
##     Socio              0.000     0.068    0.002    0.998     0.000    0.000
##   Amb ~~                                                                   
##     Socio              0.271     6.076    0.045    0.964     0.035    0.035
## 
## Variances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##    .V1                 0.226     0.264    0.856    0.392     0.226    0.154
##    .V2                 1.041     0.161    6.483    0.000     1.041    0.708
##    .V3                 0.686     0.093    7.397    0.000     0.686    0.822
##    .V4                 0.835     0.106    7.903    0.000     0.835    0.959
##    .V5                 1.541     0.193    7.968    0.000     1.541    0.999
##    .V6                 0.652     0.088    7.388    0.000     0.652    0.665
##    .V7                 0.462     0.079    5.831    0.000     0.462    0.363
##    .V8                 0.302     0.066    4.576    0.000     0.302    0.259
##    .V9                 0.965     0.125    7.741    0.000     0.965    0.833
##    .V10                1.242     0.157    7.932    0.000     1.242    0.969
##    .V11                1.121     0.142    7.912    0.000     1.121    0.952
##    .V12                1.179     0.158    7.471    0.000     1.179    0.697
##    .V13                1.662     0.211    7.889    0.000     1.662    0.935
##    .V14                0.684     0.101    6.736    0.000     0.684    0.489
##    .V17             6768.883  1675.816    4.039    0.000  6768.883    0.990
##    .V18            52662.207  6609.099    7.968    0.000 52662.207    1.000
##    .V19            -2703.720 61298.136   -0.044    0.965 -2703.720  -42.918
##    .V21                0.801     0.494    1.620    0.105     0.801    0.463
##    .V22                0.248     0.031    7.934    0.000     0.248    0.993
##    .V23                3.723     0.700    5.320    0.000     3.723    0.789
##     Car                1.245     0.320    3.896    0.000     1.000    1.000
##     TP                 0.329     0.098    3.366    0.001     1.000    1.000
##     Amb               65.205  1449.409    0.045    0.964     1.000    1.000
##     Socio              0.929     0.521    1.784    0.074     1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq  df pvalue rmsea   cfi     tli  srmr        aic        bic
## fit2 205.993†  14   .000 .329  .000  -1.127  .182   5445.918†  5508.490†
## fit1 403.415  164   .000 .107† .629†   .571† .113† 10391.845  10522.677

Modelo 7

modelo='
Car =~ V1 + V2 + V3 + V4 + V5
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13 + V14 + V15 + V16
Amb =~ V17 + V18 + V19 
Socio =~ V21 + V22 + V23 
'

fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 180 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        50
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               530.025
##   Degrees of freedom                               203
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car =~                                                                   
##     V1                 1.000                                 1.106    0.912
##     V2                 0.597     0.147    4.055    0.000     0.660    0.544
##     V3                 0.352     0.098    3.579    0.000     0.389    0.426
##     V4                 0.174     0.086    2.034    0.042     0.193    0.207
##     V5                -0.024     0.108   -0.224    0.823    -0.027   -0.022
##   TP =~                                                                    
##     V6                 1.000                                 0.486    0.491
##     V7                 1.586     0.310    5.119    0.000     0.771    0.683
##     V8                 1.665     0.312    5.344    0.000     0.809    0.749
##     V9                 0.931     0.244    3.808    0.000     0.452    0.420
##     V10                0.489     0.229    2.138    0.033     0.237    0.210
##     V11                0.660     0.228    2.889    0.004     0.321    0.295
##     V12                1.315     0.310    4.238    0.000     0.639    0.491
##     V13                0.805     0.280    2.872    0.004     0.391    0.293
##     V14                2.067     0.368    5.616    0.000     1.005    0.849
##     V15                1.665     0.327    5.088    0.000     0.809    0.675
##     V16                2.026     0.366    5.531    0.000     0.985    0.814
##   Amb =~                                                                   
##     V17                1.000                                 8.738    0.106
##     V18               -0.297     0.292   -1.018    0.309    -2.598   -0.011
##     V19                5.501   103.583    0.053    0.958    48.066    6.083
##   Socio =~                                                                 
##     V21                1.000                                 0.934    0.710
##     V22                0.045     0.064    0.704    0.482     0.042    0.084
##     V23               -1.103     0.562   -1.963    0.050    -1.030   -0.474
## 
## Covariances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                   
##     TP                -0.164     0.063   -2.608    0.009    -0.305   -0.305
##     Amb               -0.259     4.940   -0.052    0.958    -0.027   -0.027
##     Socio              0.126     0.133    0.942    0.346     0.122    0.122
##   TP ~~                                                                    
##     Amb                0.096     1.830    0.052    0.958     0.023    0.023
##     Socio              0.026     0.057    0.456    0.648     0.057    0.057
##   Amb ~~                                                                   
##     Socio              0.320     6.086    0.053    0.958     0.039    0.039
## 
## Variances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##    .V1                 0.248     0.255    0.973    0.330     0.248    0.169
##    .V2                 1.036     0.160    6.473    0.000     1.036    0.704
##    .V3                 0.684     0.093    7.384    0.000     0.684    0.819
##    .V4                 0.833     0.106    7.896    0.000     0.833    0.957
##    .V5                 1.542     0.193    7.968    0.000     1.542    1.000
##    .V6                 0.744     0.097    7.678    0.000     0.744    0.759
##    .V7                 0.678     0.095    7.159    0.000     0.678    0.533
##    .V8                 0.511     0.075    6.776    0.000     0.511    0.438
##    .V9                 0.953     0.123    7.772    0.000     0.953    0.823
##    .V10                1.226     0.155    7.927    0.000     1.226    0.956
##    .V11                1.074     0.136    7.881    0.000     1.074    0.913
##    .V12                1.283     0.167    7.677    0.000     1.283    0.759
##    .V13                1.625     0.206    7.883    0.000     1.625    0.914
##    .V14                0.389     0.070    5.543    0.000     0.389    0.278
##    .V15                0.782     0.109    7.196    0.000     0.782    0.544
##    .V16                0.492     0.080    6.118    0.000     0.492    0.337
##    .V17             6757.786  1666.946    4.054    0.000  6757.786    0.989
##    .V18            52660.866  6608.920    7.968    0.000 52660.866    1.000
##    .V19            -2247.934 43424.868   -0.052    0.959 -2247.934  -35.999
##    .V21                0.858     0.449    1.908    0.056     0.858    0.496
##    .V22                0.247     0.031    7.929    0.000     0.247    0.993
##    .V23                3.660     0.703    5.204    0.000     3.660    0.775
##     Car                1.223     0.312    3.925    0.000     1.000    1.000
##     TP                 0.236     0.084    2.805    0.005     1.000    1.000
##     Amb               76.358  1440.790    0.053    0.958     1.000    1.000
##     Socio              0.872     0.475    1.834    0.067     1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq  df pvalue rmsea   cfi     tli  srmr        aic        bic
## fit2 205.993†  14   .000 .329  .000  -1.127  .182   5445.918†  5508.490†
## fit1 530.025  203   .000 .113† .621†   .569† .112† 11083.773  11225.982

