Algoritma & Struktur Data

~ Ujian Tengah Semester ~


Kontak : \(\downarrow\)
Email
Instagram https://www.instagram.com/dsciencelabs/
RPubs https://rpubs.com/dsciencelabs/

NAMA : DHELA ASAFIANI AGATHA NIM : 20214920009 PRODI: STATISTIKA BISNIS (2021)

Kasus 1

Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property seperti yang dapat kita lihat pada tabel berikut:

Id             <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
                        "Jeffry","Nikita","Kefas","Siana","Lala",
                        "Fallen","Ardifo","Kevin","Juen","Jerrel",
                        "Imelda","Widi","Theodora","Elvani","Jonathan",
                        "Sofia","Abraham","Siti","Niko","Sefli",
                        "Bene", "Diana", "Pupe", "Andi", "Tatha",
                        "Endri", "Monika", "Hans", "Debora","Hanifa",
                        "James", "Jihan", "Friska","Ardiwan", "Bakti",
                        "Anthon","Amry", "Wiwik", "Bastian", "Budi",
                        "Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp       <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
                        5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
                        3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
                        4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
                        6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City           <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster        <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
                           "Peronia","Lavesh","Alindra","Sweethome", "Asera",
                           "Teradamai","Albasia", "Adara","Neon","Arana",
                           "Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price          <- sample(c(7000:15000),10000, replace = T)
Date_Sales     <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement  <- sample(c(1:20), 10000, replace = T)
Data           <- data.frame(Id, 
                             Marketing_Name,
                             Work_Exp,
                             City,
                             Cluster,
                             Price,
                             Date_Sales,
                             Advertisement)
library(DT)
datatable(Data)
write.csv(Data,"C:\\Users\\Public\\YA.csv", row.names = FALSE)

Soal 1

Kategorikan variabel Harga pada dataset di atas menjadi tiga kelompok sebagai berikut:

  • \(\text{High} > 12000\)
  • \(10000 \le \text{Medium} \le 12000\)
  • \(\text{Low} < 10000\)

Tetapkan ke dalam variabel baru yang disebut Kelas dengan menggunakan fungsi kontrol If, else if, dan else.

R

x = Data$Price

a= ifelse((x>12000),print('High'),
          ifelse((x>=10000 & x<= 12000), print("Medium"),print('Low')
                 ))
## [1] "High"
## [1] "Medium"
## [1] "Low"
Data$Class = a
datatable(Data)

Soal 2

Kategorikan variabel Harga pada dataset di atas menjadi enam kelompok sebagai berikut:

  • Booking_fee nya 5 % jika \(\text{Price} < 8000\)
  • Booking_fee nya 6 % jika \(8000 \le \text{Price} < 9000\)
  • Booking_fee nya 7 % jika \(9000 \le \text{Price} < 10000\)
  • Booking_fee nya 8 % jika \(10000 \le \text{Price} < 11000\)
  • Booking_fee nya 9 % jika \(11000 \le \text{Price} < 13000\)
  • Booking_fee nya 10 % jika \(13000 \le \text{Price} \le 15000\)

Tetapkan ke dalam variabel baru yang disebut Booking_fee dengan menggunakan fungsi kontrol If, else if, dan else.

R

x = Data$Price

Data$Booking_Fee <- ifelse(Data$Price < 8000, 0.05*Data$Price,
                    ifelse(Data$Price < 9000 & Data$Price > 8000 , 0.06*Data$Price, 
                    ifelse(Data$Price < 10000 & Data$Price > 9000 , 0.07*Data$Price,
                    ifelse(Data$Price < 11000 & Data$Price > 10000 , 0.08*Data$Price,
                    ifelse(Data$Price < 12000 & Data$Price > 11000 , 0.09*Data$Price,
                                                                    0.1*Data$Price
                           )))))
datatable(Data)

Soal 3

Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for.

R

sales ="Matius"

