support.bws2 package: Tool for Case 2 best-worst scaling:

rm(list = ls()) # Clean environment.
options(digits = 4) # Print up to 4 digits.
setwd("/Users/bmishra/Dropbox/OSU/PhD/Dissertation/Survey/Data/FinalData/Objective2/R")

# Load Libraries:
library(support.BWS2, warn.conflicts = F, quietly = T)
library(dplyr, warn.conflicts = F, quietly = T)
library(survival, warn.conflicts = F, quietly = T) # clogit.
library(DoE.base, warn.conflicts = F, quietly = T)
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
library(openxlsx, warn.conflicts = F, quietly = T) # Write in Excel
library(readxl, warn.conflicts = F, quietly = T)
library(stargazer, warn.conflicts = F, quietly = T) #Combined Model Outputs.
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer

Work Flow:

Step 1: Define choice situation: See Choice sets below and Design Matrix.

# Step 2: Creation of Design Matrix, profiles and Choice sets:
attr.lev.s = list(
  sanctuary = c("nsnfp", "snpf", "sfp"), 
  canopy = c("open", "moderate", "close"),
  deer = c("deer1", "deer6", "deer10"), 
  lease = c("les6", "les10", "les16"))

# Define base levels of each attribute:
base.lev.s = list(sanctuary = c("nsnfp"),
                   canopy = c("open"),
                   deer = c("deer1"),
                   lease = c("les6"))

# Step 3: Load data from the package. This is data collected using survey. 
# Load data:
obj2.data = read_excel("/Users/bmishra/Dropbox/OSU/PhD/Dissertation/Survey/Data/FinalData/SurveyData02192021.xlsx", sheet = "BWData")

# Complete Orthogonal Design Matrix for all 18 Sets:
des.s = cbind(
 #c(1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15, 16, 17, 18)
 #c(B1, B2, B3, B4, B5, B6, B1, B2, B3, B4, B5, B6, B1, B2, B3, B4, B5, B6)
  c(2,  3,  1,  3,  2,  1,  3,  3,  1,  2,  1,  2,  1,  2,  1,  3,  2,  3),
  c(1,  2,  1,  3,  3,  2,  1,  2,  1,  3,  3,  2,  2,  2,  3,  1,  1,  3),
  c(1,  1,  2,  2,  3,  3,  2,  3,  3,  2,  1,  1,  2,  2,  1,  1,  3,  3),
  c(1,  3,  1,  2,  3,  2,  2,  1,  3,  3,  1,  2,  3,  1,  2,  3,  2,  1))

# BWS Survey Set 1:
# Orthogonal Design Matrix for Set 1:
des.s1 = cbind(
 #c (1, 2,  3,  4,  5,  6)
 #c(B1, B2, B3, B4, B5, B6)
  c(2,  3,  1,  3,  2,  1),
  c(1,  2,  1,  3,  3,  2),
  c(1,  1,  2,  2,  3,  3),
  c(1,  3,  1,  2,  3,  2))

obj2.set1 = subset(obj2.data, SurveySet == 1)
obj2.set1 = cbind(obs = seq(1:length(obj2.set1$SurveySet)),
                      obj2.set1)