Modelo 8

modelo='
Car =~ V1 + V2 + V3 + V4 + V5
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13 + V14 + V15 + V16
Amb =~ V17 + V18 + V19 + V20
Socio =~ V21 + V22 + V23 
'
df$V20 = df$V20*100
fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 168 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        52
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               559.764
##   Degrees of freedom                               224
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car =~                                                                   
##     V1                 1.000                                 1.106    0.912
##     V2                 0.598     0.148    4.049    0.000     0.661    0.545
##     V3                 0.352     0.098    3.576    0.000     0.389    0.426
##     V4                 0.174     0.086    2.032    0.042     0.193    0.207
##     V5                -0.024     0.108   -0.223    0.823    -0.027   -0.021
##   TP =~                                                                    
##     V6                 1.000                                 0.486    0.491
##     V7                 1.586     0.310    5.120    0.000     0.771    0.683
##     V8                 1.665     0.312    5.345    0.000     0.809    0.750
##     V9                 0.931     0.244    3.808    0.000     0.452    0.420
##     V10                0.489     0.229    2.137    0.033     0.237    0.210
##     V11                0.660     0.228    2.889    0.004     0.321    0.295
##     V12                1.315     0.310    4.239    0.000     0.639    0.491
##     V13                0.805     0.280    2.872    0.004     0.391    0.293
##     V14                2.067     0.368    5.617    0.000     1.004    0.849
##     V15                1.665     0.327    5.089    0.000     0.809    0.675
##     V16                2.026     0.366    5.531    0.000     0.984    0.814
##   Amb =~                                                                   
##     V17                1.000                                 9.393    0.114
##     V18               -0.241     0.293   -0.822    0.411    -2.263   -0.010
##     V19                4.676    76.384    0.061    0.951    43.919    5.609
##     V20               -0.001     0.002   -0.478    0.633    -0.010   -0.006
##   Socio =~                                                                 
##     V21                1.000                                 0.939    0.714
##     V22                0.044     0.063    0.697    0.486     0.041    0.083
##     V23               -1.090     0.566   -1.926    0.054    -1.024   -0.471
## 
## Covariances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                   
##     TP                -0.164     0.063   -2.608    0.009    -0.305   -0.305
##     Amb               -0.299     4.947   -0.060    0.952    -0.029   -0.029
##     Socio              0.127     0.134    0.950    0.342     0.122    0.122
##   TP ~~                                                                    
##     Amb                0.111     1.842    0.060    0.952     0.024    0.024
##     Socio              0.025     0.057    0.448    0.654     0.056    0.056
##   Amb ~~                                                                   
##     Socio              0.371     6.136    0.060    0.952     0.042    0.042
## 
## Variances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##    .V1                 0.249     0.255    0.975    0.330     0.249    0.169
##    .V2                 1.035     0.160    6.467    0.000     1.035    0.703
##    .V3                 0.683     0.093    7.381    0.000     0.683    0.818
##    .V4                 0.833     0.106    7.895    0.000     0.833    0.957
##    .V5                 1.542     0.193    7.968    0.000     1.542    1.000
##    .V6                 0.744     0.097    7.678    0.000     0.744    0.759
##    .V7                 0.678     0.095    7.159    0.000     0.678    0.533
##    .V8                 0.511     0.075    6.775    0.000     0.511    0.438
##    .V9                 0.953     0.123    7.772    0.000     0.953    0.823
##    .V10                1.226     0.155    7.927    0.000     1.226    0.956
##    .V11                1.074     0.136    7.881    0.000     1.074    0.913
##    .V12                1.283     0.167    7.677    0.000     1.283    0.758
##    .V13                1.625     0.206    7.883    0.000     1.625    0.914
##    .V14                0.390     0.070    5.544    0.000     0.390    0.279
##    .V15                0.783     0.109    7.196    0.000     0.783    0.544
##    .V16                0.492     0.080    6.119    0.000     0.492    0.337
##    .V17             6743.598  1668.724    4.041    0.000  6743.598    0.987
##    .V18            52662.603  6608.619    7.969    0.000 52662.603    1.000
##    .V19            -1867.558 31443.491   -0.059    0.953 -1867.558  -30.461
##    .V20                3.094     0.388    7.969    0.000     3.094    1.000
##    .V21                0.847     0.462    1.833    0.067     0.847    0.490
##    .V22                0.248     0.031    7.930    0.000     0.248    0.993
##    .V23                3.671     0.707    5.191    0.000     3.671    0.778
##     Car                1.222     0.312    3.918    0.000     1.000    1.000
##     TP                 0.236     0.084    2.805    0.005     1.000    1.000
##     Amb               88.232  1444.765    0.061    0.951     1.000    1.000
##     Socio              0.882     0.488    1.808    0.071     1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq  df pvalue rmsea   cfi     tli  srmr        aic        bic
## fit2 205.993†  14   .000 .329  .000  -1.127  .182   5445.918†  5508.490†
## fit1 559.764  224   .000 .109† .614†   .565† .110† 11591.464  11739.361

