# Chapter 8 Lab: Decision Trees
setwd("C:/Users/sharl/Desktop/USF/Fall 2021/LIS 4805 - Predictive Analytics/Week 8 - Decision Trees")
# Fitting Classification Trees
version
## _
## platform x86_64-w64-mingw32
## arch x86_64
## os mingw32
## system x86_64, mingw32
## status
## major 4
## minor 0.5
## year 2021
## month 03
## day 31
## svn rev 80133
## language R
## version.string R version 4.0.5 (2021-03-31)
## nickname Shake and Throw
library(tree)
library(ISLR)
attach(Carseats)
hist(Sales)

#turn sales into a binary variable
High=ifelse(Sales<=8,"No","Yes")
# Update "Carseats" object including a new variable "High"
Carseats=data.frame(Carseats,High)
Carseats$High<-as.factor(Carseats$High)
head(Carseats)
## Sales CompPrice Income Advertising Population Price ShelveLoc Age Education
## 1 9.50 138 73 11 276 120 Bad 42 17
## 2 11.22 111 48 16 260 83 Good 65 10
## 3 10.06 113 35 10 269 80 Medium 59 12
## 4 7.40 117 100 4 466 97 Medium 55 14
## 5 4.15 141 64 3 340 128 Bad 38 13
## 6 10.81 124 113 13 501 72 Bad 78 16
## Urban US High
## 1 Yes Yes Yes
## 2 Yes Yes Yes
## 3 Yes Yes Yes
## 4 Yes Yes No
## 5 Yes No No
## 6 No Yes Yes
#fit the tree except "Sales" variable
#Have to exclude sales because the reponse variable was created from Sales
tree.carseats=tree(High~.-Sales,data = Carseats)
summary(tree.carseats)
##
## Classification tree:
## tree(formula = High ~ . - Sales, data = Carseats)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Income" "CompPrice" "Population"
## [6] "Advertising" "Age" "US"
## Number of terminal nodes: 27
## Residual mean deviance: 0.4575 = 170.7 / 373
## Misclassification error rate: 0.09 = 36 / 400
plot(tree.carseats)
text(tree.carseats,pretty=0)

