Sobre a análise

O Ideb é o principal indicador da qualidade da educação básica no Brasil. Para fazer essa medição, o Índice de Desenvolvimento da Educação Básica (Ideb) utiliza uma escala que vai de 0 a 10. A meta para o Brasil é alcançar a média 6.0 até 2021, patamar educacional correspondente ao de países da Organização para a Cooperação e Desenvolvimento Econômico (OCDE), como Estados Unidos, Canadá, Inglaterra e Suécia.

library(plotly)
Carregando pacotes exigidos: ggplot2
Registered S3 method overwritten by 'htmlwidgets':
  method           from         
  print.htmlwidget tools:rstudio

Attaching package: ‘plotly’

The following object is masked from ‘package:ggplot2’:

    last_plot

The following object is masked from ‘package:stats’:

    filter

The following object is masked from ‘package:graphics’:

    layout

Importando o dataset do IDEB

Existem várias funções no R capazes de importar os dados. As principais são read.csv(), read.csv2, read_csv(), read_csv2(). No exemplo abaixo utilizamos uma delas. Na sua atividade você poderá testar o uso de cada uma delas.

#importando a base de dados do IDEB
dados <- read.csv("dados/dados-IDEB.csv")

Tabela de parâmetros do IDEB nos estados

Neste exemplo fizemos a construção de uma tabela. Nesta tabela as variáveis são os parâmetros: média, mediana, desvio, máximo e mínimo. Para isto utilizamos a função summarise(). Obs: É importante estudar sobre ela.

Gráfico de boxplot para o ideb de acordo com a rede de ensino

Este é um gráfico simples de ser entendido. Neste gráfico utilizamos duas variáveis rede e ideb diretamente da base de dados.

#Quais são os tipos de escolas (federal, municipal, estadual, particular) com maiores médias no ideb
dados %>% 
  ggplot(aes(rede, ideb, fill=rede)) + #relação entre rede e nota no ideb
  geom_boxplot(alpha=.6) #aplicando alpha 0.6 pra suavizar a cor

Gráfico de boxplot do ideb em matemática ao longo dos anos

#Qual os valores do ideb em matemática ao longo dos anos para as quatro redes de ensino
dados %>% 
  ggplot(aes(factor(ano), ideb, fill=rede)) + 
  geom_boxplot()

Comparativo do IDEB entre PE e CE ao longo dos anos

#Verificar o panorama comparativo das escolas estaduais do nordeste (Pernambuco e Ceará)
dados %>% 
  filter(sigla_uf == c("PE", "CE")) %>% #selecionando apenas os dois estados
  filter(rede == "municipal") %>% #selecionando apenas escolas municipais
  ggplot(aes(factor(ano), nota_saeb_media_padronizada, fill=sigla_uf)) + 
  geom_boxplot() 

Gráfico de correlação entre matemática e português

#verificar a correlação entre matemática e portugues
dados %>% 
  filter(ano == 2019) %>% #selecionando apenas os dados referente a 2019
  filter(sigla_uf == "PE") %>% #selecionando apenas o estado de pernambuco
  ggplot(aes(nota_saeb_matematica, nota_saeb_lingua_portuguesa, color=ensino)) + 
  geom_point(alpha=0.5) +
  facet_wrap(~rede) #plotando mais de um gráfico (por tipo de rede)

Densidade para escolas do ensino médio, 2019 em Pernambuco

#densidade entre a estadual e federal 
dados %>% 
  filter(ano == 2019) %>% #filtrando apenas dados de 2019
  filter(sigla_uf == "PE") %>% #filtrando apenas escolas de pernambuco
  filter(ensino == "medio") %>% #filtrando apenas escolas do ensino médio
  ggplot(aes(nota_saeb_media_padronizada, fill=rede)) + 
  geom_density(alpha=0.5) #plotando um gráfico de densidade com cor suavizada
Warning: Groups with fewer than two data points have been dropped.
Warning in max(ids, na.rm = TRUE) :
  nenhum argumento não faltante para max; retornando -Inf

Taxa de aprovação ao longo dos anos por rede de ensino

#verificar a taxa de aprovação 
dados %>% 
  ggplot(aes(factor(ano), taxa_aprovacao, fill=rede)) + 
  geom_boxplot(alpha=0.5) +
  labs(x="", y = "Taxa de Aprovação", fill="Rede de Ensino")#renomeando os labels