# Define response variable:
response.vars.s1 = colnames(obj2.set1[16:27])

# Develop questionnaire sets (Set 1):
bws2.questionnaire(choice.sets = des.s1, 
                   attribute.levels = attr.lev.s, 
                   position = "center")
## 
## Q1
##  Best Attribute Worst
##  [ ]  snpf      [ ]  
##  [ ]  open      [ ]  
##  [ ]  deer1     [ ]  
##  [ ]  les6      [ ]  
## 
## Q2
##  Best Attribute Worst
##  [ ]  sfp       [ ]  
##  [ ]  moderate  [ ]  
##  [ ]  deer1     [ ]  
##  [ ]  les16     [ ]  
## 
## Q3
##  Best Attribute Worst
##  [ ]  nsnfp     [ ]  
##  [ ]  open      [ ]  
##  [ ]  deer6     [ ]  
##  [ ]  les6      [ ]  
## 
## Q4
##  Best Attribute Worst
##  [ ]  sfp       [ ]  
##  [ ]  close     [ ]  
##  [ ]  deer6     [ ]  
##  [ ]  les10     [ ]  
## 
## Q5
##  Best Attribute Worst
##  [ ]  snpf      [ ]  
##  [ ]  close     [ ]  
##  [ ]  deer10    [ ]  
##  [ ]  les16     [ ]  
## 
## Q6
##  Best Attribute Worst
##  [ ]  nsnfp     [ ]  
##  [ ]  moderate  [ ]  
##  [ ]  deer10    [ ]  
##  [ ]  les10     [ ]
# BWS Survey Set 2:
# Orthogonal Design Matrix for Set 2:
des.s2 = cbind(
  #c (7, 8,  9,  10, 11, 12)
  #c(B1, B2, B3, B4, B5, B6)
  c(3,   3,  1,  2,  1,  2),
  c(1,   2,  1,  3,  3,  2),
  c(2,   3,  3,  2,  1,  1),
  c(2,   1,  3,  3,  1,  2))

obj2.set2 = subset(obj2.data, SurveySet == 1)
obj2.set2 = cbind(obs = seq(1:length(obj2.set2$SurveySet)),
                   obj2.set2)

# Define response variable:
response.vars.s2 = colnames(obj2.set2[16:27])

# Develop questionnaire sets (Set 2):
bws2.questionnaire(choice.sets = des.s2, 
                   attribute.levels = attr.lev.s, 
                   position = "center")
## 
## Q1
##  Best Attribute Worst
##  [ ]  sfp       [ ]  
##  [ ]  open      [ ]  
##  [ ]  deer6     [ ]  
##  [ ]  les10     [ ]  
## 
## Q2
##  Best Attribute Worst
##  [ ]  sfp       [ ]  
##  [ ]  moderate  [ ]  
##  [ ]  deer10    [ ]  
##  [ ]  les6      [ ]  
## 
## Q3
##  Best Attribute Worst
##  [ ]  nsnfp     [ ]  
##  [ ]  open      [ ]  
##  [ ]  deer10    [ ]  
##  [ ]  les16     [ ]  
## 
## Q4
##  Best Attribute Worst
##  [ ]  snpf      [ ]  
##  [ ]  close     [ ]  
##  [ ]  deer6     [ ]  
##  [ ]  les16     [ ]  
## 
## Q5
##  Best Attribute Worst
##  [ ]  nsnfp     [ ]  
##  [ ]  close     [ ]  
##  [ ]  deer1     [ ]  
##  [ ]  les6      [ ]  
## 
## Q6
##  Best Attribute Worst
##  [ ]  snpf      [ ]  
##  [ ]  moderate  [ ]  
##  [ ]  deer1     [ ]  
##  [ ]  les10     [ ]
# BWS Survey Set 3:
# Orthogonal Design Matrix for Set 3:
des.s3 = cbind(
 #c(13, 14, 15, 16, 17, 18)
 #c(B1, B2, B3, B4, B5, B6)
  c(1,  2,  1,  3,  2,  3),
  c(2,  2,  3,  1,  1,  3),
  c(2,  2,  1,  1,  3,  3),
  c(3,  1,  2,  3,  2,  1))

obj2.set3 = subset(obj2.data, SurveySet == 1)
obj2.set3 = cbind(obs = seq(1:length(obj2.set3$SurveySet)),
                   obj2.set3)