z =  for(i in sales){
       print(subset(Data, subset=(Marketing_Name == i)))
}
##        Id Marketing_Name Work_Exp      City   Cluster Price Date_Sales
## 48     48         Matius      7.2     Bogor     Asera 11250 2020-08-25
## 98     98         Matius      7.2 Tengerang     Asera 11086 2020-09-26
## 148   148         Matius      7.2     Bogor Sweethome 12019 2018-09-03
## 198   198         Matius      7.2     Depok Teradamai  8504 2018-06-23
## 248   248         Matius      7.2   Jakarta    Narada 11504 2018-06-16
## 298   298         Matius      7.2   Jakarta   Alindra  7246 2020-01-25
## 348   348         Matius      7.2   Jakarta  Alamanda 11663 2019-04-16
## 398   398         Matius      7.2    Bekasi     Arana 14831 2019-12-22
## 448   448         Matius      7.2   Jakarta     Arana 10286 2018-10-02
## 498   498         Matius      7.2    Bekasi     Asera 14904 2020-07-20
## 548   548         Matius      7.2     Bogor    Winona  9498 2018-10-19
## 598   598         Matius      7.2     Depok     Asera  9409 2018-08-13
## 648   648         Matius      7.2   Jakarta   Albasia 10481 2019-11-17
## 698   698         Matius      7.2     Depok  Victoria 14724 2020-08-22
## 748   748         Matius      7.2 Tengerang     Arana 14796 2019-05-22
## 798   798         Matius      7.2    Bekasi    Narada 10394 2018-08-12
## 848   848         Matius      7.2     Depok Teradamai  8082 2019-10-03
## 898   898         Matius      7.2     Bogor   Palmyra 10446 2020-06-09
## 948   948         Matius      7.2     Bogor  Victoria  8971 2020-02-09
## 998   998         Matius      7.2     Bogor    Narada 10369 2019-02-26
## 1048 1048         Matius      7.2     Bogor      Neon 11196 2020-06-22
## 1098 1098         Matius      7.2 Tengerang   Alindra  7912 2020-04-13
## 1148 1148         Matius      7.2     Depok   Palmyra 11276 2020-08-01
## 1198 1198         Matius      7.2     Bogor  Alamanda 14186 2019-11-11
## 1248 1248         Matius      7.2     Depok   Albasia 13638 2020-09-23
## 1298 1298         Matius      7.2     Bogor    Narada  9327 2018-04-22
## 1348 1348         Matius      7.2    Bekasi    Winona 14675 2019-01-06
## 1398 1398         Matius      7.2 Tengerang      Neon 11730 2020-07-31
## 1448 1448         Matius      7.2    Bekasi Teradamai 13516 2020-05-25
## 1498 1498         Matius      7.2     Bogor     Arana 13658 2020-04-02
## 1548 1548         Matius      7.2    Bekasi   Albasia 12607 2019-08-04
## 1598 1598         Matius      7.2   Jakarta   Permata  9611 2019-12-12
## 1648 1648         Matius      7.2     Bogor   Mutiara 14608 2018-11-28
## 1698 1698         Matius      7.2   Jakarta   Albasia  9499 2020-01-28
## 1748 1748         Matius      7.2 Tengerang    Narada  7608 2018-01-17
## 1798 1798         Matius      7.2 Tengerang   Alindra 14785 2019-02-02
## 1848 1848         Matius      7.2   Jakarta   Palmyra 10989 2019-07-19
## 1898 1898         Matius      7.2     Bogor   Permata  9378 2019-03-11
## 1948 1948         Matius      7.2    Bekasi   Mutiara 10639 2018-09-01
## 1998 1998         Matius      7.2    Bekasi   Albasia  9841 2018-12-25
## 2048 2048         Matius      7.2     Bogor    Lavesh 13776 2019-12-07
## 2098 2098         Matius      7.2 Tengerang   Albasia  9710 2018-07-23
## 2148 2148         Matius      7.2     Depok   Palmyra 10073 2018-07-03
## 2198 2198         Matius      7.2    Bekasi  Alamanda  7121 2020-06-27
## 2248 2248         Matius      7.2     Depok  Alamanda 10462 2019-09-03
## 2298 2298         Matius      7.2     Bogor     Arana 13399 2020-01-23
## 2348 2348         Matius      7.2   Jakarta Primadona  8776 2020-06-14
## 2398 2398         Matius      7.2   Jakarta      Neon 13043 2018-08-19
## 2448 2448         Matius      7.2 Tengerang   Palmyra 14225 2019-02-23
## 2498 2498         Matius      7.2     Depok   Permata  7763 2020-06-06
## 2548 2548         Matius      7.2     Depok     Tiara  9865 2019-07-28
## 2598 2598         Matius      7.2 Tengerang Sweethome 13865 2018-08-26
## 2648 2648         Matius      7.2     Bogor  Alamanda 14670 2018-10-19
## 2698 2698         Matius      7.2 Tengerang   Alindra  7704 2020-02-01
## 2748 2748         Matius      7.2   Jakarta   Mutiara  7279 2019-08-27
## 2798 2798         Matius      7.2     Bogor Primadona  7639 2019-10-01
## 2848 2848         Matius      7.2     Depok   Palmyra 10785 2018-01-13
## 2898 2898         Matius      7.2     Bogor  Alamanda  8684 2020-06-09
## 2948 2948         Matius      7.2   Jakarta   Albasia  8722 2018-08-23
## 2998 2998         Matius      7.2     Bogor   Peronia 10856 2019-04-05
## 3048 3048         Matius      7.2     Depok    Narada 10587 2020-02-08
## 3098 3098         Matius      7.2 Tengerang     Asoka 11562 2018-06-22
## 3148 3148         Matius      7.2 Tengerang   Mutiara 13976 2020-02-16
## 3198 3198         Matius      7.2   Jakarta   Albasia 14086 2019-10-14
## 3248 3248         Matius      7.2     Depok Teradamai  8793 2018-03-19
## 3298 3298         Matius      7.2    Bekasi   Peronia 13549 2018-08-12
## 3348 3348         Matius      7.2     Depok    Narada 12039 2018-07-16
## 3398 3398         Matius      7.2    Bekasi     Asoka 11744 2019-12-17
## 3448 3448         Matius      7.2     Depok     Adara 10415 2020-02-02
## 3498 3498         Matius      7.2     Bogor     Asoka 10852 2019-02-02
## 3548 3548         Matius      7.2     Depok    Lavesh 11877 2019-08-25
## 3598 3598         Matius      7.2     Depok   Peronia 13628 2019-02-10
## 3648 3648         Matius      7.2     Bogor    Winona  7111 2018-03-16
## 3698 3698         Matius      7.2 Tengerang      Neon 10273 2019-12-17
## 3748 3748         Matius      7.2 Tengerang  Victoria 12587 2019-12-13
## 3798 3798         Matius      7.2 Tengerang     Asera  9773 2018-07-20
## 3848 3848         Matius      7.2    Bekasi  Victoria 14650 2018-06-21
## 3898 3898         Matius      7.2     Depok     Arana  8395 2018-08-07
## 3948 3948         Matius      7.2    Bekasi     Asera 12707 2018-04-02
## 3998 3998         Matius      7.2   Jakarta   Palmyra  8576 2018-04-13
## 4048 4048         Matius      7.2    Bekasi Teradamai  7525 2018-08-01
## 4098 4098         Matius      7.2   Jakarta    Narada 10491 2019-07-10
## 4148 4148         Matius      7.2     Depok   Peronia 13374 2020-05-28
## 4198 4198         Matius      7.2     Depok     Asoka 12105 2019-07-23
## 4248 4248         Matius      7.2   Jakarta   Mutiara 10911 2020-09-03
## 4298 4298         Matius      7.2 Tengerang      Neon 13434 2018-09-24
## 4348 4348         Matius      7.2     Depok     Adara 14944 2018-06-06
## 4398 4398         Matius      7.2 Tengerang  Victoria  8720 2020-04-04
## 4448 4448         Matius      7.2     Bogor     Arana  9942 2019-03-20
## 4498 4498         Matius      7.2    Bekasi   Permata  8179 2018-03-27
## 4548 4548         Matius      7.2    Bekasi    Winona 13269 2018-10-01
## 4598 4598         Matius      7.2 Tengerang   Palmyra 12748 2019-01-15
## 4648 4648         Matius      7.2 Tengerang Sweethome  8109 2018-02-26
## 4698 4698         Matius      7.2    Bekasi    Winona  8287 2018-05-23
## 4748 4748         Matius      7.2    Bekasi   Permata 13129 2018-12-04
## 4798 4798         Matius      7.2    Bekasi    Winona  8424 2019-09-07
## 4848 4848         Matius      7.2 Tengerang   Alindra  9769 2018-12-28
## 4898 4898         Matius      7.2     Bogor   Palmyra 13094 2018-10-02
## 4948 4948         Matius      7.2     Depok     Tiara 10382 2019-11-14
## 4998 4998         Matius      7.2     Depok Primadona 11071 2020-08-27
## 5048 5048         Matius      7.2   Jakarta     Arana 11122 2019-12-10
## 5098 5098         Matius      7.2   Jakarta    Narada  9457 2018-07-23
## 5148 5148         Matius      