Algoritma & Struktur Data

~ Ujian Tengah Semester ~


Kontak : \(\downarrow\)
Email
Instagram https://www.instagram.com/arifin.alicia/
RPubs https://rpubs.com/aliciaarifin/

Biodata

Nama : Alicia Arifin

Prodi : Statistika Bisnis

NIM : 20214920001

Kasus 1

Asumsikan Anda telah mengumpulkan beberapa kumpulan data dari perusahaan ABC Property seperti yang dapat kita lihat pada tabel berikut:

Id       <- (1:10000)
Marketing_Name <- rep(c("Angel","Sherly","Vanessa","Irene","Julian",
            "Jeffry","Nikita","Kefas","Siana","Lala",
            "Fallen","Ardifo","Kevin","Juen","Jerrel",
            "Imelda","Widi","Theodora","Elvani","Jonathan",
            "Sofia","Abraham","Siti","Niko","Sefli",
            "Bene", "Diana", "Pupe", "Andi", "Tatha",
            "Endri", "Monika", "Hans", "Debora","Hanifa",
            "James", "Jihan", "Friska","Ardiwan", "Bakti",
            "Anthon","Amry", "Wiwik", "Bastian", "Budi",
            "Leo","Simon","Matius","Arry", "Eliando"), 200)
Work_Exp    <- rep(c(1.3,2.4,2.5,3.6,3.7,4.7,5.7,6.7,7.7,7.3,
            5.3,5.3,10,9.3,3.3,3.3,3.4,3.4,3.5,5.6,
            3.5,4.6,4.6,5.7,6.2,4.4,6.4,6.4,3.5,7.5,
            4.6,3.7,4.7,4.3,5.2,6.3,7.4,2.4,3.4,8.2,
            6.4,7.2,1.5,7.5,10,4.5,6.5,7.2,7.1,7.6),200)
City      <- sample(c("Jakarta","Bogor","Depok","Tengerang","Bekasi"),10000, replace = T)
Cluster    <- sample(c("Victoria","Palmyra","Winona","Tiara", "Narada",
              "Peronia","Lavesh","Alindra","Sweethome", "Asera",
              "Teradamai","Albasia", "Adara","Neon","Arana",
              "Asoka", "Primadona", "Mutiara","Permata","Alamanda" ), 10000, replace=T)
Price     <- sample(c(7000:15000),10000, replace = T)
Date_Sales   <- sample(seq(as.Date("2018/01/01"), by = "day", length.out = 1000),10000, replace = T)
Advertisement <- sample(c(1:20), 10000, replace = T)
Data      <- data.frame(Id, 
               Marketing_Name,
               Work_Exp,
               City,
               Cluster,
               Price,
               Date_Sales,
               Advertisement)
library(DT)
datatable(Data)
write.csv(Data,"C:\\Users\\arifi\\Documents\\Kuliah\\UTS.csv", row.names = FALSE)

Soal 1

Kategorikan variabel Harga pada dataset di atas menjadi tiga kelompok sebagai berikut:

  • \(\text{High} > 12000\)
  • \(10000 \le \text{Medium} \le 12000\)
  • \(\text{Low} < 10000\)

Tetapkan ke dalam variabel baru yang disebut Kelas dengan menggunakan fungsi kontrol If, else if, dan else.

R

x = Data$Price

# i = for(x in Data$Price){
#   if(x > 12000){
#      print("High")}
#   else if ( x >= 10000 & x <= 12000 ){
#      print("Medium")}
#   else{print("Low")} }
# fungsi diatas tidak bisa digunakan karena if hanya bisa menggunakan satu input.
       
a = ifelse((x>12000),print('High'),
     ifelse((x >= 10000 & x <= 12000), print("Medium"),print('Low')
     ))
## [1] "High"
## [1] "Medium"
## [1] "Low"
Data$Class = a
Data

Soal 2

Kategorikan variabel Harga pada dataset di atas menjadi enam kelompok sebagai berikut:

  • Booking_fee nya 5 % jika \(\text{Price} < 8000\)
  • Booking_fee nya 6 % jika \(8000 \le \text{Price} < 9000\)
  • Booking_fee nya 7 % jika \(9000 \le \text{Price} < 10000\)
  • Booking_fee nya 8 % jika \(10000 \le \text{Price} < 11000\)
  • Booking_fee nya 9 % jika \(11000 \le \text{Price} < 13000\)
  • Booking_fee nya 10 % jika \(13000 \le \text{Price} \le 15000\)

Tetapkan ke dalam variabel baru yang disebut Booking_fee dengan menggunakan fungsi kontrol If, else if, dan else.

R

y = Data$Price
b = ifelse((y<8000),5/100,
      ifelse((y >= 8000 & y<9000),6/100,
         ifelse((y >= 9000 & y< 10000),7/100,
             ifelse((y >= 10000 & y< 11000),8/100,
                ifelse((y >= 11000 & y< 12000),9/100,10/100))))
      )
Data$Booking_Fee = b
Data

Soal 3

Menurut kumpulan data akhir yang telah Anda buat pada soal no 2, saya berasumsi bahwa Anda telah bekerja sebagai pemasaran di perusahaan ABC Property, bagaimana Anda dapat mengumpulkan semua informasi tentang penjualan Anda dengan menggunakan pernyataan for.

R

library(DT)

sales ="Sherly"