# Define response variable:
response.vars.s3 = colnames(obj2.set3[16:27])

# Develop questionnaire sets (Set 3):
bws2.questionnaire(choice.sets = des.s3, 
                   attribute.levels = attr.lev.s, 
                   position = "center")
## 
## Q1
##  Best Attribute Worst
##  [ ]  nsnfp     [ ]  
##  [ ]  moderate  [ ]  
##  [ ]  deer6     [ ]  
##  [ ]  les16     [ ]  
## 
## Q2
##  Best Attribute Worst
##  [ ]  snpf      [ ]  
##  [ ]  moderate  [ ]  
##  [ ]  deer6     [ ]  
##  [ ]  les6      [ ]  
## 
## Q3
##  Best Attribute Worst
##  [ ]  nsnfp     [ ]  
##  [ ]  close     [ ]  
##  [ ]  deer1     [ ]  
##  [ ]  les10     [ ]  
## 
## Q4
##  Best Attribute Worst
##  [ ]  sfp       [ ]  
##  [ ]  open      [ ]  
##  [ ]  deer1     [ ]  
##  [ ]  les16     [ ]  
## 
## Q5
##  Best Attribute Worst
##  [ ]  snpf      [ ]  
##  [ ]  open      [ ]  
##  [ ]  deer10    [ ]  
##  [ ]  les10     [ ]  
## 
## Q6
##  Best Attribute Worst
##  [ ]  sfp       [ ]  
##  [ ]  close     [ ]  
##  [ ]  deer10    [ ]  
##  [ ]  les6      [ ]

Step 4, 5 and 6: Dataset for Models:

Dataset for Model 1

# Model 1: Response variable: 1 for selected pair of best and worse levels, 0 otherwise.
# Model 1 (Paired Model) Data:
# Survey Set 1:
model1.set1 = bws2.dataset(
  data = obj2.set1,
  id = "obs",
  response = response.vars.s1,
  choice.sets = des.s1,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  model = "paired")

# Survey Set 2:
model1.set2 = bws2.dataset(
  data = obj2.set2,
  id = "obs",
  response = response.vars.s2,
  choice.sets = des.s2,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  model = "paired")

# Survey Set 3:
model1.set3 = bws2.dataset(
  data = obj2.set3,
  id = "obs",
  response = response.vars.s3,
  choice.sets = des.s3,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  model = "paired")

# Model 1 Survey Set Combined:
model1.data = rbind(model1.set1, model1.set2, model1.set3)
# View(model1.data)

Dataset for Model 2

# Model 2:
# Response variable (Same as Model 1): 1 for selected pair of best and worse levels, 0 otherwise.
# Model 2 (Paired Model) Data:
# Survey Set 1:
model2.set1 = bws2.dataset(
  data = obj2.set1,
  id = "obs",
  response = response.vars.s1,
  choice.sets = des.s1,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  model = "paired")

# Survey Set 2:
model2.set2 = bws2.dataset(
  data = obj2.set2,
  id = "obs",
  response = response.vars.s2,
  choice.sets = des.s2,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  model = "paired")

# Survey Set 3:
model2.set3 = bws2.dataset(
  data = obj2.set3,
  id = "obs",
  response = response.vars.s3,
  choice.sets = des.s3,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  model = "paired")

# Model 2 Survey Set Combined:
model2.data = rbind(model2.set1, model2.set2, model2.set3)
# View(model2.data)

Dataset for Model 3

# Model 3:
# Response variable: 1 if a level is selected as best or worse, 0 otherwise.
# Model 3 (Marginal Model) Data:
# Survey Set 1:
model3.set1 = bws2.dataset(
  data = obj2.set1,
  id = "obs",
  response = response.vars.s1,
  choice.sets = des.s1,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  model = "marginal")

# Survey Set 2:
model3.set2 = bws2.dataset(
  data = obj2.set2,
  id = "obs",
  response = response.vars.s2,
  choice.sets = des.s2,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  model = "marginal")

# Survey Set 3:
model3.set3 = bws2.dataset(
  data = obj2.set3,
  id = "obs",
  response = response.vars.s3,
  choice.sets = des.s3,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  model = "marginal")

# Model 3 Survey Set Combined:
model3.data = rbind(model3.set1, model3.set2, model3.set3)
# View(model3.data)

Dataset for Model 4, 5, 6

# Model 4, 5, 6:
# Response variable (Same as Model 3): 1 if a level is selected as best or worse, 0 otherwise.
# Model 4, 5, 6 (Marginal Model) Data:
# Survey Set 1:
model456.set1 = bws2.dataset(
  data = obj2.set1,
  id = "obs",
  response = response.vars.s1,
  choice.sets = des.s1,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  base.level = base.lev.s,
  model = "marginal")