7.2    Bekasi   Mutiara 11048 2018-07-27
## 5198 5198         Matius      7.2     Bogor   Alindra 11987 2019-09-14
## 5248 5248         Matius      7.2 Tengerang      Neon 13316 2019-12-24
## 5298 5298         Matius      7.2     Bogor     Asera  7179 2019-01-17
## 5348 5348         Matius      7.2    Bekasi     Asera 12793 2019-09-27
## 5398 5398         Matius      7.2   Jakarta     Adara 12578 2020-04-10
## 5448 5448         Matius      7.2   Jakarta  Alamanda 13677 2020-02-08
## 5498 5498         Matius      7.2   Jakarta Sweethome 13847 2018-07-02
## 5548 5548         Matius      7.2     Depok Primadona  9640 2019-03-09
## 5598 5598         Matius      7.2     Bogor     Tiara  9646 2019-08-25
## 5648 5648         Matius      7.2     Bogor   Palmyra  9894 2019-02-12
## 5698 5698         Matius      7.2     Bogor Primadona  9655 2019-08-12
## 5748 5748         Matius      7.2    Bekasi   Peronia  8176 2019-05-11
## 5798 5798         Matius      7.2     Bogor   Palmyra 13210 2019-11-09
## 5848 5848         Matius      7.2 Tengerang   Alindra 12893 2019-10-18
## 5898 5898         Matius      7.2 Tengerang     Adara 12115 2019-04-12
## 5948 5948         Matius      7.2 Tengerang   Palmyra 11405 2018-05-24
## 5998 5998         Matius      7.2    Bekasi Teradamai 10385 2020-06-14
## 6048 6048         Matius      7.2     Bogor Primadona 13529 2019-09-30
## 6098 6098         Matius      7.2     Bogor      Neon 11179 2019-06-08
## 6148 6148         Matius      7.2    Bekasi Teradamai 13100 2019-11-27
## 6198 6198         Matius      7.2   Jakarta      Neon  7533 2018-07-02
## 6248 6248         Matius      7.2   Jakarta   Permata 11278 2018-12-21
## 6298 6298         Matius      7.2    Bekasi     Tiara 12705 2019-10-02
## 6348 6348         Matius      7.2    Bekasi     Arana  7213 2020-03-28
## 6398 6398         Matius      7.2     Depok     Adara 10858 2020-04-09
## 6448 6448         Matius      7.2 Tengerang   Palmyra  9630 2019-10-21
## 6498 6498         Matius      7.2     Bogor     Asoka  7233 2019-11-09
## 6548 6548         Matius      7.2     Bogor   Palmyra 12569 2019-09-22
## 6598 6598         Matius      7.2   Jakarta   Palmyra  9990 2018-09-30
## 6648 6648         Matius      7.2     Depok  Alamanda 14544 2018-10-14
## 6698 6698         Matius      7.2    Bekasi     Arana  8457 2019-03-22
## 6748 6748         Matius      7.2    Bekasi     Arana  8184 2019-03-23
## 6798 6798         Matius      7.2 Tengerang   Peronia  8918 2019-08-12
## 6848 6848         Matius      7.2     Depok   Albasia 11763 2019-04-24
## 6898 6898         Matius      7.2 Tengerang   Palmyra 12156 2020-01-05
## 6948 6948         Matius      7.2   Jakarta    Lavesh 11367 2019-03-06
## 6998 6998         Matius      7.2 Tengerang     Tiara  8102 2018-04-18
## 7048 7048         Matius      7.2 Tengerang     Arana 13367 2018-03-07
## 7098 7098         Matius      7.2   Jakarta     Asera 14550 2020-03-27
## 7148 7148         Matius      7.2     Bogor  Alamanda  7161 2019-10-05
## 7198 7198         Matius      7.2    Bekasi Primadona 10445 2020-03-26
## 7248 7248         Matius      7.2 Tengerang     Tiara 11458 2019-07-29
## 7298 7298         Matius      7.2     Depok    Winona 11608 2019-06-01
## 7348 7348         Matius      7.2 Tengerang     Asera 14265 2018-09-05
## 7398 7398         Matius      7.2    Bekasi    Lavesh 13783 2018-10-01
## 7448 7448         Matius      7.2     Bogor  Victoria 11460 2019-07-18
## 7498 7498         Matius      7.2     Depok   Peronia 13867 2018-02-10
## 7548 7548         Matius      7.2   Jakarta     Arana  9477 2019-03-26
## 7598 7598         Matius      7.2 Tengerang  Victoria  7167 2019-06-08
## 7648 7648         Matius      7.2   Jakarta  Alamanda  7272 2018-01-05
## 7698 7698         Matius      7.2     Depok     Asera 10453 2019-09-21
## 7748 7748         Matius      7.2    Bekasi   Palmyra 14071 2019-10-10
## 7798 7798         Matius      7.2    Bekasi Teradamai 12248 2018-01-15
## 7848 7848         Matius      7.2 Tengerang    Narada 11293 2020-06-12
## 7898 7898         Matius      7.2   Jakarta  Alamanda 12920 2019-08-13
## 7948 7948         Matius      7.2 Tengerang Teradamai 14530 2018-07-18
## 7998 7998         Matius      7.2     Depok   Permata  8432 2018-12-16
## 8048 8048         Matius      7.2 Tengerang     Asoka 11560 2019-02-14
## 8098 8098         Matius      7.2    Bekasi Sweethome  9288 2019-05-31
## 8148 8148         Matius      7.2    Bekasi  Victoria 10903 2019-10-20
## 8198 8198         Matius      7.2     Bogor     Tiara  7825 2018-04-01
## 8248 8248         Matius      7.2 Tengerang      Neon  9505 2020-08-19
## 8298 8298         Matius      7.2     Bogor     Adara  8990 2020-08-05
## 8348 8348         Matius      7.2    Bekasi     Asoka 12973 2020-07-02
## 8398 8398         Matius      7.2     Bogor   Palmyra  8020 2018-07-29
## 8448 8448         Matius      7.2     Depok Primadona  9440 2018-02-20
## 8498 8498         Matius      7.2     Bogor     Asoka  8366 2019-04-17
## 8548 8548         Matius      7.2   Jakarta     Arana 10901 2018-12-15
## 8598 8598         Matius      7.2     Bogor   Alindra  8679 2018-09-28
## 8648 8648         Matius      7.2     Bogor      Neon 11842 2020-06-21
## 8698 8698         Matius      7.2     Depok      Neon  8025 2019-01-20
## 8748 8748         Matius      7.2 Tengerang  Victoria 13152 2019-09-20
## 8798 8798         Matius      7.2     Depok  Victoria 12798 2019-07-12
## 8848 8848         Matius      7.2     Depok Primadona  8859 2018-11-05
## 8898 8898         Matius      7.2     Bogor     Arana  8741 2020-03-04
## 8948 8948         Matius      7.2 Tengerang     Arana 11178 2020-01-30
## 8998 8998         Matius      7.2     Bogor Teradamai  9641 2020-09-09
## 9048 9048         Matius      7.2 Tengerang  Alamanda  7008 2018-02-23
## 9098 9098         Matius      7.2 Tengerang     Adara 12730 2019-05-24
## 9148 9148         Matius      7.2     Depok Primadona 12773 2020-07-19
## 9198 9198         Matius      7.2    Bekasi  Victoria 10341 2020-07-22
## 9248 9248         Matius      7.2    Bekasi    Winona  8814 2020-04-21
## 9298 9298         Matius      7.2 Tengerang      Neon  8592 2020-09-16
## 9348 9348         Matius      7.2 Tengerang  Victoria  8661 2018-07-09
## 9398 9398         Matius      7.2 Tengerang   Permata 13966 2018-07-27
## 9448 9448         Matius      7.2 Tengerang     Arana 13827 2018-07-02
## 9498 9498         Matius      7.2 Tengerang   Albasia 10689 2019-09-24
## 9548 9548         Matius      7.2    Bekasi   Mutiara 10283 2018-07-28
## 9598 9598         Matius      7.2     Depok  Alamanda  9292 2019-12-19
## 9648 9648         Matius      7.2     Depok   Albasia 11120 2020-05-02
## 9698 9698         Matius      7.2     Bogor   Mutiara 12185 2018-03-09
## 9748 9748         Matius      7.2   Jakarta    Winona 10864 2019-02-18
## 9798 9798         Matius      7.2 Tengerang     Adara  9262 2018-04-13
## 9848 9848         Matius      7.2    Bekasi     Tiara  8533 2018-11-25
## 9898 9898         Matius      7.2     Depok Sweethome 10076 2018-07-02
## 9948 9948         Matius      7.2    Bekasi    Narada  8419 2020-09-12
## 9998 9998         Matius      7.2   Jakarta   Peronia 10628 2019-10-06
##      Advertisement  Class Booking_Fee
## 48               9 Medium     1012.50
## 98              18 Medium      997.74
## 148              8   High     1201.90
## 198              2    Low      510.24
## 248             14 Medium     1035.36
## 298              8    Low      362.30
## 348             18 Medium     1049.67
## 398             15   High     1483.10
## 448             14 Medium      822.88
## 498             18   High     1490.40
## 548              4    Low      664.86
## 598             