Modelo 9

modelo='
Car =~ V1 + V2 + V3 + V4 + V5
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13 + V14 + V15 + V16
Amb =~ V17 + V18 + V19 + V20
Socio =~ V21 + V22 + V23 + Amb
'

fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 780 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        50
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               512.557
##   Degrees of freedom                               226
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Car =~                                                                 
##     V1                 1.000                               1.104    0.910
##     V2                 0.599       NA                      0.661    0.545
##     V3                 0.355       NA                      0.392    0.429
##     V4                 0.171       NA                      0.188    0.202
##     V5                -0.023       NA                     -0.025   -0.020
##   TP =~                                                                  
##     V6                 1.000                               0.482    0.487
##     V7                 1.581       NA                      0.762    0.676
##     V8                 1.665       NA                      0.803    0.743
##     V9                 0.937       NA                      0.452    0.420
##     V10                0.496       NA                      0.239    0.211
##     V11                0.667       NA                      0.322    0.296
##     V12                1.315       NA                      0.634    0.487
##     V13                0.813       NA                      0.392    0.294
##     V14                2.086       NA                      1.005    0.850
##     V15                1.689       NA                      0.814    0.679
##     V16                2.062       NA                      0.994    0.822
##   Amb =~                                                                 
##     V17                1.000                              63.731    0.769
##     V18                3.601       NA                    229.505    0.997
##     V19                0.052       NA                      3.311    0.429
##     V20                0.004       NA                      0.238    0.135
##   Socio =~                                                               
##     V21                1.000                               0.070    0.053
##     V22               -0.264       NA                     -0.018   -0.037
##     V23                0.903       NA                      0.063    0.029
##     Amb             1163.088       NA                      1.275    1.275
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Car ~~                                                                 
##     TP                -0.162       NA                     -0.304   -0.304
##     Socio              0.002       NA                      0.022    0.022
##   TP ~~                                                                  
##     Socio              0.004       NA                      0.107    0.107
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .V1                 0.252       NA                      0.252    0.172
##    .V2                 1.035       NA                      1.035    0.703
##    .V3                 0.681       NA                      0.681    0.816
##    .V4                 0.835       NA                      0.835    0.959
##    .V5                 1.542       NA                      1.542    1.000
##    .V6                 0.748       NA                      0.748    0.763
##    .V7                 0.691       NA                      0.691    0.543
##    .V8                 0.522       NA                      0.522    0.447
##    .V9                 0.953       NA                      0.953    0.824
##    .V10                1.225       NA                      1.225    0.955
##    .V11                1.074       NA                      1.074    0.912
##    .V12                1.289       NA                      1.289    0.762
##    .V13                1.625       NA                      1.625    0.914
##    .V14                0.388       NA                      0.388    0.277
##    .V15                0.774       NA                      0.774    0.539
##    .V16                0.473       NA                      0.473    0.324
##    .V17             2813.670       NA                   2813.670    0.409
##    .V18              323.228       NA                    323.228    0.006
##    .V19               48.576       NA                     48.576    0.816
##    .V20                3.038       NA                      3.038    0.982
##    .V21                1.752       NA                      1.752    0.997
##    .V22                0.249       NA                      0.249    0.999
##    .V23                4.717       NA                      4.717    0.999
##     Car                1.219       NA                      1.000    1.000
##     TP                 0.232       NA                      1.000    1.000
##    .Amb            -2540.075       NA                     -0.625   -0.625
##     Socio              0.005       NA                      1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq  df pvalue rmsea   cfi     tli  srmr        aic        bic
## fit2 205.993†  14   .000 .329  .000  -1.127  .182   5445.918†  5508.490†
## fit1 512.557  226   .000 .100† .671†   .632† .102† 11540.256  11682.466