Boxplot para escolas com IDEB acima de 7.0 por estado

#estados que tem ideb acima de 7.0
dados %>% 
  filter(ideb >= 7) %>% #selecionando escolas com média no ideb acima de 7.0
  filter(ano == 2019) %>% #selecionando dados apenas de 2019
  ggplot(aes(sigla_uf, ideb)) + geom_boxplot() + facet_wrap(~rede,3)

Gráfico de linhas para as médias do IDEB no Nordeste

#média do ideb por ano nos estados do nordeste
p <- dados %>%
  filter(rede=="municipal") %>% #selecionando escolas da rede municipal
  filter(sigla_uf == c("PE","PB","RN","AL","CE","BA","PI")) %>% #selecionando nordeste
  group_by(ano, sigla_uf) %>% #agrupando por ano e UF
  summarise(
    media = mean(ideb) #calculando as médias
  ) %>% 
  ggplot(aes(ano, media, color=sigla_uf)) +
  geom_line() +
  labs(y="Média no IDEB", x="", color="Estados")
Warning in sigla_uf == c("PE", "PB", "RN", "AL", "CE", "BA", "PI") :
  comprimento do objeto maior não é múltiplo do comprimento do objeto menor
`summarise()` has grouped output by 'ano'. You can override using the `.groups` argument.
ggplotly(p)

Teste de hipótese

#realizando um teste de hipótese pra verificar a diferença entre CE,BA,AL
dados3 <- #neste ponto estamos criando um novo dataset somente com os três estados
  dados %>% 
  filter(sigla_uf==c("CE","BA","AL")) %>% #filtrando pelos estados
  filter(rede=="municipal") #filtrando apenas escolas da rede municipal
Warning in sigla_uf == c("CE", "BA", "AL") :
  comprimento do objeto maior não é múltiplo do comprimento do objeto menor
my_comparisons <- list( c("CE", "AL"), c("CE", "BA"), c("BA", "AL") )
ggboxplot(dados3, x = "sigla_uf", y = "ideb",
          color = "sigla_uf", palette = "jco")+ 
  stat_compare_means(comparisons = my_comparisons)+ 
  stat_compare_means(label.y = 11)  