16    Low      658.63
## 648             16 Medium      838.48
## 698              6   High     1472.40
## 748             18   High     1479.60
## 798             13 Medium      831.52
## 848              3    Low      484.92
## 898             19 Medium      835.68
## 948             11    Low      538.26
## 998             16 Medium      829.52
## 1048             3 Medium     1007.64
## 1098            15    Low      395.60
## 1148             1 Medium     1014.84
## 1198            20   High     1418.60
## 1248            20   High     1363.80
## 1298            14    Low      652.89
## 1348            20   High     1467.50
## 1398             2 Medium     1055.70
## 1448             2   High     1351.60
## 1498             8   High     1365.80
## 1548            15   High     1260.70
## 1598            15    Low      672.77
## 1648            20   High     1460.80
## 1698             3    Low      664.93
## 1748             3    Low      380.40
## 1798             6   High     1478.50
## 1848            18 Medium      879.12
## 1898             1    Low      656.46
## 1948            16 Medium      851.12
## 1998            19    Low      688.87
## 2048             8   High     1377.60
## 2098             7    Low      679.70
## 2148            10 Medium      805.84
## 2198             9    Low      356.05
## 2248            15 Medium      836.96
## 2298            11   High     1339.90
## 2348            16    Low      526.56
## 2398            10   High     1304.30
## 2448             5   High     1422.50
## 2498             6    Low      388.15
## 2548            14    Low      690.55
## 2598             5   High     1386.50
## 2648            11   High     1467.00
## 2698            14    Low      385.20
## 2748            14    Low      363.95
## 2798             4    Low      381.95
## 2848            13 Medium      862.80
## 2898            14    Low      521.04
## 2948            20    Low      523.32
## 2998            20 Medium      868.48
## 3048             9 Medium      846.96
## 3098             6 Medium     1040.58
## 3148             9   High     1397.60
## 3198             6   High     1408.60
## 3248            14    Low      527.58
## 3298             8   High     1354.90
## 3348             3   High     1203.90
## 3398            15 Medium     1056.96
## 3448            15 Medium      833.20
## 3498            18 Medium      868.16
## 3548             6 Medium     1068.93
## 3598            11   High     1362.80
## 3648            18    Low      355.55
## 3698            15 Medium      821.84
## 3748             1   High     1258.70
## 3798             7    Low      684.11
## 3848            16   High     1465.00
## 3898             8    Low      503.70
## 3948             7   High     1270.70
## 3998            14    Low      514.56
## 4048             9    Low      376.25
## 4098            20 Medium      839.28
## 4148             9   High     1337.40
## 4198            10   High     1210.50
## 4248             9 Medium      872.88
## 4298            15   High     1343.40
## 4348             3   High     1494.40
## 4398             4    Low      523.20
## 4448            13    Low      695.94
## 4498            15    Low      490.74
## 4548            13   High     1326.90
## 4598             2   High     1274.80
## 4648            19    Low      486.54
## 4698             9    Low      497.22
## 4748             8   High     1312.90
## 4798            19    Low      505.44
## 4848             5    Low      683.83
## 4898            14   High     1309.40
## 4948             2 Medium      830.56
## 4998             6 Medium      996.39
## 5048             9 Medium     1000.98
## 5098             8    Low      661.99
## 5148            20 Medium      994.32
## 5198             7 Medium     1078.83
## 5248            17   High     1331.60
## 5298            15    Low      358.95
## 5348            16   High     1279.30
## 5398             4   High     1257.80
## 5448            12   High     1367.70
## 5498             5   High     1384.70
## 5548            17    Low      674.80
## 5598             9    Low      675.22
## 5648             1    Low      692.58
## 5698            20    Low      675.85
## 5748            14    Low      490.56
## 5798            11   High     1321.00
## 5848            10   High     1289.30
## 5898            17   High     1211.50
## 5948            10 Medium     1026.45
## 5998            18 Medium      830.80
## 6048             4   High     1352.90
## 6098             4 Medium     1006.11
## 6148             7   High     1310.00
## 6198             5    Low      376.65
## 6248            10 Medium     1015.02
## 6298            15   High     1270.50
## 6348            17    Low      360.65
## 6398            19 Medium      868.64
## 6448             7    Low      674.10
## 6498             2    Low      361.65
## 6548            12   High     1256.90
## 6598            16    Low      699.30
## 6648             6   High     1454.40
## 6698            20    Low      507.42
## 6748            18    Low      491.04
## 6798            10    Low      535.08
## 6848            12 Medium     1058.67
## 6898            19   High     1215.60
## 6948            13 Medium     1023.03
## 6998            16    Low      486.12
## 7048            10   High     1336.70
## 7098            12   High     1455.00
## 7148            18    Low      358.05
## 7198            15 Medium      835.60
## 7248            20 Medium     1031.22
## 7298            11 Medium     1044.72
## 7348             9   High     1426.50
## 7398            13   High     1378.30
## 7448            19 Medium     1031.40
## 7498            13   High     1386.70
## 7548             8    Low      663.39
## 7598            12    Low      358.35
## 7648            11    Low      363.60
## 7698             4 Medium      836.24
## 7748            14   High     1407.10
## 7798             5   High     1224.80
## 7848             9 Medium     1016.37
## 7898             8   High     1292.00
## 7948            20   High     1453.00
## 7998             7    Low      505.92
## 8048            20 Medium     1040.40
## 8098             1    Low      650.16
## 8148             5 Medium      872.24
## 8198             7    Low      391.25
## 8248            20    Low      665.35
## 8298            17    Low      539.40
## 8348            17   High     1297.30
## 8398             9    Low      481.20
## 8448            13    Low      660.80
## 8498             7    Low      501.96
## 8548            16 Medium      872.08
## 8598            11    Low      520.74
## 8648             9 Medium     1065.78
## 8698            11    Low      481.50
## 8748            18   High     1315.20
## 8798             9   High     1279.80
## 8848            16    Low      531.54
## 8898            12    Low      524.46
## 8948             4 Medium     1006.02
## 8998            20    Low      674.87
## 9048            17    Low      350.40
## 9098             1   High     1273.00
## 9148             3   High     1277.30
## 9198            14 Medium      827.28
## 9248             2    Low      528.84
## 9298             6    Low      515.52
## 9348            10    Low      519.66
## 9398             4   High     1396.60
## 9448            14   High     1382.70
## 9498             7 Medium      855.12
## 9548            11 Medium      822.64
## 9598             1    Low      650.44
## 9648            16 Medium     1000.80
## 9698             7   High     1218.50
## 9748            20 Medium      869.12
## 9798            13    Low      648.34
## 9848            14    Low      511.98
## 9898            10 Medium      806.08
## 9948             7    Low      505.14
## 9998            18 Medium      850.24