# Survey Set 2:
model456.set2 = bws2.dataset(
  data = obj2.set2,
  id = "obs",
  response = response.vars.s2,
  choice.sets = des.s2,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  base.level = base.lev.s,
  model = "marginal")

# Survey Set 3:
model456.set3 = bws2.dataset(
  data = obj2.set3,
  id = "obs",
  response = response.vars.s3,
  choice.sets = des.s3,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  base.level = base.lev.s,
  model = "marginal")

# Model 4, 5, 6 Survey Set Combined:
model456.data = rbind(model456.set1, model456.set2, model456.set3)
# View(model456.data)

Dataset for Model 7

# Model 7:
# Response variable (Same as Model 3): 1 if a level is selected as best or worse, 0 otherwise.
# Model 7 (Marginal Sequential) Data:
# Survey Set 1:
model7.set1 = bws2.dataset(
  data = obj2.set1,
  id = "obs",
  response = response.vars.s1,
  choice.sets = des.s1,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  model = "sequential")

# Survey Set 2:
model7.set2 = bws2.dataset(
  data = obj2.set2,
  id = "obs",
  response = response.vars.s2,
  choice.sets = des.s2,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  model = "sequential")

# Survey Set 3:
model7.set3 = bws2.dataset(
  data = obj2.set3,
  id = "obs",
  response = response.vars.s3,
  choice.sets = des.s3,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  model = "sequential")

# Model 7 Survey Set Combined:
model7.data = rbind(model7.set1, model7.set2, model7.set3)
# View(model7.data)

Dataset for Model 8

# Model 8:
# Response variable (Same as Model 3): 1 if a level is selected as best or worse, 0 otherwise.
# Model 8 (Marginal Sequential) Data:
# Survey Set 1:
model8.set1 = bws2.dataset(
  data = obj2.set1,
  id = "obs",
  response = response.vars.s1,
  choice.sets = des.s1,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  base.attribute = "canopy",
  model = "sequential")

# Survey Set 2:
model8.set2 = bws2.dataset(
  data = obj2.set2,
  id = "obs",
  response = response.vars.s2,
  choice.sets = des.s2,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  base.attribute = "canopy",
  model = "sequential")

# Survey Set 3:
model8.set3 = bws2.dataset(
  data = obj2.set3,
  id = "obs",
  response = response.vars.s3,
  choice.sets = des.s3,
  attribute.levels = attr.lev.s,
  reverse = TRUE,
  base.level = base.lev.s,
  base.attribute = "canopy",
  model = "sequential")

# Model 8 Survey Set Combined:
model8.data = rbind(model8.set1, model8.set2, model8.set3)
# View(model8.data)

Dataset for Model 9

# Model 9:
# Response variable (Same as Model 3): 1 if a level is selected as best or worse, 0 otherwise.
# Model 9 (Marginal Sequential) Data:
# Survey Set 1:
model9.set1 = bws2.dataset(
  data = obj2.set1,
  id = "obs",
  response = response.vars.s1,
  choice.sets = des.s1,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  base.level = base.lev.s,
  model = "sequential")

# Survey Set 2:
model9.set2 = bws2.dataset(
  data = obj2.set2,
  id = "obs",
  response = response.vars.s2,
  choice.sets = des.s2,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  base.level = base.lev.s,
  model = "sequential")

# Survey Set 3:
model9.set3 = bws2.dataset(
  data = obj2.set3,
  id = "obs",
  response = response.vars.s3,
  choice.sets = des.s3,
  attribute.levels = attr.lev.s,
  reverse = FALSE,
  base.level = base.lev.s,
  model = "sequential")

# Model 9 Survey Set Combined:
model9.data = rbind(model9.set1, model9.set2, model9.set3)
# View(model9.data)

Output data files to excel:

# Understanding Data for Various Models:
# View DataSets for Various Models:
# View(model1.data)
# View(model2.data)
# View(model3.data)
# View(model456.data)
# View(model7.data)
# View(model8.data)
# View(model9.data)

# Design Matrix of Datasets:
# model1.data[1:12,] # Paired 
# model2.data[1:12,] # Paired
# model3.data[1:8,] # Marginal 
# model456.data[1:8,] #Marginal
# model7.data[1:7,] #Marginal Sequential
# model8.data[1:7,] # Marginal Sequential
# model9.data[1:7,] # Marginal Sequential