LS0tCnRpdGxlOiAiQW7DoWxpc2UgZGUgRGFkb3MgLSBJREVCICgyMDA1IMOgIDIwMTkpIgphdXRob3I6ICJFeGVtcGxvcyBkZSBhbsOhbGlzZXMiCmRhdGU6ICIxNi8xMC8yMDIxIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiMjIyBTb2JyZSBhIGFuw6FsaXNlCgpPICpJZGViKiDDqSBvIHByaW5jaXBhbCBpbmRpY2Fkb3IgZGEgcXVhbGlkYWRlIGRhIGVkdWNhw6fDo28gYsOhc2ljYSBubyBCcmFzaWwuIFBhcmEgZmF6ZXIgZXNzYSBtZWRpw6fDo28sIG8gKirDjW5kaWNlIGRlIERlc2Vudm9sdmltZW50byBkYSBFZHVjYcOnw6NvIELDoXNpY2EgKElkZWIpKiogdXRpbGl6YSB1bWEgZXNjYWxhIHF1ZSB2YWkgZGUgMCBhIDEwLiBBIG1ldGEgcGFyYSBvIEJyYXNpbCDDqSBhbGNhbsOnYXIgYSBtw6lkaWEgNi4wIGF0w6kgMjAyMSwgcGF0YW1hciBlZHVjYWNpb25hbCBjb3JyZXNwb25kZW50ZSBhbyBkZSBwYcOtc2VzIGRhIE9yZ2FuaXphw6fDo28gcGFyYSBhIENvb3BlcmHDp8OjbyBlIERlc2Vudm9sdmltZW50byBFY29uw7RtaWNvIChPQ0RFKSwgY29tbyBFc3RhZG9zIFVuaWRvcywgQ2FuYWTDoSwgSW5nbGF0ZXJyYSBlIFN1w6ljaWEuCgpgYGB7ciBiaWJsaW90ZWNhc30KI2ltcG9ydGFuZG8gYXMgYmlibGlvdGVjYXMgcXVlIHNlcsOjbyB1dGlsaXphZGFzCmxpYnJhcnkodGlkeXZlcnNlKSAjcGFjb3RlIHBhcmEgbWFuaXB1bGFyIG9zIGRhZG9zCmxpYnJhcnkocm1hcmtkb3duKSAjcGFjb3RlIHBhcmEgZ2VyYXIgYSB0YWJlbGEKbGlicmFyeShwbG90bHkpCmBgYAoKIyBJbXBvcnRhbmRvIG8gZGF0YXNldCBkbyBJREVCCkV4aXN0ZW0gdsOhcmlhcyBmdW7Dp8O1ZXMgbm8gUiBjYXBhemVzIGRlIGltcG9ydGFyIG9zIGRhZG9zLiBBcyBwcmluY2lwYWlzIHPDo28gKipyZWFkLmNzdigpKiosICoqcmVhZC5jc3YyKiosICoqcmVhZF9jc3YoKSoqLCAqKnJlYWRfY3N2MigpKiouIE5vIGV4ZW1wbG8gYWJhaXhvIHV0aWxpemFtb3MgdW1hIGRlbGFzLiBOYSBzdWEgYXRpdmlkYWRlIHZvY8OqIHBvZGVyw6EgdGVzdGFyIG8gdXNvIGRlIGNhZGEgdW1hIGRlbGFzLgpgYGB7ciBpbXBvcnRhbmRvRGFkb3N9CiNpbXBvcnRhbmRvIGEgYmFzZSBkZSBkYWRvcyBkbyBJREVCCmRhZG9zIDwtIHJlYWQuY3N2KCJkYWRvcy9kYWRvcy1JREVCLmNzdiIpCmBgYAoKIyBUYWJlbGEgZGUgcGFyw6JtZXRyb3MgZG8gSURFQiBub3MgZXN0YWRvcwpOZXN0ZSBleGVtcGxvIGZpemVtb3MgYSBjb25zdHJ1w6fDo28gZGUgdW1hIHRhYmVsYS4gTmVzdGEgdGFiZWxhIGFzIHZhcmnDoXZlaXMgc8OjbyBvcyBwYXLDom1ldHJvczogbcOpZGlhLCBtZWRpYW5hLCBkZXN2aW8sIG3DoXhpbW8gZSBtw61uaW1vLiBQYXJhIGlzdG8gdXRpbGl6YW1vcyBhIGZ1bsOnw6NvICoqc3VtbWFyaXNlKCkqKi4gT2JzOiDDiSBpbXBvcnRhbnRlIGVzdHVkYXIgc29icmUgZWxhLgpgYGB7ciB0YWJlbGFNZWRpYXNJREVCfQojdXRpbGl6YW1vcyBhIGZ1bsOnw6NvIHBhZ2VkX3RhYmxlKCkgcGFyYSBnZXJhciBhIHRhYmVsYQpwYWdlZF90YWJsZShkYWRvcyAlPiUgCiAgc2VsZWN0KHNpZ2xhX3VmLCBpZGViKSAlPiUgI3NlbGVjaW9uYW5kbyBhcGVuYXMgYXMgdmFyacOhdmVpcyBVRiBlIGlkZWIKICBncm91cF9ieShzaWdsYV91ZikgJT4lICNhZ3J1cGFyIHBvciBVRiAocHJpbWVpcmEgY