Soal 4

Jika Anda akan mendapatkan bonus 2% dari Booking fee per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break.

R

Yap = subset(Data, subset=(Marketing_Name == "Matius"))
                
p = ifelse((Yap$Work_Exp < 3),
           (Yap$Price * Yap$Booking_Fee)*(0.02),
           (Yap$Price * Yap$Booking_Fee)*(0.03))

Yap$Bonus = p
Yap
Bonus = sum(Yap$Bonus)

Bonus
## [1] 64473077

Soal 5

Pada bagian ini, Anda diharapkan dapat membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.

  • Siapa nama marketing pemasaran terbaik?
  • Kota dan Cluster mana yang paling menguntungkan?
  • Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
  • Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
  • Hitung Total Pendapatan (dalam Bulanan)

R

Siapa nama marketing pemasaran terbaik?

MarketName = c("Angel","Sherly","Vanessa","Irene","Julian",
            "Jeffry","Nikita","Kefas","Siana","Lala",
            "Fallen","Ardifo","Kevin","Juen","Jerrel",
            "Imelda","Widi","Theodora","Elvani","Jonathan",
            "Sofia","Abraham","Siti","Niko","Sefli",
            "Bene", "Diana", "Pupe", "Andi", "Tatha",
            "Endri", "Monika", "Hans", "Debora","Hanifa",
            "James", "Jihan", "Friska","Ardiwan", "Bakti",
            "Anthon","Amry", "Wiwik", "Bastian", "Budi",
            "Leo","Simon","Matius","Arry", "Eliando")

Jonathan   =  subset(Data, subset=(Marketing_Name == "Jonathan"))
Theodora   =  subset(Data, subset=(Marketing_Name == "Theodora"))
Angel   =  subset(Data, subset=(Marketing_Name == "Angel"))
Sherly=subset(Data, subset=(Marketing_Name == "Sherly"))
Vanessa=subset(Data, subset=(Marketing_Name == "Vanessa"))
Irene=subset(Data, subset=(Marketing_Name == "Irene"))
Julian=subset(Data, subset=(Marketing_Name == "Julian"))
Jeffry =subset(Data, subset=(Marketing_Name == "Jeffry"))
Nikita =subset(Data, subset=(Marketing_Name == "Nikita"))
Kefas =subset(Data, subset=(Marketing_Name == "Kefas"))
Siana =subset(Data, subset=(Marketing_Name == "Siana"))
Lala=subset(Data, subset=(Marketing_Name == "Lala"))
Fallen =subset(Data, subset=(Marketing_Name == "Fallen"))
Ardifo =subset(Data, subset=(Marketing_Name == "Ardifo"))
Kevin =subset(Data, subset=(Marketing_Name == "Kevin"))
Juen =subset(Data, subset=(Marketing_Name == "Juen"))
Jerrel =subset(Data, subset=(Marketing_Name == "Jerrel"))
Imelda =subset(Data, subset=(Marketing_Name == "Imelda"))
Widi =subset(Data, subset=(Marketing_Name == "Widi"))
Theodor = subset(Data, subset=(Marketing_Name == "Theodor"))
Elvani =subset(Data, subset=(Marketing_Name == "Elvani"))
Jonatha = subset(Data, subset=(Marketing_Name == "Jonatha"))
Sofia =subset(Data, subset=(Marketing_Name == "Sofia"))
Abraham = subset(Data, subset=(Marketing_Name == "Abraham"))
Siti =subset(Data, subset=(Marketing_Name == "Siti"))
Niko =subset(Data, subset=(Marketing_Name == "Niko"))
Sefli =subset(Data, subset=(Marketing_Name == "Selfi"))
Bene =subset(Data, subset=(Marketing_Name == "Bene"))
Diana =subset(Data, subset=(Marketing_Name == "Diana"))
Pupe =subset(Data, subset=(Marketing_Name == "Pupe"))
Andi =subset(Data, subset=(Marketing_Name == "Andi"))
Tatha =subset(Data, subset=(Marketing_Name == "Tatha"))
Endri=subset(Data, subset=(Marketing_Name == "Endri"))
Monika= subset(Data, subset=(Marketing_Name == "Monika"))
Hans =subset(Data, subset=(Marketing_Name == "Hans"))
Debora= subset(Data, subset=(Marketing_Name == "Debora"))
Hanifa= subset(Data, subset=(Marketing_Name == "Hanifa"))
James =subset(Data, subset=(Marketing_Name == "James"))
Jihan =subset(Data, subset=(Marketing_Name == "Jihan"))
Friska =subset(Data, subset=(Marketing_Name == "Friska"))
Ardiwan = subset(Data, subset=(Marketing_Name == "Ardiwan"))
Bakti =subset(Data, subset=(Marketing_Name == "Bakti"))
Anthon =subset(Data, subset=(Marketing_Name == "Anthon"))
Amry =subset(Data, subset=(Marketing_Name == "Amry"))
Wiwik =subset(Data, subset=(Marketing_Name == "Wiwik"))
Bastian = subset(Data, subset=(Marketing_Name == "Bastian"))
Budi  = subset(Data, subset=(Marketing_Name == "Budi"))
Leo  = subset(Data, subset=(Marketing_Name == "Leo"))
Simon = subset(Data, subset=(Marketing_Name == "Simon"))
Matius  = subset(Data, subset=(Marketing_Name == "Matius"))
Arry  = subset(Data, subset=(Marketing_Name == "Arry"))
Eliando = subset(Data, subset=(Marketing_Name == "Eliando"))