for(x in sales){
print(subset(Data, subset=(Marketing_Name == x)))
}
##        Id Marketing_Name Work_Exp      City   Cluster Price Date_Sales
## 2       2         Sherly      2.4   Jakarta    Narada  7404 2020-05-27
## 52     52         Sherly      2.4     Depok   Alindra  9462 2020-02-21
## 102   102         Sherly      2.4    Bekasi Primadona 12727 2019-04-12
## 152   152         Sherly      2.4   Jakarta     Arana  8999 2018-10-02
## 202   202         Sherly      2.4    Bekasi     Asera 10980 2018-10-04
## 252   252         Sherly      2.4    Bekasi    Narada 14693 2020-09-17
## 302   302         Sherly      2.4     Depok    Narada  8670 2018-03-17
## 352   352         Sherly      2.4    Bekasi     Tiara  9498 2019-03-07
## 402   402         Sherly      2.4     Bogor Sweethome 13979 2019-01-17
## 452   452         Sherly      2.4   Jakarta   Mutiara 10254 2019-03-10
## 502   502         Sherly      2.4    Bekasi     Asera  7794 2019-05-31
## 552   552         Sherly      2.4    Bekasi   Alindra 12593 2020-05-02
## 602   602         Sherly      2.4 Tengerang   Albasia 13803 2020-06-02
## 652   652         Sherly      2.4   Jakarta   Alindra 13548 2019-01-29
## 702   702         Sherly      2.4    Bekasi     Tiara  8203 2018-05-12
## 752   752         Sherly      2.4   Jakarta     Asoka  7132 2019-05-05
## 802   802         Sherly      2.4 Tengerang   Palmyra 12783 2020-09-24
## 852   852         Sherly      2.4 Tengerang   Palmyra 12035 2019-07-21
## 902   902         Sherly      2.4     Bogor     Asera 10217 2020-04-21
## 952   952         Sherly      2.4   Jakarta   Peronia 13561 2018-02-02
## 1002 1002         Sherly      2.4 Tengerang   Peronia 14606 2020-04-02
## 1052 1052         Sherly      2.4   Jakarta     Asoka 10422 2019-05-25
## 1102 1102         Sherly      2.4     Bogor Teradamai  8663 2018-12-03
## 1152 1152         Sherly      2.4   Jakarta Primadona 13926 2019-12-30
## 1202 1202         Sherly      2.4   Jakarta  Victoria  9165 2018-03-03
## 1252 1252         Sherly      2.4    Bekasi   Mutiara 14651 2019-11-21
## 1302 1302         Sherly      2.4     Bogor     Adara 10257 2018-11-07
## 1352 1352         Sherly      2.4    Bekasi     Tiara  9752 2019-04-18
## 1402 1402         Sherly      2.4     Bogor Sweethome 13277 2020-03-27
## 1452 1452         Sherly      2.4     Bogor Sweethome 12245 2019-03-01
## 1502 1502         Sherly      2.4 Tengerang   Permata 13837 2019-04-28
## 1552 1552         Sherly      2.4     Depok    Narada 13898 2019-11-24
## 1602 1602         Sherly      2.4     Depok  Alamanda 14790 2020-07-02
## 1652 1652         Sherly      2.4     Depok  Victoria 14855 2019-09-03
## 1702 1702         Sherly      2.4 Tengerang   Mutiara  9999 2019-08-27
## 1752 1752         Sherly      2.4     Bogor  Alamanda 10606 2018-06-10
## 1802 1802         Sherly      2.4 Tengerang      Neon  9076 2019-08-03
## 1852 1852         Sherly      2.4     Depok  Victoria  8266 2018-10-04
## 1902 1902         Sherly      2.4   Jakarta      Neon 13676 2018-02-01
## 1952 1952         Sherly      2.4    Bekasi   Alindra  8787 2018-04-02
## 2002 2002         Sherly      2.4     Bogor     Asoka  8608 2020-09-19
## 2052 2052         Sherly      2.4     Depok   Palmyra 10236 2020-03-19
## 2102 2102         Sherly      2.4    Bekasi Teradamai 13034 2018-10-17
## 2152 2152         Sherly      2.4     Depok   Permata  8094 2019-02-24
## 2202 2202         Sherly      2.4    Bekasi   Albasia  9470 2019-10-08
## 2252 2252         Sherly      2.4    Bekasi   Mutiara 14181 2019-11-30
## 2302 2302         Sherly      2.4     Depok   Peronia  9023 2019-09-25
## 2352 2352         Sherly      2.4    Bekasi    Winona 11229 2019-06-02
## 2402 2402         Sherly      2.4     Depok      Neon 10636 2020-09-01
## 2452 2452         Sherly      2.4     Depok  Victoria 10436 2018-03-21
## 2502 2502         Sherly      2.4    Bekasi Primadona  7461 2019-09-16
## 2552 2552         Sherly      2.4    Bekasi   Alindra  8110 2018-09-18
## 2602 2602         Sherly      2.4     Bogor  Victoria 10361 2018-01-11
## 2652 2652         Sherly      2.4    Bekasi   Albasia 12866 2018-10-05
## 2702 2702         Sherly      2.4    Bekasi Sweethome 12050 2019-01-08
## 2752 2752         Sherly      2.4     Depok     Asoka 13200 2020-08-28
## 2802 2802         Sherly      2.4     Depok   Mutiara 10261 2019-06-26
## 2852 2852         Sherly      2.4 Tengerang     Asoka 13974 2018-12-14
## 2902 2902         Sherly      2.4     Bogor    Narada 12223 2020-04-23
## 2952 2952         Sherly      2.4     Depok   Mutiara  7257 2018-05-08
## 3002 3002         Sherly      2.4 Tengerang   Palmyra 10157 2020-05-22
## 3052 3052         Sherly      2.4 Tengerang Primadona  9486 2019-11-06
## 3102 3102         Sherly      2.4   Jakarta  Alamanda 11078 2020-01-29
## 3152 3152         Sherly      2.4     Bogor     Asoka 10888 2020-08-08
## 3202 3202         Sherly      2.4     Depok     Asoka  9036 2018-08-30
## 3252 3252         Sherly      2.4    Bekasi     Tiara 14847 2019-05-23
## 3302 3302         Sherly      2.4 Tengerang     Arana 11370 2018-06-17
## 3352 3352         Sherly      2.4     Depok    Winona 11339 2020-09-11
## 3402 3402         Sherly      2.4     Depok     Adara  9607 2019-01-30
## 3452 3452         Sherly      2.4    Bekasi      Neon  8965 2018-06-17
## 3502 3502         Sherly      2.4   Jakarta  Alamanda 13274 2018-05-23
## 3552 3552         Sherly      2.4    Bekasi    Winona 11290 2019-06-30
## 3602 3602         Sherly      2.4   Jakarta    Winona 11537 2018-03-22
## 3652 3652         Sherly      2.4 Tengerang      Neon 14762 2018-05-27
## 3702 3702         Sherly      2.4 Tengerang    Lavesh  8865 2018-11-15
## 3752 3752         Sherly      2.4    Bekasi   Alindra  7166 2020-05-16
## 3802 3802         Sherly      2.4     Depok   Mutiara  9881 2020-02-13
## 3852 3852         Sherly      2.4   Jakarta    Lavesh 10113 2019-03-19
## 3902 3902         Sherly      2.4     Bogor   Mutiara 13107 2020-07-27
## 3952 3952         Sherly      2.4    Bekasi   Albasia  7634 2018-10-20
## 4002 4002         Sherly      2.4    Bekasi     Adara 12023 2020-06-17
## 4052 4052         Sherly      2.4    Bekasi Primadona 10935 2018-02-23
## 4102 4102         Sherly      2.4     Bogor     Asera 10377 2018-06-07
## 4152 4152         Sherly      2.4   Jakarta     Adara  8519 2020-02-22
## 4202 4202         Sherly      2.4   Jakarta  Victoria 10445 2018-04-05
## 4252 4252         Sherly      2.4     Bogor     Arana  9115 2018-02-13
## 4302 4302         Sherly      2.4    Bekasi     Asoka  8714 2018-11-09
## 4352 4352         Sherly      2.4    Bekasi  Alamanda  7184 2018-04-30
## 4402 4402         Sherly      2.4     Depok     Adara  8325 2018-02-17
## 4452 4452         Sherly      2.4     Depok  Victoria 14307 2018-09-29
## 4502 4502         Sherly      2.4     Depok    Lavesh  7177 2019-09-28
## 4552 4552         Sherly      2.4    Bekasi      Neon 13070 2020-08-30
## 4602 4602         Sherly      2.4     Bogor    Winona  8047 2018-03-08
## 4652 4652         Sherly      2.4     Depok     Asoka 14456 2019-08-26
## 4702 4702         Sherly      2.4 Tengerang   Permata 14931 2019-06-08
## 4752 4752         Sherly      2.4 Tengerang   Palmyra  8955 2020-07-04
## 4802 4802         Sherly      2.4     Depok  Alamanda  8630 2019-12-29
## 4852 4852         Sherly      2.4     Bogor      Neon  9439 2018-07-07
## 4902 4902         Sherly      2.4 Tengerang   Permata 10038 2019-01-30
## 4952 4952         Sherly      2.4 Tengerang   Peronia 13110 2018-10-02
## 5002 5002         Sherly      2.4     Depok   Permata 14607 2020-07-14
## 5052 5052         Sherly      2.4     Bogor      Neon  8225 2018-10-17
## 5102 5102         Sherly      2.4    