Modelo 10

modelo='
Car =~ V1 + V2 + V3 + V4 + V5 
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13  + V14 + V15 + V16 
Amb =~ V17 + V18 + V19 + V20
Socio =~ V21 + V22 + V23 + V24 + V25 + V27 + V28 + V29 + V30 + V31 + Amb
'
# V26 
fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 657 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        64
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               878.734
##   Degrees of freedom                               401
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Car =~                                                                 
##     V1                 1.000                               1.101    0.908
##     V2                 0.602    0.156    3.847    0.000    0.663    0.546
##     V3                 0.358    0.103    3.463    0.001    0.394    0.431
##     V4                 0.171    0.087    1.967    0.049    0.189    0.202
##     V5                -0.023    0.109   -0.210    0.834   -0.025   -0.020
##   TP =~                                                                  
##     V6                 1.000                               0.482    0.487
##     V7                 1.582    0.313    5.058    0.000    0.763    0.676
##     V8                 1.665    0.315    5.284    0.000    0.803    0.743
##     V9                 0.938    0.247    3.793    0.000    0.452    0.420
##     V10                0.496    0.231    2.151    0.031    0.239    0.211
##     V11                0.669    0.231    2.897    0.004    0.322    0.297
##     V12                1.313    0.313    4.192    0.000    0.633    0.487
##     V13                0.813    0.283    2.869    0.004    0.392    0.294
##     V14                2.084    0.374    5.569    0.000    1.005    0.850
##     V15                1.690    0.333    5.070    0.000    0.815    0.680
##     V16                2.063    0.375    5.506    0.000    0.994    0.823
##   Amb =~                                                                 
##     V17                1.000                              64.302    0.776
##     V18                3.535    0.425    8.323    0.000  227.339    0.996
##     V19                0.051    0.010    4.958    0.000    3.297    0.428
##     V20                0.004    0.002    1.498    0.134    0.234    0.133
##   Socio =~                                                               
##     V21                1.000                               0.067    0.050
##     V22               -0.296    0.648   -0.456    0.648   -0.020   -0.039
##     V23                0.611    2.368    0.258    0.796    0.041    0.019
##     V24               -0.200    0.602   -0.331    0.740   -0.013   -0.025
##     V25                0.059    0.150    0.393    0.694    0.004    0.032
##     V27                0.169    0.472    0.359    0.720    0.011    0.028
##     V28                1.717    2.551    0.673    0.501    0.114    0.110
##     V29                1.442    2.074    0.695    0.487    0.096    0.138
##     V30                1.465    2.007    0.730    0.465    0.098    0.306
##     V31                0.084    1.016    0.082    0.934    0.006    0.006
##     Amb             1239.413 2183.113    0.568    0.570    1.283    1.283
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Car ~~                                                                 
##     TP                -0.162    0.062   -2.599    0.009   -0.305   -0.305
##     Socio              0.002    0.006    0.278    0.781    0.024    0.024
##   TP ~~                                                                  
##     Socio              0.004    0.007    0.521    0.602    0.112    0.112
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .V1                 0.260    0.273    0.951    0.341    0.260    0.176
##    .V2                 1.033    0.164    6.293    0.000    1.033    0.702
##    .V3                 0.680    0.093    7.295    0.000    0.680    0.814
##    .V4                 0.835    0.106    7.894    0.000    0.835    0.959
##    .V5                 1.542    0.193    7.968    0.000    1.542    1.000
##    .V6                 0.748    0.097    7.686    0.000    0.748    0.763
##    .V7                 0.690    0.096    7.196    0.000    0.690    0.543
##    .V8                 0.522    0.076    6.829    0.000    0.522    0.448
##    .V9                 0.953    0.123    7.774    0.000    0.953    0.823
##    .V10                1.225    0.155    7.926    0.000    1.225    0.955
##    .V11                1.073    0.136    7.881    0.000    1.073    0.912
##    .V12                1.291    0.168    7.687    0.000    1.291    0.763
##    .V13                1.625    0.206    7.883    0.000    1.625    0.914
##    .V14                0.389    0.070    5.554    0.000    0.389    0.278
##    .V15                0.773    0.108    7.181    0.000    0.773    0.538
##    .V16                0.472    0.079    6.014    0.000    0.472    0.323
##    .V17             2730.902  524.450    5.207    0.000 2730.902    0.398
##    .V18              452.532 4958.447    0.091    0.927  452.532    0.009
##    .V19               48.507    6.182    7.846    0.000   48.507    0.817
##    .V20                3.039    0.381    7.967    0.000    3.039    0.982
##    .V21                1.748    0.219    7.975    0.000    1.748    0.997
##    .V22                0.249    0.031    7.973    0.000    0.249    0.998
##    .V23                4.719    0.592    7.970    0.000    4.719    1.000
##    .V24                0.278    0.035    7.971    0.000    0.278    0.999
##    .V25                0.015    0.002    7.972    0.000    0.015    0.999
##    .V27                0.163    0.020    7.971    0.000    0.163    0.999
##    .V28                1.064    0.134    7.955    0.000    1.064    0.988
##    .V29                0.476    0.060    7.901    0.000    0.476    0.981
##    .V30                0.092    0.015    6.028    0.000    0.092    0.906
##    .V31                0.977    0.123    7.969    0.000    0.977    1.000
##     Car                1.212    0.326    3.715    0.000    1.000    1.000
##     TP                 0.232    0.084    2.781    0.005    1.000    1.000
##    .Amb            -2674.025 7262.666   -0.368    0.713   -0.647   -0.647
##     Socio              0.004    0.013    0.338    0.735    1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq  df pvalue rmsea   cfi     tli  srmr        aic        bic
## fit2 205.993†  14   .000 .329  .000  -1.127  .182   5445.918†  5508.490†
## fit1 878.734  401   .000 .097† .561†   .524† .103† 12758.761  12940.789