sum = 
  c(sum(Angel$Price),sum(Sherly$Price),sum(Vanessa$Price),sum(Irene$Price),
    sum(Julian$Price),sum(Jeffry$Price),sum(Nikita$Price),sum(Kefas$Price),
    sum(Siana$Price),sum(Lala$Price),sum(Fallen$Price),sum(Ardifo$Price),
    sum(Kevin$Price),sum(Juen$Price),sum(Jerrel$Price),sum(Imelda$Price),
    sum(Widi$Price),sum(Theodora$Price),sum(Elvani$Price),sum(Jonathan$Price),
    sum(Sofia$Price),sum(Abraham$Price),sum(Siti$Price),sum(Niko$Price),
    sum(Sefli$Price),sum(Bene$Price),sum( Diana$Price),sum( Pupe$Price),
    sum(Andi$Price),sum( Tatha$Price),sum(Endri$Price),sum( Monika$Price),
    sum( Hans$Price),sum( Debora$Price),sum(Hanifa$Price),sum(James$Price),
    sum( Jihan$Price),sum( Friska$Price),sum(Ardiwan$Price),sum(Bakti$Price),
    sum(Anthon$Price),sum(Amry$Price),sum( Wiwik$Price),sum( Bastian$Price),
    sum( Budi$Price),sum(Leo$Price),sum(Simon$Price),sum(Matius$Price),
    sum(Arry$Price),sum( Eliando$Price))

m_ = data.frame(MarketName,
                        sum)
m_
max(sum)
## [1] 2252960
Cari = which.max(m_$sum)
TERBAIK.M = m_[Cari,]
TERBAIK.M

Kota dan Cluster mana yang paling menguntungkan?

#KOTA
  
city = c("Jakarta","Bogor", "Tangerang","Depok","Bekasi")

Jakarta = subset(Data, subset=(City == "Jakarta"))
Bogor = subset(Data, subset=(City == "Bogor"))
Tangerang = subset(Data, subset=(City == "Tengerang"))
Depok = subset(Data, subset=(City == "Depok"))
Bekasi = subset(Data, subset=(City == "Bekasi"))


mean = c(sum(Jakarta$Price)/length(Jakarta$Id), sum(Bogor$Price)/length(Bogor$Id),sum(Tangerang$Price)/length(Tangerang$Id),sum(Depok$Price)/length(Depok$Id) , sum(Bekasi$Price)/length(Bekasi$Id))

         
df_city = data.frame(city, 
         mean)

df_city
max(mean)
## [1] 11016.98
Cari = which.max(df_city$mean)
TERBAIK.C = df_city[Cari,]
TERBAIK.C
#CLUSTER

cluster = c("Victoria","Palmyra","Winona","Tiara", "Narada",
      "Peronia","Lavesh","Alindra","Sweethome", "Asera",
      "Teradamai","Albasia", "Adara","Neon","Arana",
      "Asoka", "Primadona", "Mutiara","Permata","Alamanda")


Teradamai    = subset(Data, subset=( Cluster ==  "Teradamai"))
Victoria    = subset(Data, subset=( Cluster ==  "Victoria"))     
Palmyra = subset(Data, subset=( Cluster ==  "Palmyra"))
Winona = subset(Data, subset=( Cluster ==  "Winona"))
Tiara  = subset(Data, subset=( Cluster ==  "Tiara"))
Narada = subset(Data, subset=( Cluster ==  "Narada"))
Peronia = subset(Data, subset=( Cluster ==  "Peronia"))
Lavesh = subset(Data, subset=( Cluster ==  "Lavesh"))
Alindra = subset(Data, subset=( Cluster ==  "Alindra"))
Sweethome  = subset(Data, subset=( Cluster ==  "Sweethome"))
Asera = subset(Data, subset=( Cluster ==  "Asera"))
Teradamai = subset(Data, subset=( Cluster ==  "Teradamai"))
Albasia  = subset(Data, subset=( Cluster ==  "Albasia "))
Adara = subset(Data, subset=( Cluster ==  "Adara"))
Neon = subset(Data, subset=( Cluster ==  "Neon"))
Arana = subset(Data, subset=( Cluster ==  "Arana"))
Asoka  = subset(Data, subset=( Cluster ==  "Asoka "))
Primadona  = subset(Data, subset=( Cluster ==  "Primadona"))
Mutiara = subset(Data, subset=( Cluster ==  "Mutiara"))
Permata = subset(Data, subset=( Cluster ==  "Permata"))
Alamanda    = subset(Data, subset=( Cluster ==  "Alamanda"))




mean = c(sum(Victoria$Price)/length(Victoria$Id),sum(Palmyra$Price)/length(Palmyra$Id),
         sum(Winona$Price)/length(Winona$Id),sum(Tiara$Price)/length(Tiara$Id),
         sum(Narada$Price)/length(Narada$Id),sum(Peronia$Price)/length(Peronia$Id),
         sum(Lavesh$Price)/length( Lavesh$Id), sum(Alindra$Price)/length( Alindra$Id),
         sum(Sweethome$Price)/length( Sweethome$Id), sum(Asera$Price)/length( Asera$Id),
         sum(Teradamai$Price)/length( Teradamai$Id), sum(Albasia$Price)/length( Albasia$Id), 
         sum(Adara$Price)/length( Adara$Id), sum(Neon$Price)/length( Neon$Id),
         sum(Arana$Price)/length( Arana$Id), sum(Asoka$Price)/length( Asoka$Id), 
         sum(Primadona$Price)/length( Primadona$Id), sum(Mutiara$Price)/length( Mutiara$Id),
         sum(Permata$Price)/length( Permata$Id),sum(Alamanda$Price)/length( Alamanda$Id))


df_cluster = data.frame(cluster,mean)

df_cluster
max(mean)
## [1] NaN
Cari = which.max(df_cluster$mean)
TERBAIK.CL = df_cluster[Cari,]
TERBAIK.CL

Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan

M.Name = "Matius"
Mar.Name = subset(Data, subset=(Marketing_Name == M.Name))

Iklan = ( Mar.Name$Advertisement * 4)
 
t.iklan = print(sum(Iklan))
## [1] 9000
iklann =c(M.Name, unlist(t.iklan))

susah_pak = function(x){
    print(iklann)
    print(c(cat("Marketing terbaik adalah", unlist(TERBAIK.M),"\n",
                "cluster menguntungkan", unlist(TERBAIK.CL),"\n",
                "Kota menguntungkan ",unlist(TERBAIK.C),"\n")))
                        
}
susah_pak(x)
## [1] "Matius" "9000"  
## Marketing terbaik adalah Theodora 2252960 
##  cluster menguntungkan Adara 11278.2816091954 
##  Kota menguntungkan  Bekasi 11016.9816377171 
## NULL

Rata-rata biaya iklan perbulan setiap marketing

Name = c("Angel","Sherly","Vanessa","Irene","Julian",
            "Jeffry","Nikita","Kefas","Siana","Lala",
            "Fallen","Ardifo","Kevin","Juen","Jerrel",
            "Imelda","Widi","Theodora","Elvani","Jonathan",
            "Sofia","Abraham","Siti","Niko","Sefli",
            "Bene", "Diana", "Pupe", "Andi", "Tatha",
            "Endri", "Monika", "Hans", "Debora","Hanifa",
            "James", "Jihan", "Friska","Ardiwan", "Bakti",
            "Anthon","Amry", "Wiwik", "Bastian", "Budi",
            "Leo","Simon","Matius","Arry", "Eliando")

 Iklan_M =   for (x in Name){
          t = subset(Data, subset=(Marketing_Name == x))
          i = sum(t$Advertisement * 4)
          print(cat(sum(i)/length(t$Id),(cat(x," rata-rata iklannya " ))))}
## Angel  rata-rata iklannya 40.24NULL
## Sherly  rata-rata iklannya 41.34NULL
## Vanessa  rata-rata iklannya 43.16NULL
## Irene  rata-rata iklannya 40.72NULL
## Julian  rata-rata iklannya 40.1NULL
## Jeffry  rata-rata iklannya 44.2NULL
## Nikita  rata-rata iklannya 42.02NULL
## Kefas  rata-rata iklannya 37.4NULL
## Siana  rata-rata iklannya 42.16NULL
## Lala  rata-rata iklannya 41.86NULL
## Fallen  rata-rata iklannya 43.76NULL
## Ardifo  rata-rata iklannya 40.34NULL
## Kevin  rata-rata iklannya 41.54NULL
## Juen  rata-rata iklannya 38.7NULL
## Jerrel  rata-rata iklannya 40.52NULL
## Imelda  rata-rata iklannya 41.58NULL
## Widi  rata-rata iklannya 42.12NULL
## Theodora  rata-rata iklannya 45.2NULL
## Elvani  rata-rata iklannya 39.78NULL
## Jonathan  rata-rata iklannya 42.96NULL
## Sofia  rata-rata iklannya 44.5NULL
## Abraham  rata-rata iklannya 40.7NULL
## Siti  rata-rata iklannya 39.8NULL
## Niko  rata-rata iklannya 43.26NULL
## Sefli  rata-rata iklannya 42.68NULL
## Bene  rata-rata iklannya 42.1NULL
## Diana  rata-rata iklannya 42.1NULL
## Pupe  rata-rata iklannya 40.94NULL
## Andi  rata-rata iklannya 44.2NULL
## Tatha  rata-rata iklannya 41.58NULL
## Endri  rata-rata iklannya 43.6NULL
## Monika  rata-rata iklannya 42.42NULL
## Hans  rata-rata iklannya 42.22NULL
## Debora  rata-rata iklannya 46.78NULL
## Hanifa  rata-rata iklannya 39.76NULL
## James  rata-rata iklannya 39.86NULL
## Jihan  rata-rata iklannya 44.8NULL
## Friska  rata-rata iklannya 39.28NULL
## Ardiwan  rata-rata iklannya 40.28NULL
## Bakti  rata-rata iklannya 45.16NULL
## Anthon  rata-rata iklannya 41.94NULL
## Amry  rata-rata iklannya 41.74NULL
## Wiwik  rata-rata iklannya 43.9NULL
## Bastian  rata-rata iklannya 42.74NULL
## Budi  rata-rata iklannya 40.24NULL
## Leo  rata-rata iklannya 43.56NULL
## Simon  rata-rata iklannya 42.58NULL
## Matius  rata-rata iklannya 45NULL
## Arry  rata-rata iklannya 45.02NULL
## Eliando  rata-rata iklannya 39.44NULL

Hitung Total Pendapatan (dalam Bulanan)

Totalp = function(x)
{
  Sum_Dulu = sum(Data$Price)-(sum(Data$Advertisement)*4)
  
  return(cat("Total Pendapatan perbulan adalah", Sum_Dulu))
}

Totalp(x)
## Total Pendapatan perbulan adalah 109168563

Kasus 2

Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:

  • Marital_Status : menetapkan status perkawinan acak (“Ya”, “Tidak”)
  • Address : berikan alamat acak (JABODETABEK)
  • Work_Location : menetapkan lokasi kerja secara acak (JABODETABEK)
  • Age : menetapkan urutan angka acak (dari 19 hingga 60)
  • Academi : menetapkan tingkat akademik acak (“J.School”, “H.School”, “Sarjana”, “Magister”, “Phd”)
  • Job : 10 pekerjaan acak untuk setiap tingkat akademik
  • Grade : 5 nilai acak untuk setiap Pekerjaan
  • Income : tetapkan pendapatan yang mungkin untuk setiap Pekerjaan
  • Spending : tetapkan kemungkinan pengeluaran untuk setiap Pekerjaan
  • Number_of_children: menetapkan nomor acak di antara 0 dan 10 (sesuai dengan status perkawinan)
  • Private_vehicle : menetapkan kemungkinan kendaraan pribadi untuk setiap orang (“Mobil”, “sepeda motor”, “Umum”)
  • Home : “Sewa”, “Milik”, “Kredit”

Soal 1

Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!