Bekasi   Palmyra 14282 2019-09-19
## 5152 5152         Sherly      2.4   Jakarta Sweethome 13152 2019-02-16
## 5202 5202         Sherly      2.4     Depok      Neon  8131 2019-12-26
## 5252 5252         Sherly      2.4 Tengerang    Narada 11935 2020-06-19
## 5302 5302         Sherly      2.4   Jakarta    Winona  9776 2020-08-17
## 5352 5352         Sherly      2.4 Tengerang    Lavesh 14881 2019-12-04
## 5402 5402         Sherly      2.4 Tengerang   Permata 11742 2018-06-10
## 5452 5452         Sherly      2.4   Jakarta   Permata  9734 2018-11-19
## 5502 5502         Sherly      2.4   Jakarta   Alindra  8222 2019-01-30
## 5552 5552         Sherly      2.4     Depok     Tiara 14468 2020-05-25
## 5602 5602         Sherly      2.4   Jakarta     Arana 12825 2020-04-07
## 5652 5652         Sherly      2.4     Depok    Lavesh 14156 2018-01-30
## 5702 5702         Sherly      2.4   Jakarta Teradamai  7416 2019-06-05
## 5752 5752         Sherly      2.4   Jakarta   Mutiara  9015 2018-09-01
## 5802 5802         Sherly      2.4     Bogor  Victoria 12259 2020-07-16
## 5852 5852         Sherly      2.4 Tengerang     Tiara 13425 2019-09-29
## 5902 5902         Sherly      2.4 Tengerang Teradamai 14886 2018-06-05
## 5952 5952         Sherly      2.4 Tengerang     Asoka  9113 2020-04-22
## 6002 6002         Sherly      2.4   Jakarta      Neon 10960 2018-01-16
## 6052 6052         Sherly      2.4 Tengerang     Arana 11046 2018-06-14
## 6102 6102         Sherly      2.4 Tengerang     Asoka 10920 2019-12-08
## 6152 6152         Sherly      2.4   Jakarta    Winona  9740 2019-05-18
## 6202 6202         Sherly      2.4 Tengerang   Peronia  9677 2018-05-04
## 6252 6252         Sherly      2.4     Depok   Peronia 12489 2019-01-25
## 6302 6302         Sherly      2.4     Depok Sweethome  9720 2018-03-22
## 6352 6352         Sherly      2.4     Depok     Asera  9067 2019-09-01
## 6402 6402         Sherly      2.4   Jakarta   Mutiara 10851 2019-08-31
## 6452 6452         Sherly      2.4 Tengerang      Neon 13077 2018-05-25
## 6502 6502         Sherly      2.4     Depok  Alamanda 11882 2018-02-08
## 6552 6552         Sherly      2.4     Bogor   Palmyra 12948 2018-01-24
## 6602 6602         Sherly      2.4     Depok     Arana  8640 2018-04-04
## 6652 6652         Sherly      2.4   Jakarta     Arana  8485 2018-06-02
## 6702 6702         Sherly      2.4 Tengerang     Asera  8503 2018-03-31
## 6752 6752         Sherly      2.4     Bogor    Winona 12223 2019-11-27
## 6802 6802         Sherly      2.4     Bogor     Asera  8954 2020-07-06
## 6852 6852         Sherly      2.4 Tengerang Sweethome 13501 2019-02-15
## 6902 6902         Sherly      2.4   Jakarta Sweethome  7204 2019-05-15
## 6952 6952         Sherly      2.4 Tengerang     Tiara 12993 2018-07-20
## 7002 7002         Sherly      2.4     Depok      Neon 13863 2019-05-25
## 7052 7052         Sherly      2.4    Bekasi  Alamanda 13049 2018-06-13
## 7102 7102         Sherly      2.4     Depok    Winona 13573 2019-11-11
## 7152 7152         Sherly      2.4     Depok Primadona 12623 2018-04-12
## 7202 7202         Sherly      2.4     Depok     Adara 13962 2019-10-03
## 7252 7252         Sherly      2.4    Bekasi   Mutiara  8440 2019-10-01
## 7302 7302         Sherly      2.4 Tengerang    Narada  8361 2018-02-22
## 7352 7352         Sherly      2.4     Bogor     Arana  8001 2020-06-14
## 7402 7402         Sherly      2.4     Bogor     Asera 12941 2019-10-09
## 7452 7452         Sherly      2.4     Bogor     Asoka  7538 2018-02-23
## 7502 7502         Sherly      2.4    Bekasi    Lavesh  8312 2020-07-13
## 7552 7552         Sherly      2.4    Bekasi    Winona 10620 2019-12-28
## 7602 7602         Sherly      2.4     Bogor   Permata  8740 2019-01-19
## 7652 7652         Sherly      2.4     Bogor   Palmyra 11326 2020-09-18
## 7702 7702         Sherly      2.4     Bogor  Alamanda 10596 2019-11-04
## 7752 7752         Sherly      2.4     Depok Sweethome  9785 2020-03-14
## 7802 7802         Sherly      2.4     Depok    Lavesh 10547 2018-10-21
## 7852 7852         Sherly      2.4    Bekasi   Mutiara 10024 2019-04-30
## 7902 7902         Sherly      2.4     Bogor Primadona 13721 2020-02-23
## 7952 7952         Sherly      2.4 Tengerang Sweethome  9398 2020-09-15
## 8002 8002         Sherly      2.4   Jakarta     Tiara 12816 2020-01-31
## 8052 8052         Sherly      2.4     Bogor     Asoka 14028 2019-12-18
## 8102 8102         Sherly      2.4   Jakarta     Arana  7608 2018-05-31
## 8152 8152         Sherly      2.4     Bogor     Asoka  8277 2018-12-06
## 8202 8202         Sherly      2.4    Bekasi   Palmyra 11673 2018-09-18
## 8252 8252         Sherly      2.4     Depok   Peronia 10278 2019-09-14
## 8302 8302         Sherly      2.4    Bekasi     Arana 11524 2019-04-25
## 8352 8352         Sherly      2.4    Bekasi   Albasia  7669 2018-03-11
## 8402 8402         Sherly      2.4    Bekasi     Adara 14748 2018-04-12
## 8452 8452         Sherly      2.4     Depok     Arana 13181 2020-02-18
## 8502 8502         Sherly      2.4    Bekasi Teradamai 11919 2020-03-04
## 8552 8552         Sherly      2.4   Jakarta Teradamai 12941 2019-12-08
## 8602 8602         Sherly      2.4    Bekasi     Adara  7951 2018-03-18
## 8652 8652         Sherly      2.4    Bekasi   Alindra 12869 2020-05-06
## 8702 8702         Sherly      2.4    Bekasi   Peronia 13376 2019-12-30
## 8752 8752         Sherly      2.4     Depok   Albasia  7254 2018-06-15
## 8802 8802         Sherly      2.4     Depok     Adara 11374 2019-01-26
## 8852 8852         Sherly      2.4     Bogor     Tiara 13902 2018-08-10
## 8902 8902         Sherly      2.4 Tengerang Primadona 14460 2020-08-25
## 8952 8952         Sherly      2.4 Tengerang   Peronia 12839 2019-12-12
## 9002 9002         Sherly      2.4   Jakarta     Asera 14985 2018-11-23
## 9052 9052         Sherly      2.4     Bogor    Lavesh  8637 2018-02-17
## 9102 9102         Sherly      2.4     Depok     Asera 14933 2020-03-03
## 9152 9152         Sherly      2.4 Tengerang      Neon 11656 2018-02-18
## 9202 9202         Sherly      2.4 Tengerang      Neon 13249 2019-12-01
## 9252 9252         Sherly      2.4    Bekasi     Arana  8826 2020-06-26
## 9302 9302         Sherly      2.4   Jakarta   Alindra 13626 2019-11-15
## 9352 9352         Sherly      2.4 Tengerang   Mutiara  7509 2019-03-17
## 9402 9402         Sherly      2.4     Depok Primadona 11615 2019-06-05
## 9452 9452         Sherly      2.4   Jakarta   Permata 10323 2019-07-23
## 9502 9502         Sherly      2.4     Depok     Asoka 13068 2019-11-07
## 9552 9552         Sherly      2.4   Jakarta Teradamai  9825 2018-10-05
## 9602 9602         Sherly      2.4     Bogor     Arana 13028 2018-10-07
## 9652 9652         Sherly      2.4    Bekasi   Albasia  9220 2018-10-17
## 9702 9702         Sherly      2.4 Tengerang  Alamanda  8238 2020-06-16
## 9752 9752         Sherly      2.4     Bogor    Winona 13356 2019-01-12
## 9802 9802         Sherly      2.4     Depok     Asera 14278 2020-04-03
## 9852 9852         Sherly      2.4   Jakarta Primadona 11608 2019-02-05
## 9902 9902         Sherly      2.4     Depok     Arana  9779 2019-07-31
## 9952 9952         Sherly      2.4 Tengerang    Winona 14321 2018-02-07
##      Advertisement  Class Booking_Fee
## 2               11    Low        0.05
## 52              15    Low        0.07
## 102             20   High        0.10
## 152             19    Low        0.06
## 202             10 Medium        0.08
## 252              7   High        0.10
## 302              4    Low        0.06
## 352              6    Low        0.07
## 402              7   High        0.10
## 452             12 Medium        0.08
## 502              1    Low        0.05
## 552             16   