Modelo 11

modelo='
Amb =~ V17 + V18 + V19 + V20
Car =~ V1 + V2 + V3 + V4 + V5  + Amb
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13  + V14 + V15 + V16 
Socio =~ V21 + V22 + V23 + V24 + V25 + V27 + V28 + V29 + V30 + V31 
'
# V26 
fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 456 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        64
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               942.883
##   Degrees of freedom                               401
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   Amb =~                                                                  
##     V17                1.000                                0.019    0.000
##     V18            -8662.531       NA                    -160.494   -0.701
##     V19             -253.790       NA                      -4.702   -0.610
##     V20               -4.532       NA                      -0.084   -0.048
##   Car =~                                                                  
##     V1                 1.000                                1.087    0.896
##     V2                 0.620       NA                       0.674    0.555
##     V3                 0.361       NA                       0.392    0.429
##     V4                 0.178       NA                       0.193    0.207
##     V5                -0.023       NA                      -0.025   -0.020
##     Amb                0.002       NA                       0.093    0.093
##   TP =~                                                                   
##     V6                 1.000                                0.485    0.490
##     V7                 1.582       NA                       0.768    0.681
##     V8                 1.667       NA                       0.809    0.749
##     V9                 0.930       NA                       0.451    0.420
##     V10                0.491       NA                       0.238    0.211
##     V11                0.659       NA                       0.320    0.295
##     V12                1.316       NA                       0.639    0.491
##     V13                0.809       NA                       0.392    0.294
##     V14                2.071       NA                       1.005    0.850
##     V15                1.668       NA                       0.810    0.675
##     V16                2.030       NA                       0.985    0.815
##   Socio =~                                                                
##     V21                1.000                                0.241    0.183
##     V22                0.058       NA                       0.014    0.028
##     V23               -1.200       NA                      -0.289   -0.133
##     V24                0.049       NA                       0.012    0.022
##     V25                0.054       NA                       0.013    0.105
##     V27               -0.218       NA                      -0.052   -0.130
##     V28               -4.275       NA                      -1.029   -0.991
##     V29               -1.696       NA                      -0.408   -0.586
##     V30               -0.514       NA                      -0.124   -0.389
##     V31               -0.641       NA                      -0.154   -0.156
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                  
##     TP                -0.165       NA                      -0.312   -0.312
##     Socio             -0.015       NA                      -0.058   -0.058
##   TP ~~                                                                   
##     Socio             -0.000       NA                      -0.000   -0.000
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .V17             6832.559       NA                    6832.559    1.000
##    .V18            26695.383       NA                   26695.383    0.509
##    .V19               37.379       NA                      37.379    0.628
##    .V20                3.088       NA                       3.088    0.998
##    .V1                 0.290       NA                       0.290    0.197
##    .V2                 1.018       NA                       1.018    0.692
##    .V3                 0.681       NA                       0.681    0.816
##    .V4                 0.833       NA                       0.833    0.957
##    .V5                 1.542       NA                       1.542    1.000
##    .V6                 0.745       NA                       0.745    0.760
##    .V7                 0.682       NA                       0.682    0.536
##    .V8                 0.511       NA                       0.511    0.439
##    .V9                 0.954       NA                       0.954    0.824
##    .V10                1.225       NA                       1.225    0.956
##    .V11                1.075       NA                       1.075    0.913
##    .V12                1.283       NA                       1.283    0.759
##    .V13                1.624       NA                       1.624    0.913
##    .V14                0.388       NA                       0.388    0.277
##    .V15                0.782       NA                       0.782    0.544
##    .V16                0.490       NA                       0.490    0.336
##    .V21                1.672       NA                       1.672    0.967
##    .V22                0.249       NA                       0.249    0.999
##    .V23                4.637       NA                       4.637    0.982
##    .V24                0.278       NA                       0.278    0.999
##    .V25                0.015       NA                       0.015    0.989
##    .V27                0.160       NA                       0.160    0.983
##    .V28                0.019       NA                       0.019    0.018
##    .V29                0.319       NA                       0.319    0.657
##    .V30                0.086       NA                       0.086    0.849
##    .V31                0.953       NA                       0.953    0.976
##    .Amb                0.000       NA                       0.991    0.991
##     Car                1.181       NA                       1.000    1.000
##     TP                 0.236       NA                       1.000    1.000
##     Socio              0.058       NA                       1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq  df pvalue rmsea   cfi     tli  srmr        aic        bic
## fit2 205.993†  14   .000 .329  .000  -1.127  .182   5445.918†  5508.490†
## fit1 942.883  401   .000 .103† .502†   .460† .111† 12822.910  13004.938