# # Export Data in Permanent Storage Format (Excel and CSV):
# write.xlsx(model1.data, file = "Model1Data.xlsx", overwrite = T)
# write.xlsx(model2.data, file = "Model2Data.xlsx", overwrite = T)
# write.xlsx(model3.data, file = "Model3Data.xlsx", overwrite = T)
# write.xlsx(model456.data, file = "Model456Data.xlsx", overwrite = T)
# write.xlsx(model7.data, file = "Model7Data.xlsx", overwrite = T)
# write.xlsx(model8.data, file = "Model8Data.xlsx", overwrite = T)
# write.xlsx(model9.data, file = "Model9Data.xlsx", overwrite = T)
# 
# write.csv(model1.data, file = "Model1Data.csv")
# write.csv(model2.data, file = "Model2Data.csv")
# write.csv(model3.data, file = "Model3Data.csv")
# write.csv(model456.data, file = "Model456Data.csv")
# write.csv(model7.data, file = "Model7Data.csv")
# write.csv(model8.data, file = "Model8Data.csv")
# write.csv(model9.data, file = "Model9Data.csv")

Step 7: Analysis

Summary of Model 1:

# BWS Scores: 
scores1 = bws2.count(model1.data)
dim(scores1)
## [1] 264 155
sum(scores1, "level")
barplot(scores1, "bw", "level")

# Agregate Best and Worst Scores:
apply(model1.data[model1.data$RES == 1, c("BEST.LV", "WORST.LV")], 2, table)
##          BEST.LV WORST.LV
## close         32       72
## deer1        230       82
## deer10       307       40
## deer6        153      124
## les10         29      194
## les16         31      234
## les6          30      223
## moderate     103       22
## nsnfp         76      242
## open          66       47
## sfp          213       70
## snpf         164       84
# # # Best Worst Score According to Group of Respondents:
# sum(scores1[obj2.data$F4Gender == 0, ], "level") # Male BW Score
# sum(scores1[obj2.data$F4Gender == 1, ], "level") #Female BW Score
# 
# # BarPlot for Respondents in their 20s and those in their 50s:
# barplot(scores1[obj2.data$F4Gender == 0, ], "bw", "level") # Male BW Score
# barplot(scores1[obj2.data$F4Gender == 1, ], "bw", "level") # Female BW Score