High        0.10
## 602             10   High        0.10
## 652              8   High        0.10
## 702             16    Low        0.06
## 752             17    Low        0.05
## 802              9   High        0.10
## 852             12   High        0.10
## 902             15 Medium        0.08
## 952              6   High        0.10
## 1002             6   High        0.10
## 1052             2 Medium        0.08
## 1102            10    Low        0.06
## 1152            18   High        0.10
## 1202            10    Low        0.07
## 1252             6   High        0.10
## 1302             7 Medium        0.08
## 1352            14    Low        0.07
## 1402             8   High        0.10
## 1452             3   High        0.10
## 1502            20   High        0.10
## 1552            20   High        0.10
## 1602             9   High        0.10
## 1652             7   High        0.10
## 1702             2    Low        0.07
## 1752            14 Medium        0.08
## 1802             6    Low        0.07
## 1852            14    Low        0.06
## 1902            14   High        0.10
## 1952             4    Low        0.06
## 2002            12    Low        0.06
## 2052            16 Medium        0.08
## 2102            17   High        0.10
## 2152             4    Low        0.06
## 2202            16    Low        0.07
## 2252            17   High        0.10
## 2302            20    Low        0.07
## 2352            11 Medium        0.09
## 2402             4 Medium        0.08
## 2452            17 Medium        0.08
## 2502            18    Low        0.05
## 2552            20    Low        0.06
## 2602            13 Medium        0.08
## 2652            20   High        0.10
## 2702            19   High        0.10
## 2752             3   High        0.10
## 2802            13 Medium        0.08
## 2852             8   High        0.10
## 2902            12   High        0.10
## 2952             8    Low        0.05
## 3002            14 Medium        0.08
## 3052            20    Low        0.07
## 3102             2 Medium        0.09
## 3152            13 Medium        0.08
## 3202            10    Low        0.07
## 3252             5   High        0.10
## 3302             3 Medium        0.09
## 3352            16 Medium        0.09
## 3402            14    Low        0.07
## 3452            16    Low        0.06
## 3502            12   High        0.10
## 3552             3 Medium        0.09
## 3602            15 Medium        0.09
## 3652             5   High        0.10
## 3702             8    Low        0.06
## 3752             7    Low        0.05
## 3802            10    Low        0.07
## 3852             1 Medium        0.08
## 3902             7   High        0.10
## 3952            16    Low        0.05
## 4002            11   High        0.10
## 4052            19 Medium        0.08
## 4102            15 Medium        0.08
## 4152             7    Low        0.06
## 4202            11 Medium        0.08
## 4252             3    Low        0.07
## 4302            14    Low        0.06
## 4352             6    Low        0.05
## 4402            11    Low        0.06
## 4452             3   High        0.10
## 4502            12    Low        0.05
## 4552             9   High        0.10
## 4602            19    Low        0.06
## 4652            10   High        0.10
## 4702             9   High        0.10
## 4752            10    Low        0.06
## 4802            16    Low        0.06
## 4852             6    Low        0.07
## 4902             4 Medium        0.08
## 4952             4   High        0.10
## 5002            14   High        0.10
## 5052            13    Low        0.06
## 5102             3   High        0.10
## 5152             1   High        0.10
## 5202            10    Low        0.06
## 5252             6 Medium        0.09
## 5302             5    Low        0.07
## 5352             5   High        0.10
## 5402            10 Medium        0.09
## 5452            20    Low        0.07
## 5502            20    Low        0.06
## 5552            13   High        0.10
## 5602            10   High        0.10
## 5652            14   High        0.10
## 5702            10    Low        0.05
## 5752            19    Low        0.07
## 5802             5   High        0.10
## 5852            16   High        0.10
## 5902             8   High        0.10
## 5952             5    Low        0.07
## 6002            20 Medium        0.08
## 6052             7 Medium        0.09
## 6102            11 Medium        0.08
## 6152            18    Low        0.07
## 6202             6    Low        0.07
## 6252             6   High        0.10
## 6302             2    Low        0.07
## 6352            15    Low        0.07
## 6402            13 Medium        0.08
## 6452             2   High        0.10
## 6502             3 Medium        0.09
## 6552            20   High        0.10
## 6602            16    Low        0.06
## 6652             6    Low        0.06
## 6702            15    Low        0.06
## 6752             7   High        0.10
## 6802             7    Low        0.06
## 6852             9   High        0.10
## 6902             8    Low        0.05
## 6952            10   High        0.10
## 7002             4   High        0.10
## 7052            18   High        0.10
## 7102            13   High        0.10
## 7152            13   High        0.10
## 7202            16   High        0.10
## 7252            20    Low        0.06
## 7302             5    Low        0.06
## 7352            19    Low        0.06
## 7402             3   High        0.10
## 7452            17    Low        0.05
## 7502            11    Low        0.06
## 7552            11 Medium        0.08
## 7602            14    Low        0.06
## 7652            17 Medium        0.09
## 7702            16 Medium        0.08
## 7752            15    Low        0.07
## 7802             5 Medium        0.08
## 7852            20 Medium        0.08
## 7902            13   High        0.10
## 7952            13    Low        0.07
## 8002            13   High        0.10
## 8052            16   High        0.10
## 8102            10    Low        0.05
## 8152            17    Low        0.06
## 8202            16 Medium        0.09
## 8252             5 Medium        0.08
## 8302            14 Medium        0.09
## 8352            15    Low        0.05
## 8402            16   High        0.10
## 8452             6   High        0.10
## 8502             8 Medium        0.09
## 8552            16   High        0.10
## 8602            20    Low        0.05
## 8652            12   High        0.10
## 8702            13   High        0.10
## 8752             6    Low        0.05
## 8802            11 Medium        0.09
## 8852             9   High        0.10
## 8902             5   High        0.10
## 8952            12   High        0.10
## 9002            16   High        0.10
## 9052             9    Low        0.06
## 9102             4   High        0.10
## 9152            16 Medium        0.09
## 9202            10   High        0.10
## 9252            16    Low        0.06
## 9302            17   High        0.10
## 9352            10    Low        0.05
## 9402            16 Medium        0.09
## 9452            19 Medium        0.08
## 9502             5   High        0.10
## 9552             3    Low        0.07
## 9602            20   High        0.10
## 9652            16    Low        0.07
## 9702            12    Low        0.06
## 9752            18   High        0.10
## 9802             1   High        0.10
## 9852            15 Medium        0.09
## 9902            19    Low        0.07
## 9952             8   High        0.10