Modelo 12

modelo='
Amb =~ V17 + V18 + V19 + V20
Car =~ V1 + V2 + V3 + V4 + V5 
TP =~ V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13  + V14 + V15 + V16  + Amb
Socio =~ V21 + V22 + V23 + V24 + V25 + V27 + V28 + V29 + V30 + V31 
'
# V26 
fit1 = cfa(modelo,data = df)
summary(fit1,standardized = TRUE)
## lavaan 0.6-9 ended normally after 268 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        64
##                                                       
##   Number of observations                           127
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               901.600
##   Degrees of freedom                               401
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Amb =~                                                                   
##     V17                1.000                                12.115    0.147
##     V18               -0.235     0.319   -0.736    0.462    -2.843   -0.012
##     V19                2.749    43.052    0.064    0.949    33.298    4.286
##     V20               -0.002     0.003   -0.917    0.359    -0.028   -0.016
##   Car =~                                                                   
##     V1                 1.000                                 1.096    0.904
##     V2                 0.609     0.157    3.871    0.000     0.668    0.550
##     V3                 0.357     0.103    3.463    0.001     0.392    0.429
##     V4                 0.174     0.088    1.987    0.047     0.191    0.205
##     V5                -0.022     0.110   -0.198    0.843    -0.024   -0.019
##   TP =~                                                                    
##     V6                 1.000                                 0.487    0.492
##     V7                 1.585     0.309    5.130    0.000     0.772    0.684
##     V8                 1.664     0.311    5.354    0.000     0.810    0.750
##     V9                 0.929     0.244    3.810    0.000     0.452    0.420
##     V10                0.485     0.228    2.128    0.033     0.236    0.209
##     V11                0.658     0.228    2.887    0.004     0.320    0.295
##     V12                1.317     0.310    4.251    0.000     0.641    0.493
##     V13                0.806     0.280    2.878    0.004     0.392    0.294
##     V14                2.063     0.367    5.626    0.000     1.004    0.849
##     V15                1.659     0.326    5.091    0.000     0.807    0.674
##     V16                2.021     0.365    5.539    0.000     0.984    0.814
##     Amb                0.834    13.353    0.062    0.950     0.034    0.034
##   Socio =~                                                                 
##     V21                1.000                                 0.241    0.183
##     V22                0.058     0.188    0.310    0.756     0.014    0.028
##     V23               -1.199     0.987   -1.215    0.224    -0.289   -0.133
##     V24                0.049     0.198    0.250    0.803     0.012    0.023
##     V25                0.054     0.053    1.023    0.306     0.013    0.105
##     V27               -0.218     0.182   -1.197    0.231    -0.052   -0.130
##     V28               -4.271     2.244   -1.904    0.057    -1.028   -0.991
##     V29               -1.696     0.842   -2.013    0.044    -0.408   -0.586
##     V30               -0.514     0.270   -1.902    0.057    -0.124   -0.389
##     V31               -0.640     0.476   -1.344    0.179    -0.154   -0.156
## 
## Covariances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##   Car ~~                                                                   
##     TP                -0.166     0.063   -2.631    0.009    -0.310   -0.310
##     Socio             -0.016     0.027   -0.585    0.558    -0.060   -0.060
##   TP ~~                                                                    
##     Socio              0.000     0.011    0.002    0.999     0.000    0.000
## 
## Variances:
##                    Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
##    .V17             6684.033  2444.018    2.735    0.006  6684.033    0.979
##    .V18            52659.431  6608.634    7.968    0.000 52659.431    1.000
##    .V19            -1048.408 17343.492   -0.060    0.952 -1048.408  -17.370
##    .V20                3.094     0.388    7.966    0.000     3.094    1.000
##    .V1                 0.269     0.270    0.999    0.318     0.269    0.183
##    .V2                 1.026     0.164    6.252    0.000     1.026    0.697
##    .V3                 0.682     0.093    7.307    0.000     0.682    0.816
##    .V4                 0.834     0.106    7.890    0.000     0.834    0.958
##    .V5                 1.542     0.193    7.968    0.000     1.542    1.000
##    .V6                 0.744     0.097    7.677    0.000     0.744    0.758
##    .V7                 0.677     0.095    7.156    0.000     0.677    0.532
##    .V8                 0.510     0.075    6.773    0.000     0.510    0.438
##    .V9                 0.953     0.123    7.773    0.000     0.953    0.823
##    .V10                1.226     0.155    7.927    0.000     1.226    0.956
##    .V11                1.075     0.136    7.882    0.000     1.075    0.913
##    .V12                1.280     0.167    7.675    0.000     1.280    0.757
##    .V13                1.625     0.206    7.882    0.000     1.625    0.914
##    .V14                0.390     0.070    5.552    0.000     0.390    0.279
##    .V15                0.785     0.109    7.202    0.000     0.785    0.546
##    .V16                0.494     0.081    6.129    0.000     0.494    0.338
##    .V21                1.672     0.210    7.951    0.000     1.672    0.966
##    .V22                0.249     0.031    7.969    0.000     0.249    0.999
##    .V23                4.637     0.582    7.963    0.000     4.637    0.982
##    .V24                0.278     0.035    7.969    0.000     0.278    0.999
##    .V25                0.015     0.002    7.966    0.000     0.015    0.989
##    .V27                0.160     0.020    7.963    0.000     0.160    0.983
##    .V28                0.020     0.226    0.087    0.931     0.020    0.018
##    .V29                0.319     0.054    5.943    0.000     0.319    0.657
##    .V30                0.086     0.011    7.617    0.000     0.086    0.849
##    .V31                0.953     0.120    7.958    0.000     0.953    0.976
##    .Amb              146.601  2297.095    0.064    0.949     0.999    0.999
##     Car                1.202     0.323    3.718    0.000     1.000    1.000
##     TP                 0.237     0.084    2.810    0.005     1.000    1.000
##     Socio              0.058     0.057    1.008    0.313     1.000    1.000
semPaths(fit1,
         whatLabels = "std", 
         edge.label.cex=.6,
         node.width = 1.1
)

summary(compareFit(fit1, fit2, nested=FALSE))
## ####################### Model Fit Indices ###########################
##         chisq  df pvalue rmsea   cfi     tli  srmr        aic        bic
## fit2 205.993†  14   .000 .329  .000  -1.127  .182   5445.918†  5508.490†
## fit1 901.600  401   .000 .099† .540†   .501† .107† 12781.627  12963.655