# Conditional Logit Model:
model1.mf = clogit(RES ~  sanctuary + deer + lease + 
                     snpf + sfp + moderate + close + 
                     deer6 + deer10 + les10 + les16 + strata(STR), 
                   data = model1.data)
model1.mf
## Call:
## clogit(RES ~ sanctuary + deer + lease + snpf + sfp + moderate + 
##     close + deer6 + deer10 + les10 + les16 + strata(STR), data = model1.data)
## 
##             coef exp(coef) se(coef)   z      p
## sanctuary  1e-04     1e+00    5e-02   0    1.0
## deer       5e-01     2e+00    5e-02  10 <2e-16
## lease     -8e-01     4e-01    5e-02 -15 <2e-16
## snpf       3e-01     1e+00    6e-02   6  2e-08
## sfp        6e-01     2e+00    6e-02  11 <2e-16
## moderate   3e-01     1e+00    6e-02   5  9e-08
## close     -3e-01     7e-01    6e-02  -5  9e-08
## deer6     -6e-01     6e-01    6e-02 -10 <2e-16
## deer10     6e-01     2e+00    6e-02  10 <2e-16
## les10      8e-02     1e+00    6e-02   1    0.2
## les16     -5e-02     9e-01    5e-02  -1    0.3
## 
## Likelihood ratio test=1042  on 11 df, p=<2e-16
## n= 17712, number of events= 1434 
##    (19656 observations deleted due to missingness)
summary(model1.mf)
## Call:
## coxph(formula = Surv(rep(1, 37368L), RES) ~ sanctuary + deer + 
##     lease + snpf + sfp + moderate + close + deer6 + deer10 + 
##     les10 + les16 + strata(STR), data = model1.data, method = "exact")
## 
##   n= 17712, number of events= 1434 
##    (19656 observations deleted due to missingness)
## 
##                coef exp(coef)  se(coef)      z Pr(>|z|)    
## sanctuary  0.000137  1.000137  0.051404   0.00     1.00    
## deer       0.489609  1.631678  0.051746   9.46  < 2e-16 ***
## lease     -0.803850  0.447602  0.053011 -15.16  < 2e-16 ***
## snpf       0.332416  1.394332  0.058885   5.65  1.7e-08 ***
## sfp        0.633261  1.883744  0.058405  10.84  < 2e-16 ***
## moderate   0.317280  1.373387  0.059390   5.34  9.2e-08 ***
## close     -0.319236  0.726704  0.059789  -5.34  9.3e-08 ***
## deer6     -0.596157  0.550925  0.059722  -9.98  < 2e-16 ***
## deer10     0.568973  1.766452  0.055802  10.20  < 2e-16 ***
## les10      0.075544  1.078470  0.056281   1.34     0.18    
## les16     -0.052656  0.948706  0.054895  -0.96     0.34    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## sanctuary     1.000      1.000     0.904     1.106
## deer          1.632      0.613     1.474     1.806
## lease         0.448      2.234     0.403     0.497
## snpf          1.394      0.717     1.242     1.565
## sfp           1.884      0.531     1.680     2.112
## moderate      1.373      0.728     1.222     1.543
## close         0.727      1.376     0.646     0.817
## deer6         0.551      1.815     0.490     0.619
## deer10        1.766      0.566     1.583     1.971
## les10         1.078      0.927     0.966     1.204
## les16         0.949      1.054     0.852     1.056
## 
## Concordance= 0.742  (se = 0.007 )
## Likelihood ratio test= 1042  on 11 df,   p=<2e-16
## Wald test            = 838  on 11 df,   p=<2e-16
## Score (logrank) test = 971  on 11 df,   p=<2e-16
# The attribute-level variables are effect-coded ones, and thus the coefficient of the base level in each attribute can be calculated using:
# Define base levels of each attribute:
b.m1 = coef(model1.mf)
(nsnfp = -sum(b.m1[4:5]))
## [1] -0.9657
names(nsnfp) = "NSNFP"
(open = -sum(b.m1[6:7]))
## [1] 0.001956
names(open) = "Open"
(deer1 = -sum(b.m1[8:9]))
## [1] 0.02718
names(deer1) = "1 Deer"
(les6 = -sum(b.m1[10:11]))
## [1] -0.02289
names(les6) = "$6 Lease"
canopy = 0
names(canopy) = "Canopy"
model1 = c(b.m1[1:2], canopy, b.m1[3], b.m1[4:5],
                 nsnfp, b.m1[6:7], open, b.m1[8:9],
                 deer1, b.m1[10:11], les6)
model1
## sanctuary      deer    Canopy     lease      snpf       sfp     NSNFP  moderate 
##  0.000137  0.489609  0.000000 -0.803850  0.332416  0.633261 -0.965677  0.317280 
##     close      Open     deer6    deer10    1 Deer     les10     les16  $6 Lease 
## -0.319236  0.001956 -0.596157  0.568973  0.027185  0.075544 -0.052656 -0.022888
barplot(model1)

Summary of Model 2:

Summary of Model 3:

Summary of Model 4:

Summary of Model 5:

Summary of Model 6:

Summary of Model 7:

Summary of Model 8:

Summary of Model 9:

# As mentioned in Flynn et al. (2008), the results from the paired model
# are similar to those from the marginal model: the correlation coefficient
# for the two results is calculated as follows:
# pairs(cbind(model1, model2, model3,
#     model4, model5, model6,
#     model7, model8, model9))
# cor(cbind(model1, model2, model3,
#           model4, model5, model6,
#           model7, model8, model9))
# # lower.tri(a, diag = T)
# boxplot(cbind(model1, model2, model3,
#     model4, model5, model6,
#     model7, model8, model9))
# barplot(cbind(model1, model2, model3,
#     model4, model5, model6,
#     model7, model8, model9))