Soal 4

Jika Anda akan mendapatkan bonus 2% dari Booking fee per unit sebagai pemasaran dan juga mendapatkan bonus tambahan 1% jika Anda telah bekerja di perusahaan ini selama lebih dari 3 tahun. Silakan hitung total bonus dengan menggunakan pernyataan if, for, dan break.

R

#nama sales
sales = "Irene"

r <- subset(Data, subset=(Marketing_Name == sales))

p= ifelse(( r$Work_Exp <3),
      (r$Price * r$Booking_Fee ) *(2/100),
      (r$Price * r$Booking_Fee ) *(3/100) )

r$Bonus =p
r
Bonus = sum(r$Bonus)
Bonus
## [1] 5659.72

Soal 5

Pada bagian ini, Anda diharapkan dapat membuat fungsi yang dapat menjawab setiap penyataan dibawah ini dengan melibatkan setiap fungsi kontrol yang dipelajari pada pertemuan 7.

  • Siapa nama marketing pemasaran terbaik?
  • Kota dan Cluster mana yang paling menguntungkan?
  • Hitung total biaya iklan Anda, jika Anda harus membayarnya $4 setiap kali iklan.
  • Hitung rata-rata biaya iklan untuk setiap marketing di Perusahaan tersebut.
  • Hitung Total Pendapatan (dalam Bulanan)

R

# marketing no 1
ssales = c("Angel","Sherly","Vanessa","Irene","Julian",
            "Jeffry","Nikita","Kefas","Siana","Lala",
            "Fallen","Ardifo","Kevin","Juen","Jerrel",
            "Imelda","Widi","Theodora","Elvani","Jonathan",
            "Sofia","Abraham","Siti","Niko","Sefli",
            "Bene", "Diana", "Pupe", "Andi", "Tatha",
            "Endri", "Monika", "Hans", "Debora","Hanifa",
            "James", "Jihan", "Friska","Ardiwan", "Bakti",
            "Anthon","Amry", "Wiwik", "Bastian", "Budi",
            "Leo","Simon","Matius","Arry", "Eliando")

Jonathan   =  subset(Data, subset=(Marketing_Name == "Jonathan"))
Theodora   =  subset(Data, subset=(Marketing_Name == "Theodora"))
Angel   =  subset(Data, subset=(Marketing_Name == "Angel"))
Sherly=subset(Data, subset=(Marketing_Name == "Sherly"))
Vanessa=subset(Data, subset=(Marketing_Name == "Vanessa"))
Irene=subset(Data, subset=(Marketing_Name == "Irene"))
Julian=subset(Data, subset=(Marketing_Name == "Julian"))
Jeffry =subset(Data, subset=(Marketing_Name == "Jeffry"))
Nikita =subset(Data, subset=(Marketing_Name == "Nikita"))
Kefas =subset(Data, subset=(Marketing_Name == "Kefas"))
Siana =subset(Data, subset=(Marketing_Name == "Siana"))
Lala=subset(Data, subset=(Marketing_Name == "Lala"))
Fallen =subset(Data, subset=(Marketing_Name == "Fallen"))
Ardifo =subset(Data, subset=(Marketing_Name == "Ardifo"))
Kevin =subset(Data, subset=(Marketing_Name == "Kevin"))
Juen =subset(Data, subset=(Marketing_Name == "Juen"))
Jerrel =subset(Data, subset=(Marketing_Name == "Jerrel"))
Imelda =subset(Data, subset=(Marketing_Name == "Imelda"))
Widi =subset(Data, subset=(Marketing_Name == "Widi"))
Theodor = subset(Data, subset=(Marketing_Name == "Theodor"))
Elvani =subset(Data, subset=(Marketing_Name == "Elvani"))
Jonatha = subset(Data, subset=(Marketing_Name == "Jonatha"))
Sofia =subset(Data, subset=(Marketing_Name == "Sofia"))
Abraham = subset(Data, subset=(Marketing_Name == "Abraham"))
Siti =subset(Data, subset=(Marketing_Name == "Siti"))
Niko =subset(Data, subset=(Marketing_Name == "Niko"))
Sefli =subset(Data, subset=(Marketing_Name == "Sefli"))
Bene =subset(Data, subset=(Marketing_Name == "Bene"))
Diana =subset(Data, subset=(Marketing_Name == "Diana"))
Pupe =subset(Data, subset=(Marketing_Name == "Pupe"))
Andi =subset(Data, subset=(Marketing_Name == "Andi"))
Tatha =subset(Data, subset=(Marketing_Name == "Tatha"))
Endri=subset(Data, subset=(Marketing_Name == "Endri"))
Monika= subset(Data, subset=(Marketing_Name == "Monika"))
Hans =subset(Data, subset=(Marketing_Name == "Hans"))
Debora= subset(Data, subset=(Marketing_Name == "Debora"))
Hanifa= subset(Data, subset=(Marketing_Name == "Hanifa"))
James =subset(Data, subset=(Marketing_Name == "James"))
Jihan =subset(Data, subset=(Marketing_Name == "Jihan"))
Friska =subset(Data, subset=(Marketing_Name == "Friska"))
Ardiwan = subset(Data, subset=(Marketing_Name == "Ardiwan"))
Bakti =subset(Data, subset=(Marketing_Name == "Bakti"))
Anthon =subset(Data, subset=(Marketing_Name == "Anthon"))
Amry =subset(Data, subset=(Marketing_Name == "Amry"))
Wiwik =subset(Data, subset=(Marketing_Name == "Wiwik"))
Bastian = subset(Data, subset=(Marketing_Name == "Bastian"))
Budi  = subset(Data, subset=(Marketing_Name == "Budi"))
Leo  = subset(Data, subset=(Marketing_Name == "Leo"))
Simon = subset(Data, subset=(Marketing_Name == "Simon"))
Matius  = subset(Data, subset=(Marketing_Name == "Matius"))
Arry  = subset(Data, subset=(Marketing_Name == "Arry"))
Eliando = subset(Data, subset=(Marketing_Name == "Eliando"))

total = 
  c(sum(Angel$Price),sum(Sherly$Price),sum(Vanessa$Price),sum(Irene$Price),
    sum(Julian$Price),sum(Jeffry$Price),sum(Nikita$Price),sum(Kefas$Price),
    sum(Siana$Price),sum(Lala$Price),sum(Fallen$Price),sum(Ardifo$Price),
    sum(Kevin$Price),sum(Juen$Price),sum(Jerrel$Price),sum(Imelda$Price),
    sum(Widi$Price),sum(Theodora$Price),sum(Elvani$Price),sum(Jonathan$Price),
    sum(Sofia$Price),sum(Abraham$Price),sum(Siti$Price),sum(Niko$Price),
    sum(Sefli$Price),sum(Bene$Price),sum( Diana$Price),sum( Pupe$Price),
    sum(Andi$Price),sum( Tatha$Price),sum(Endri$Price),sum( Monika$Price),
    sum( Hans$Price),sum( Debora$Price),sum(Hanifa$Price),sum(James$Price),
    sum( Jihan$Price),sum( Friska$Price),sum(Ardiwan$Price),sum(Bakti$Price),
    sum(Anthon$Price),sum(Amry$Price),sum( Wiwik$Price),sum( Bastian$Price),
    sum( Budi$Price),sum(Leo$Price),sum(Simon$Price),sum(Matius$Price),
    sum(Arry$Price),sum( Eliando$Price))

marketing_ = data.frame(ssales,
                        total)
marketing_
terbaik =which.max(marketing_$total)

yang_terbaik = marketing_[terbaik,]
# nomor 2 kota dan cluster
city = c("Jakarta","Bogor", "Tangerang","Depok","Bekasi")

Jakarta = subset(Data, subset=(City == "Jakarta"))
Bogor = subset(Data, subset=(City == "Bogor"))
Tangerang = subset(Data, subset=(City == "Tengerang"))
Depok = subset(Data, subset=(City == "Depok"))
Bekasi = subset(Data, subset=(City == "Bekasi"))


# kota_wing =    for (x in hi){
#          kt = subset(r, subset=(City == x))
#          harga = sum(kt$Price)
#          panjang = length(kt$Id)
#          print(c(cat(harga/panjang,(cat(x,"rata di " )))))
#          
# }

rata_city = c(
 sum(Jakarta$Price)/length(Jakarta$Id), sum(Bogor$Price)/length(Bogor$Id), sum(Tangerang$Price)/length(Tangerang$Id) ,sum(Depok$Price)/length(Depok$Id) , sum(Bekasi$Price)/length(Bekasi$Id)
)

         
kota= data.frame(city, 
         rata_city)

kota
y = which.max(kota$rata_city)
kota_menguntungkan = kota[y,]
kota_menguntungkan
cluster = c("Victoria","Palmyra","Winona","Tiara", "Narada",
      "Peronia","Lavesh","Alindra","Sweethome", "Asera",
      "Teradamai","Albasia", "Adara","Neon","Arana",
      "Asoka", "Primadona", "Mutiara","Permata","Alamanda")


