We can express the distribution of Y with 1 - the remainder of values in n
\[P(x \leq Y) = 1 - P(x > Y)\] Now lets find the function to describe P(x > Y).
\[P(x > Y) = (\frac{k-y}{k})^n\] This gives us
\[P(x \leq Y) = 1 - (\frac{k-y}{k})^n\]
Geometric
p_fail <- 1/10
p_nfail <- 1 - p_fail
n <- 8
px = p_nfail^(n-1) * p_fail
px
## [1] 0.04782969
Expected Value
ev = 1/p_fail
ev
## [1] 10
Standard Deviation
sd = sqrt(p_nfail/(p_fail^2))
sd
## [1] 9.486833
Probability
mu <- 10
k <- 8
p <- exp(-k/mu)
p
## [1] 0.449329
Expected Value
lambda <- 1/10
ev <- 1/lambda
ev
## [1] 10
Standard Deviation
sd <- sqrt(1/lambda^2)
sd
## [1] 10
Probability
n <- 8
x <- 0
p_fail <- 1/10
p = p_fail^x * (1 - p_fail)^(n-x)
p
## [1] 0.4304672
Expected Value is 0.8 failures in the 8 year period
ev = n*p_fail
ev
## [1] 0.8
Standard Deviation
sd = sqrt(8 * p_fail * (1-p_fail))
sd
## [1] 0.8485281
Probability
n <- 8
p_fail <- 1/10
t <- 1
lambda <- (n*p_fail) / t
p <- lambda^n * exp(-lambda/n)
p
## [1] 0.1518065
Expected Value
ev <- lambda
ev
## [1] 0.8
Standard Deviation
sd <- sqrt(lambda)
sd
## [1] 0.8944272