# split training and test set
tree.carseats
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 400 541.500 No ( 0.59000 0.41000 )
## 2) ShelveLoc: Bad,Medium 315 390.600 No ( 0.68889 0.31111 )
## 4) Price < 92.5 46 56.530 Yes ( 0.30435 0.69565 )
## 8) Income < 57 10 12.220 No ( 0.70000 0.30000 )
## 16) CompPrice < 110.5 5 0.000 No ( 1.00000 0.00000 ) *
## 17) CompPrice > 110.5 5 6.730 Yes ( 0.40000 0.60000 ) *
## 9) Income > 57 36 35.470 Yes ( 0.19444 0.80556 )
## 18) Population < 207.5 16 21.170 Yes ( 0.37500 0.62500 ) *
## 19) Population > 207.5 20 7.941 Yes ( 0.05000 0.95000 ) *
## 5) Price > 92.5 269 299.800 No ( 0.75465 0.24535 )
## 10) Advertising < 13.5 224 213.200 No ( 0.81696 0.18304 )
## 20) CompPrice < 124.5 96 44.890 No ( 0.93750 0.06250 )
## 40) Price < 106.5 38 33.150 No ( 0.84211 0.15789 )
## 80) Population < 177 12 16.300 No ( 0.58333 0.41667 )
## 160) Income < 60.5 6 0.000 No ( 1.00000 0.00000 ) *
## 161) Income > 60.5 6 5.407 Yes ( 0.16667 0.83333 ) *
## 81) Population > 177 26 8.477 No ( 0.96154 0.03846 ) *
## 41) Price > 106.5 58 0.000 No ( 1.00000 0.00000 ) *
## 21) CompPrice > 124.5 128 150.200 No ( 0.72656 0.27344 )
## 42) Price < 122.5 51 70.680 Yes ( 0.49020 0.50980 )
## 84) ShelveLoc: Bad 11 6.702 No ( 0.90909 0.09091 ) *
## 85) ShelveLoc: Medium 40 52.930 Yes ( 0.37500 0.62500 )
## 170) Price < 109.5 16 7.481 Yes ( 0.06250 0.93750 ) *
## 171) Price > 109.5 24 32.600 No ( 0.58333 0.41667 )
## 342) Age < 49.5 13 16.050 Yes ( 0.30769 0.69231 ) *
## 343) Age > 49.5 11 6.702 No ( 0.90909 0.09091 ) *
## 43) Price > 122.5 77 55.540 No ( 0.88312 0.11688 )
## 86) CompPrice < 147.5 58 17.400 No ( 0.96552 0.03448 ) *
## 87) CompPrice > 147.5 19 25.010 No ( 0.63158 0.36842 )
## 174) Price < 147 12 16.300 Yes ( 0.41667 0.58333 )
## 348) CompPrice < 152.5 7 5.742 Yes ( 0.14286 0.85714 ) *
## 349) CompPrice > 152.5 5 5.004 No ( 0.80000 0.20000 ) *
## 175) Price > 147 7 0.000 No ( 1.00000 0.00000 ) *
## 11) Advertising > 13.5 45 61.830 Yes ( 0.44444 0.55556 )
## 22) Age < 54.5 25 25.020 Yes ( 0.20000 0.80000 )
## 44) CompPrice < 130.5 14 18.250 Yes ( 0.35714 0.64286 )
## 88) Income < 100 9 12.370 No ( 0.55556 0.44444 ) *
## 89) Income > 100 5 0.000 Yes ( 0.00000 1.00000 ) *
## 45) CompPrice > 130.5 11 0.000 Yes ( 0.00000 1.00000 ) *
## 23) Age > 54.5 20 22.490 No ( 0.75000 0.25000 )
## 46) CompPrice < 122.5 10 0.000 No ( 1.00000 0.00000 ) *
## 47) CompPrice > 122.5 10 13.860 No ( 0.50000 0.50000 )
## 94) Price < 125 5 0.000 Yes ( 0.00000 1.00000 ) *
## 95) Price > 125 5 0.000 No ( 1.00000 0.00000 ) *
## 3) ShelveLoc: Good 85 90.330 Yes ( 0.22353 0.77647 )
## 6) Price < 135 68 49.260 Yes ( 0.11765 0.88235 )
## 12) US: No 17 22.070 Yes ( 0.35294 0.64706 )
## 24) Price < 109 8 0.000 Yes ( 0.00000 1.00000 ) *
## 25) Price > 109 9 11.460 No ( 0.66667 0.33333 ) *
## 13) US: Yes 51 16.880 Yes ( 0.03922 0.96078 ) *
## 7) Price > 135 17 22.070 No ( 0.64706 0.35294 )
## 14) Income < 46 6 0.000 No ( 1.00000 0.00000 ) *
## 15) Income > 46 11 15.160 Yes ( 0.45455 0.54545 ) *
set.seed(1011)
train=sample(1:nrow(Carseats), 250) #default sample w/o replacement
Carseats.test=Carseats[-train,]
High.test=High[-train]
tree.carseats=tree(High~.-Sales,Carseats,subset=train)
plot(tree.carseats); text(tree.carseats, pretty = 0)

#predict tree against test set
tree.pred=predict(tree.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
## High.test
## tree.pred No Yes
## No 58 20
## Yes 27 45
# performance of prediction: 0.7
(72+33)/150
## [1] 0.7
# Use CV to prune the tree optimally
cv.carseats=cv.tree(tree.carseats,FUN=prune.misclass)
names(cv.carseats)
## [1] "size" "dev" "k" "method"
cv.carseats
## $size
## [1] 23 17 16 14 10 8 6 5 4 2 1
##
## $dev
## [1] 62 62 60 61 69 81 79 81 81 81 100
##
## $k
## [1] -Inf 0.0 1.0 1.5 2.0 3.0 3.5 5.0 6.0 7.0 27.0
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
plot(cv.carseats)

par(mfrow=c(1,1))
plot(cv.carseats$size,cv.carseats$dev,type="b")

plot(cv.carseats$k,cv.carseats$dev,type="b")

prune.carseats=prune.misclass(tree.carseats,best=13)
plot(prune.carseats)
text(prune.carseats,pretty=0)

tree.pred=predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
## High.test
## tree.pred No Yes
## No 59 19
## Yes 26 46
#######################################################################
prune.carseats=prune.misclass(tree.carseats,best=15)
plot(prune.carseats)
text(prune.carseats,pretty=0)

tree.pred=predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
## High.test
## tree.pred No Yes
## No 59 18
## Yes 26 47