Teradamai    = subset(Data, subset=( Cluster ==  "Teradamai"))
Victoria    = subset(Data, subset=( Cluster ==  "Victoria"))     
Palmyra = subset(Data, subset=( Cluster ==  "Palmyra"))
Winona = subset(Data, subset=( Cluster ==  "Winona"))
Tiara  = subset(Data, subset=( Cluster ==  "Tiara"))
Narada = subset(Data, subset=( Cluster ==  "Narada"))
Peronia = subset(Data, subset=( Cluster ==  "Peronia"))
Lavesh = subset(Data, subset=( Cluster ==  "Lavesh"))
Alindra = subset(Data, subset=( Cluster ==  "Alindra"))
Sweethome  = subset(Data, subset=( Cluster ==  "Sweethome"))
Asera = subset(Data, subset=( Cluster ==  "Asera"))
Teradamai = subset(Data, subset=( Cluster ==  "Teradamai"))
Albasia  = subset(Data, subset=( Cluster ==  "Albasia"))
Adara = subset(Data, subset=( Cluster ==  "Adara"))
Neon = subset(Data, subset=( Cluster ==  "Neon"))
Arana = subset(Data, subset=( Cluster ==  "Arana"))
Asoka  = subset(Data, subset=( Cluster ==  "Asoka"))
Primadona  = subset(Data, subset=( Cluster ==  "Primadona"))
Mutiara = subset(Data, subset=( Cluster ==  "Mutiara"))
Permata = subset(Data, subset=( Cluster ==  "Permata"))
Alamanda    = subset(Data, subset=( Cluster ==  "Alamanda"))




rata = c(sum(Victoria$Price)/length(Victoria$Id),sum(Palmyra$Price)/length(Palmyra$Id),
         sum(Winona$Price)/length(Winona$Id),sum(Tiara$Price)/length(Tiara$Id),
         sum(Narada$Price)/length(Narada$Id),sum(Peronia$Price)/length(Peronia$Id),
         sum(Lavesh$Price)/length( Lavesh$Id), sum(Alindra$Price)/length( Alindra$Id),
         sum(Sweethome$Price)/length( Sweethome$Id), sum(Asera$Price)/length( Asera$Id),
         sum(Teradamai$Price)/length( Teradamai$Id), sum(Albasia$Price)/length( Albasia$Id), 
         sum(Adara$Price)/length( Adara$Id), sum(Neon$Price)/length( Neon$Id),
         sum(Arana$Price)/length( Arana$Id), sum(Asoka$Price)/length( Asoka$Id), 
         sum(Primadona$Price)/length( Primadona$Id), sum(Mutiara$Price)/length( Mutiara$Id),
         sum(Permata$Price)/length( Permata$Id),sum(Alamanda$Price)/length( Alamanda$Id))


ter_cluster = data.frame(cluster,
                         rata)

terbaik_cluster = ter_cluster[which.max(ter_cluster$rata),]
# biaya iklan sales 
sales = "Irene"
table_sales = subset(Data, subset=(Marketing_Name == sales))

Ads = ( table_sales$Advertisement * 4)
 
Total_Ads = print(sum(Ads))
## [1] 8704
iklan_sales =c(sales, unlist(Total_Ads))
 
# rata-rata biaya iklan perbulan setiap marketing
ssales = c("Angel","Sherly","Vanessa","Irene","Julian",
            "Jeffry","Nikita","Kefas","Siana","Lala",
            "Fallen","Ardifo","Kevin","Juen","Jerrel",
            "Imelda","Widi","Theodora","Elvani","Jonathan",
            "Sofia","Abraham","Siti","Niko","Sefli",
            "Bene", "Diana", "Pupe", "Andi", "Tatha",
            "Endri", "Monika", "Hans", "Debora","Hanifa",
            "James", "Jihan", "Friska","Ardiwan", "Bakti",
            "Anthon","Amry", "Wiwik", "Bastian", "Budi",
            "Leo","Simon","Matius","Arry", "Eliando")



# bagian 5
pendapatan_total = sum(Data$Price)-(sum(Data$Advertisement)*4)


nomor_lima = function(x){
    print(iklan_sales)
    print(c(cat("sales yang terbaik adalah", unlist(yang_terbaik),"\n",
                "cluster yang menguntungkan", unlist(terbaik_cluster),"\n",
                "kota yang menguntungkan ",unlist(kota_menguntungkan),"\n",
                "total pendapatan ABC property adalah", pendapatan_total)))
  
    
    Ads_Karyawan =   for (x in ssales){
          ts = subset(Data, subset=(Marketing_Name == x))
          Ads = sum(ts$Advertisement * 4)
          print(cat(sum(Ads)/length(ts$Id),(cat(x," rata-rata adsnya " ))))}
            
    
                        
          
}
nomor_lima(x)
## [1] "Irene" "8704" 
## sales yang terbaik adalah Ardifo 2274375 
##  cluster yang menguntungkan Palmyra 11191.1976744186 
##  kota yang menguntungkan  Bekasi 11079.1914572864 
##  total pendapatan ABC property adalah 110062868NULL
## Angel  rata-rata adsnya 41.1NULL
## Sherly  rata-rata adsnya 44.8NULL
## Vanessa  rata-rata adsnya 44.06NULL
## Irene  rata-rata adsnya 43.52NULL
## Julian  rata-rata adsnya 42.42NULL
## Jeffry  rata-rata adsnya 41.8NULL
## Nikita  rata-rata adsnya 41.1NULL
## Kefas  rata-rata adsnya 38.8NULL
## Siana  rata-rata adsnya 42.46NULL
## Lala  rata-rata adsnya 43.18NULL
## Fallen  rata-rata adsnya 40.74NULL
## Ardifo  rata-rata adsnya 42.14NULL
## Kevin  rata-rata adsnya 42.16NULL
## Juen  rata-rata adsnya 41.1NULL
## Jerrel  rata-rata adsnya 41.26NULL
## Imelda  rata-rata adsnya 40.6NULL
## Widi  rata-rata adsnya 38.22NULL
## Theodora  rata-rata adsnya 42.74NULL
## Elvani  rata-rata adsnya 41.66NULL
## Jonathan  rata-rata adsnya 43.54NULL
## Sofia  rata-rata adsnya 42.3NULL
## Abraham  rata-rata adsnya 43.46NULL
## Siti  rata-rata adsnya 38.92NULL
## Niko  rata-rata adsnya 41.14NULL
## Sefli  rata-rata adsnya 40.06NULL
## Bene  rata-rata adsnya 43.58NULL
## Diana  rata-rata adsnya 43.5NULL
## Pupe  rata-rata adsnya 40.18NULL
## Andi  rata-rata adsnya 40.54NULL
## Tatha  rata-rata adsnya 42.22NULL
## Endri  rata-rata adsnya 41.64NULL
## Monika  rata-rata adsnya 41.36NULL
## Hans  rata-rata adsnya 43.36NULL
## Debora  rata-rata adsnya 41.12NULL
## Hanifa  rata-rata adsnya 41.28NULL
## James  rata-rata adsnya 44.94NULL
## Jihan  rata-rata adsnya 42.62NULL
## Friska  rata-rata adsnya 40.02NULL
## Ardiwan  rata-rata adsnya 43.36NULL
## Bakti  rata-rata adsnya 43.18NULL
## Anthon  rata-rata adsnya 42.34NULL
## Amry  rata-rata adsnya 43NULL
## Wiwik  rata-rata adsnya 41.16NULL
## Bastian  rata-rata adsnya 43.02NULL
## Budi  rata-rata adsnya 41.5NULL
## Leo  rata-rata adsnya 42.28NULL
## Simon  rata-rata adsnya 44.8NULL
## Matius  rata-rata adsnya 40.72NULL
## Arry  rata-rata adsnya 41.8NULL
## Eliando  rata-rata adsnya 45.62NULL