R

Id             <- (1:50000)
Marital_Status <- sample(c("Ya", "Tidak"), 50000, replace = T)
Adress         <- sample(c("Jakarta","Bogor","Depok","Tangerang","Bekasi"),50000,replace = T)
Work_Location  <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),50000, replace = T)
Age            <- sample(c(19:60), 50000, replace=T)
Academi        <- sample(c("J.School", "H.School", "Sarjana", "Magister", "Phd"), 50000, replace = T)
Grade          <- sample(c("A","B","C","D","E"), 50000, replace = T)
x              <- sample(c(1:10), 50000, replace=T)

Pelanggan      <- data.frame(Id, 
                            Marital_Status,
                            Adress,
                            Work_Location,
                            Age,
                            Academi,
                            Grade)

kerja = c("Doctor", "Teacher", "Karyawan", "Musician", "Actuarial", "Data Analyst", "Pilot", "Chef", "Translator")
  
Pelanggan$Job            <- ifelse(Pelanggan$Academi == "J.School", "Student", ifelse(Pelanggan$Academi == "H.School", "Student", sample(kerja, 40000, replace =T)))

Pelanggan$Income         <- ifelse(Pelanggan$Job == "Doctor", 25000,
                                ifelse(Pelanggan$Job == "Teacher", 14000,
                                       ifelse(Pelanggan$Job == "Karyawan", 15000,
                                              ifelse(Pelanggan$Job == "Musician", 19000,
                                                     ifelse(Pelanggan$Job == "Actuarial",35000,
                                                            ifelse(Pelanggan$Job == "Data Analyst", 36000,
                                                                   ifelse(Pelanggan$Job == "Pilot", 32000,
                                                                          ifelse(Pelanggan$Job == "Chef", 24000,
                                                                                 ifelse(Pelanggan$Job == "Translator", 27000, 10000)))))))))

Pelanggan$Spending       <- ifelse(Pelanggan$Job == "Doctor", 15000,
                                ifelse(Pelanggan$Job == "Teacher", 4000,
                                       ifelse(Pelanggan$Job == "Karyawan", 5000,
                                              ifelse(Pelanggan$Job == "Musician", 9000,
                                                     ifelse(Pelanggan$Job == "Actuarial",25000,
                                                            ifelse(Pelanggan$Job == "Data Analyst", 26000,
                                                                   ifelse(Pelanggan$Job == "Pilot", 22000,
                                                                          ifelse(Pelanggan$Job == "Chef", 14000,
                                                                                 ifelse(Pelanggan$Job == "Translator", 17000, 5000)))))))))

Pelanggan$Number_of_CHildren <- ifelse(Pelanggan$Marital_Status == "Iya", sample(c(1:10)),
                             ifelse(Pelanggan$Marital_Status == "Tidak", 0, sample(c(1:10) )))

Pelanggan$Private_vehicle <- sample(c("Mobil", "Sepeda Motor", "Umum"), 50000, replace = T)

Pelanggan$Home            <- sample(c("Sewa","Milik","Kredit"), 50000, replace = T)
                               
Pelanggan       

Soal 2

Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?

R

Pelanggan1 = function (x)
{
 min = min(x)
 max = max(x)
 median = x[median.default(x)]

 
 modus =x[which.max(x)]
 
 mean = round(sum(x)/length(x), digits=2) 
 
 
 var = sum((x-mean)^2) / (length(x)-1)
 
 sd = sqrt(sum((x-mean)^2) / (length(x)-1))

 return(cat(c("minimum =",   min,"\n",
        "maksimum =",  max,"\n",
        "median =",median,"\n",
        "modus =", modus,"\n",
        "rata-rata =",  mean,"\n",
        "varians = ", var,"\n",
        "standar deviasi =", sd,"\n"
 )))}
Pelanggan1(Pelanggan$Id)
## minimum = 1 
##  maksimum = 50000 
##  median = 25000 
##  modus = 50000 
##  rata-rata = 25000.5 
##  varians =  208337500 
##  standar deviasi = 14433.9010665863
Pelanggan1(Pelanggan$Age)
## minimum = 19 
##  maksimum = 60 
##  median = 43 
##  modus = 60 
##  rata-rata = 39.42 
##  varians =  146.969659393188 
##  standar deviasi = 12.1231043628762
Pelanggan1(Pelanggan$Income)
## minimum = 10000 
##  maksimum = 36000 
##  median = 19000 
##  modus = 36000 
##  rata-rata = 19089.48 
##  varians =  90439522.1200424 
##  standar deviasi = 9509.9696171987
Pelanggan1(Pelanggan$Spending)
## minimum = 4000 
##  maksimum = 26000 
##  median = 14000 
##  modus = 26000 
##  rata-rata = 11086.98 
##  varians =  60123936.9583392 
##  standar deviasi = 7753.96266165495
Pelanggan1(Pelanggan$Number_of_Children)
## minimum = Inf 
##  maksimum = -Inf 
##  median = 
##  modus = 
##  rata-rata = NaN 
##  varians =  0 
##  standar deviasi = 0
# tipe data character
typeof(Pelanggan$Marital_Status)
## [1] "character"
typeof(Pelanggan$Address)
## [1] "NULL"
typeof(Pelanggan$Work_Location)
## [1] "character"
typeof(Pelanggan$Grade)
## [1] "character"
typeof(Pelanggan$Private_vehicle)
## [1] "character"
typeof(Pelanggan$Home)
## [1] "character"
typeof(Pelanggan$Academi)
## [1] "character"
typeof(Pelanggan$Job)
## [1] "character"
summary(Pelanggan)
##        Id        Marital_Status        Adress          Work_Location     
##  Min.   :    1   Length:50000       Length:50000       Length:50000      
##  1st Qu.:12501   Class :character   Class :character   Class :character  
##  Median :25001   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :25001                                                           
##  3rd Qu.:37500                                                           
##  Max.   :50000                                                           
##       Age          Academi             Grade               Job           
##  Min.   :19.00   Length:50000       Length:50000       Length:50000      
##  1st Qu.:29.00   Class :character   Class :character   Class :character  
##  Median :39.00   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :39.42                                                           
##  3rd Qu.:50.00                                                           
##  Max.   :60.00                                                           
##      Income         Spending     Number_of_CHildren Private_vehicle   
##  Min.   :10000   Min.   : 4000   Min.   : 0.000     Length:50000      
##  1st Qu.:10000   1st Qu.: 5000   1st Qu.: 0.000     Class :character  
##  Median :15000   Median : 5000   Median : 1.000     Mode  :character  
##  Mean   :19089   Mean   :11087   Mean   : 2.754                       
##  3rd Qu.:27000   3rd Qu.:17000   3rd Qu.: 6.000                       
##  Max.   :36000   Max.   :26000   Max.   :10.000                       
##      Home          
##  Length:50000      
##  Class :character  
##  Mode  :character  
##                    
##                    
## 

Soal 3

Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?

Pelanggan$Potential <- ifelse((Pelanggan$Income - Pelanggan$Spending) > 0.5*Pelanggan$Income, "yes", "no")
Potential           <- Pelanggan[Pelanggan$Potential == "yes",]
Potential