Kasus 2

Misalkan Anda memiliki proyek riset pasar untuk mempertahankan beberapa pelanggan potensial di perusahaan Anda. Mari kita asumsikan Anda bekerja di perusahaan asuransi ABC. Untuk melakukannya, Anda ingin mengumpulkan kumpulan data berikut:

  • Marital_Status : menetapkan status perkawinan acak (“Ya”, “Tidak”)
  • Address : berikan alamat acak (JABODETABEK)
  • Work_Location : menetapkan lokasi kerja secara acak (JABODETABEK)
  • Age : menetapkan urutan angka acak (dari 19 hingga 60)
  • Academic : menetapkan tingkat akademik acak (“J.School”, “H.School”, “Sarjana”, “Magister”, “Phd”)
  • Job : 10 pekerjaan acak untuk setiap tingkat akademik
  • Grade : 5 nilai acak untuk setiap Pekerjaan
  • Income : tetapkan pendapatan yang mungkin untuk setiap Pekerjaan
  • Spending : tetapkan kemungkinan pengeluaran untuk setiap Pekerjaan
  • Number_of_children: menetapkan nomor acak di antara 0 dan 10 (sesuai dengan status perkawinan)
  • Private_vehicle : menetapkan kemungkinan kendaraan pribadi untuk setiap orang (“Mobil”, “sepeda motor”, “Umum”)
  • Home : “Sewa”, “Milik”, “Kredit”

Soal 1

Tolong berikan saya kumpulan data tentang informasi 50000 pelanggan yang mengacu pada setiap variabel di atas!

R

No       <- (1:50000)

Merital_Status <- sample(c("Yes","No"), 50000, replace = T)

Address     <- sample(c("Jakarta","Bogor","Depok","Tangerang","Bekasi"),50000, replace = T)

Work_Location    <- sample(c("Jakarta","Bogor","Depok","Tangerang","Bekasi"), 50000, replace=T)

Age     <- sample(c(19:60),50000, replace = T)

Grade = sample(c("A","B","C","D","E"), 50000, replace=T)
              
Private_vehicle  = sample(c("Car","Motorcycle","Public"), 50000, replace =T) 
Home = sample( c("Rent", "Own", "Credit"), 50000, replace = T)


Case      <- data.frame(No,
               Merital_Status,
               Address,
               Work_Location,
               Age,
               Grade,
               Private_vehicle,
               Home)

Case
adult =c("Engineer","Doctor","Dentist","Programmer","Athlete","Judge","Lawyer","Teacher","Chef")
Academic = ifelse(Case$Age < 20, "J.School",
           ifelse(Case$Age < 25, "H.School", 
           sample(c( "Sarjana", "Magister", "Phd"),replace = T)))


# Job = ifelse(Case$Academic == "J.School","Student", 
#       ifelse(Case$Academic == "H.School","Student",
#       sample(adult, replace =T)))

Job = ifelse(Academic == "J.School","Student", 
      ifelse(Academic == "H.School","Student",
      sample(adult, replace =T)))


Case      <- data.frame(No,
               Merital_Status,
               Address,
               Work_Location,
               Age,
               Grade,
               Private_vehicle,
               Home,
               Academic,
               Job)


Income = ifelse(Case$Job =="Engineer", 10000,
     ifelse(Case$Job =="Doctor", 35000, 
     ifelse(Case$Job =="Dentist", 40000,
     ifelse(Case$Job =="Programmer", 27000,
     ifelse(Case$Job =="Athlete", 32000,
     ifelse(Case$Job =="Judge", 25000,
     ifelse(Case$Job =="Lawyer", 13000,
     ifelse(Case$Job=="Teacher", 7000,
     ifelse(Case$Job =="Chef", 9000,1000
        )))))))))


Spending =ifelse(Case$Job =="Engineer", 75000,
     ifelse(Case$Job =="Doctor", 27890, 
     ifelse(Case$Job =="Dentist", 3200,
     ifelse(Case$Job =="Programmer", 14750,
     ifelse(Case$Job =="Athlete", 20000,
     ifelse(Case$Job =="Judge", 3200,
     ifelse(Case$Job =="Lawyer", 4000,
     ifelse(Case$Job =="Teacher", 2500,
     ifelse(Case$Job =="Chef", 2300,500
         )))))))))

Case$Income =Income
Case$Spending =Spending

Number_of_children = ifelse(Case$Merital_Status == "Yes", sample( c(0:10),25000,replace =T ), 0)

Case$Number_of_Children = Number_of_children

Case

Soal 2

Ringkasan Statistik penting seperti apa yang bisa Anda dapatkan dari kumpulan data Anda?

R

Case_Number = function (x)
{
 min = min(x)
 max = max(x)
 median = x[median.default(x)]

 
 modus =x[which.max(x)]
 
 rata = round(sum(x)/length(x), digits=2) 
 
 
 varians = sum((x-rata)^2) / (length(x)-1)
 
 sd = sqrt(sum((x-rata)^2) / (length(x)-1))

 return(cat(c("minimum =",   min,"\n",
        "maksimum =",  max,"\n",
        "median =",median,"\n",
        "modus =", modus,"\n",
        "rata-rata =",  rata,"\n",
        "varians = ", varians,"\n",
        "standar deviasi =", sd,"\n"
        )))}

# Case_Summary(pilih tabel yang mana yang ingin di summary)
# Case_Number(Case$Age)
# summary 

Case_Number(Case$Age)
## minimum = 19 
##  maksimum = 60 
##  median = 53 
##  modus = 60 
##  rata-rata = 39.4 
##  varians =  146.182307646153 
##  standar deviasi = 12.0905875641407
Case_Number(Case$Income)
## minimum = 1000 
##  maksimum = 40000 
##  median = 25000 
##  modus = 40000 
##  rata-rata = 16879.3 
##  varians =  155977851.067021 
##  standar deviasi = 12489.1092983856
Case_Number(Case$Spending)
## minimum = 500 
##  maksimum = 14750 
##  median = 2500 
##  modus = 14750 
##  rata-rata = 5821.88 
##  varians =  32425119.4430289 
##  standar deviasi = 5694.30587894862
Case_Number(Case$Number_of_Children)
## minimum = 0 
##  maksimum = 10 
##  median = 
##  modus = 10 
##  rata-rata = 2.51 
##  varians =  11.2491837836757 
##  standar deviasi = 3.35398028969695
# Data terdiri dari
# data yang mana saja gapapa karena pada dataframe semua baris sama
length(Case$Merital_Status)
## [1] 50000
#tipe data dibawah ini adalah
typeof(Case$Merital_Status)
## [1] "character"
typeof(Case$Address)
## [1] "character"
typeof(Case$Work_Location)
## [1] "character"
typeof(Case$Grade)
## [1] "character"
typeof(Case$Private_vehicle)
## [1] "character"
typeof(Case$Home)
## [1] "character"
typeof(Case$Academic)
## [1] "character"
typeof(Case$Job)
## [1] "character"

Soal 3

Menurut perhitungan dan analisis Anda, pelanggan mana yang potensial untuk Anda pertahankan?

R

# tabel yang digunakan
yes = subset(Case, subset=( Merital_Status == "Yes"))
no  = subset(Case, subset=( Merital_Status == "No"))


a = subset(Case, subset=( Grade == "A"))
b = subset(Case, subset=( Grade == "B"))
c = subset(Case, subset=( Grade == "C"))
d = subset(Case, subset=( Grade == "D"))
e = subset(Case, subset=( Grade == "E"))


aJa =subset(Case, subset=( Address == "Jakarta"))
aBo =subset(Case, subset=( Address == "Bogor"))
aDe =subset(Case, subset=( Address == "Depok"))
aTa =subset(Case, subset=( Address == "Tangerang"))
aBek =subset(Case, subset=( Address == "Bekasi"))

kJa =subset(Case, subset=( Work_Location == "Jakarta"))
kBo =subset(Case, subset=( Work_Location == "Bogor"))
kDe =subset(Case, subset=( Work_Location == "Depok"))
kTa =subset(Case, subset=( Work_Location == "Tangerang"))
kBek =subset(Case, subset=( Work_Location == "Bekasi"))

J = subset(Case, subset=( Academic == "J.School"))
H = subset(Case, subset=( Academic == "H.School"))
S = subset(Case, subset=( Academic == "Sarjana"))
M = subset(Case, subset=( Academic == "Magister"))
P = subset(Case, subset=(Academic== "Phd"))

mobil = subset(Case, subset=( Private_vehicle == "Car"))
motor = subset(Case, subset=( Private_vehicle == "Motorcycle"))
publik= subset(Case, subset=( Private_vehicle == "Public"))
  
sewa  = subset(Case, subset=( Home == "Rent"))
milik = subset(Case, subset=( Home == "Own"))
kredit= subset(Case, subset=( Home == "Credit"))

siswa     = subset(Case, subset=( Job == "Student"))
teknik    = subset(Case, subset=( Job == "Engineer"))
dokter    = subset(Case, subset=( Job == "Doctor"))
dentist   = subset(Case, subset=( Job == "Dentist"))
pro       = subset(Case, subset=( Job == "Programmer"))
atlet     = subset(Case, subset=( Job == "Athlete"))
hakim     = subset(Case, subset=( Job == "Judge"))
pengacara = subset(Case, subset=( Job == "Lawyer"))
guru      = subset(Case, subset=( Job == "Teacher"))
chef      = subset(Case, subset=( Job == "Chef"))
Case_Word = function(x){ 
  merital = function(x,y){
             if(x>y){
               print("Yes")}
             else{print("No")}   }
  marrige = merital(length(yes$No), length(no$No))
  
  
  alamat =
    function(a,b,c,d,e){
    if(a> max(c(b,c,d,e))){
      print("Jakarta")}
    else if(b > max(c(a,c,d,e))){
      print("Bogor")}
    else if(c > max(c(a,b,d,e))){
      print("Depok")}
    else if(d > max(c(a,b,c,e))){
      print("Tangerang")}
    else{print("Bekasi")}
    }
  address = alamat(length(aJa$No), length(aBo$No), length(aDe$No), length(aTa$No), length(aBek$No))
  
  kerja =
    function(a,b,c,d,e){
    if(a> max(c(b,c,d,e))){
      print("Jakarta")}
    else if(b > max(c(a,c,d,e))){
      print("Bogor")}
    else if(c > max(c(a,b,d,e))){
      print("Depok")}
    else if(d > max(c(a,b,c,e))){
      print("Tangerang")}
    else{print("Bekasi")}}
  work = kerja(length(kJa$No), length(kBo$No), length(kDe$No), length(kTa$No), length(kBek$No))
  
  akademis =
    function(a,b,c,d,e){
    if(a> max(c(b,c,d,e))){
      print("J.School")}
    else if(b > max(c(a,c,d,e))){
      print("H.School")}
    else if(c > max(c(a,b,d,e))){
      print("Sarjana")}
    else if(d > max(c(a,b,c,e))){
      print("Magister")}
    else{print("Phd")}}
  academic = akademis(length(J$No), length(H$No), length(S$No),
                      length(M$No), length(P$No))
  
  nilai = function(a,b,c,d,e){
    if(a> max(c(b,c,d,e))){
      print("A")}
    else if(b > max(c(a,c,d,e))){
      print("B")}
    else if(c > max(c(a,b,d,e))){
      print("C")}
    else if(d > max(c(a,b,c,e))){
      print("D")}
    else{print("E")}
  }
  ga = length(a$Address)
  gb = length(b$No)
  gc = length(c$No)
  gd = length(d$No)
  ge = length(e$No)
  grade = nilai(ga,gb,gc,gd,ge)
  
  vehicle   = 
    function(a,b,c){
    if(a> max(c(b,c))){
      print("Mobil")}
    else if(b > max(c(a,c))){
      print("Motor")}
    else {print("publik")} }
  kendaraan = vehicle(length(mobil$No), length(motor$No), length(publik$No))
  
  rumah = function(a,b,c){
    if(a> max(c(b,c))){
      print("sewa")}
    else if(b > max(c(a,c))){
      print("milik")}
    else {print("kredit")} } 
  home  = rumah(length(sewa$No), length(milik$No), length(kredit$No))
  
  
  pekerjaan = function(a,b,c,d,e,f,g,h,i,j){
    if(a> max(c(b,c,d,e,f,g,h,i,j))){
      print("siswa")}
    else if(b > max(c(a,c,d,e,f,g,h,i,j))){
      print("teknik")}
    else if(c > max(c(a,b,d,e,f,g,h,i,j))){
      print("dokter")}
    else if(d > max(c(a,b,c,e,f,g,h,i,j))){
      print("dentist")}
    else if(e > max(c(a,b,c,d,f,g,h,i,j))){
      print("programmer")}
    else if(f > max(c(a,b,c,d,e,g,h,i,j))){
      print("atlet")}
    else if(g > max(c(a,b,c,d,e,f,h,i,j))){
      print("hakim")}
    else if(h > max(c(a,b,c,d,e,f,g,i,j))){
      print("pengacara")}
    else if(i > max(c(a,b,c,d,e,f,g,h,j))){
      print("guru")}
    else{print("chef")}}
  job = pekerjaan(length(siswa$No), length(teknik$No), length(dokter$No),
                  length(dentist$No),length(pro$No),length(atlet$No),
                  length(hakim$No), length(pengacara$No), length(guru$No), 
                  length(chef$No))

  
 
        return(cat(c("marrige", marrige,"\n",
                     "alamat", address,"\n",
                     "kerja",work,"\n",
                     "akademis",academic,"\n",
                     "grade", grade,"\n",
                     "kendaraan",kendaraan,"\n",
                     "rumah",home,"\n",
                     "pekerjaan",job
                     )))
  
}
#pelanggan yang potensial yang akan saya pertahankan adalah dengan kategori seperti di bawah.

# "yang memiiki "
Case_Word(x)
## [1] "Yes"
## [1] "Bekasi"
## [1] "Bogor"
## [1] "Sarjana"
## [1] "E"
## [1] "publik"
## [1] "kredit"
## [1] "guru"
## marrige Yes 
##  alamat Bekasi 
##  kerja Bogor 
##  akademis Sarjana 
##  grade E 
##  kendaraan publik 
##  rumah kredit 
##  pekerjaan guru
#"memiliki umur rata-rata yang"
Case_Number(Case$Age)
## minimum = 19 
##  maksimum = 60 
##  median = 53 
##  modus = 60 
##  rata-rata = 39.4 
##  varians =  146.182307646153 
##  standar deviasi = 12.0905875641407
#"income rata-rata yang"
Case_Number(Case$Income)
## minimum = 1000 
##  maksimum = 40000 
##  median = 25000 
##  modus = 40000 
##  rata-rata = 16879.3 
##  varians =  155977851.067021 
##  standar deviasi = 12489.1092983856
#"yang rata-rata pengeluarannya"
Case_Number(Case$Spending)
## minimum = 500 
##  maksimum = 14750 
##  median = 2500 
##  modus = 14750 
##  rata-rata = 5821.88 
##  varians =  32425119.4430289 
##  standar deviasi = 5694.30587894862
#"yang memiliki rata-rata anak"
Case_Number(Case$Number_of_Children)
## minimum = 0 
##  maksimum = 10 
##  median = 
##  modus = 10 
##  rata-rata = 2.51 
##  varians =  11.2491837836757 
##  standar deviasi = 3.35398028969695