29sdW5hIG5hIHRhYmVsYSkKICBzdW1tYXJpc2UoCiAgICBNZWRpYSA9IG1lYW4oaWRlYiksICNjYWxjdWxhbmRvIGEgbcOpZGlhCiAgICBNZWRpYW5hID0gbWVkaWFuKGlkZWIpLCAjY2FsY3VsYW5kbyBhIG1lZGlhbmEKICAgIERlc3Zpb19QYWRyYW8gPSBzZChpZGViKSwgI2NhbGN1bGFuZG8gbyBkZXN2aW8gcGFkcsOjbwogICAgTWluaW1vID0gbWluKGlkZWIpLCAjY2FsY3VsYW5kbyBvIHZhbG9yIG3DrW5pbW8KICAgIE1heGltbyA9IG1heChpZGViKSAjY2FsY3VsYW5kbyBvIHZhbG9yIG3DoXhpbW8KICApKQpgYGAKCiMjIEdyw6FmaWNvIGRlIGJveHBsb3QgcGFyYSBvIGlkZWIgZGUgYWNvcmRvIGNvbSBhIHJlZGUgZGUgZW5zaW5vCkVzdGUgw6kgdW0gZ3LDoWZpY28gc2ltcGxlcyBkZSBzZXIgZW50ZW5kaWRvLiBOZXN0ZSBncsOhZmljbyB1dGlsaXphbW9zIGR1YXMgdmFyacOhdmVpcyAqcmVkZSogZSAqaWRlYiogZGlyZXRhbWVudGUgZGEgYmFzZSBkZSBkYWRvcy4gCmBgYHtyIGJveHBsb3RNZWRpYUlkZWJSZWRlfQojUXVhaXMgc8OjbyBvcyB0aXBvcyBkZSBlc2NvbGFzIChmZWRlcmFsLCBtdW5pY2lwYWwsIGVzdGFkdWFsLCBwYXJ0aWN1bGFyKSBjb20gbWFpb3JlcyBtw6lkaWFzIG5vIGlkZWIKZGFkb3MgJT4lIAogIGdncGxvdChhZXMocmVkZSwgaWRlYiwgZmlsbD1yZWRlKSkgKyAjcmVsYcOnw6NvIGVudHJlIHJlZGUgZSBub3RhIG5vIGlkZWIKICBnZW9tX2JveHBsb3QoYWxwaGE9LjYpICNhcGxpY2FuZG8gYWxwaGEgMC42IHByYSBzdWF2aXphciBhIGNvcgpgYGAKCiMjIEdyw6FmaWNvIGRlIGJveHBsb3QgZG8gaWRlYiBlbSBtYXRlbcOhdGljYSBhbyBsb25nbyBkb3MgYW5vcwpgYGB7ciBpZGViTWF0QW5vc30KI1F1YWwgb3MgdmFsb3JlcyBkbyBpZGViIGVtIG1hdGVtw6F0aWNhIGFvIGxvbmdvIGRvcyBhbm9zIHBhcmEgYXMgcXVhdHJvIHJlZGVzIGRlIGVuc2lubwpkYWRvcyAlPiUgCiAgZ2dwbG90KGFlcyhmYWN0b3IoYW5vKSwgaWRlYiwgZmlsbD1yZWRlKSkgKyAKICBnZW9tX2JveHBsb3QoKQpgYGAKCiMjIENvbXBhcmF0aXZvIGRvIElERUIgZW50cmUgUEUgZSBDRSBhbyBsb25nbyBkb3MgYW5vcwpgYGB7ciBjb21wYXJhdGl2b1BFX0NFfQojVmVyaWZpY2FyIG8gcGFub3JhbWEgY29tcGFyYXRpdm8gZGFzIGVzY29sYXMgZXN0YWR1YWlzIGRvIG5vcmRlc3RlIChQZXJuYW1idWNvIGUgQ2VhcsOhKQpkYWRvcyAlPiUgCiAgZmlsdGVyKHNpZ2xhX3VmID09IGMoIlBFIiwgIkNFIikpICU+JSAjc2VsZWNpb25hbmRvIGFwZW5hcyBvcyBkb2lzIGVzdGFkb3MKICBmaWx0ZXIocmVkZSA9PSAibXVuaWNpcGFsIikgJT4lICNzZWxlY2lvbmFuZG8gYXBlbmFzIGVzY29sYXMgbXVuaWNpcGFpcwogIGdncGxvdChhZXMoZmFjdG9yKGFubyksIG5vdGFfc2FlYl9tZWRpYV9wYWRyb25pemFkYSwgZmlsbD1zaWdsYV91ZikpICsgCiAgZ2VvbV9ib3hwbG90KCkgCmBgYAoKIyMgR3LDoWZpY28gZGUgY29ycmVsYcOnw6NvIGVudHJlIG1hdGVtw6F0aWNhIGUgcG9ydHVndcOqcwpgYGB7ciBjb3JyZWxhY2FvTWF0UG9ydDIwMTl9CiN2ZXJpZmljYXIgYSBjb3JyZWxhw6fDo28gZW50cmUgbWF0ZW3DoXRpY2EgZSBwb3J0dWd1ZXMKZGFkb3MgJT4lIAogIGZpbHRlcihhbm8gPT0gMjAxOSkgJT4lICNzZWxlY2lvbmFuZG8gYXBlbmFzIG9zIGRhZG9zIHJlZmVyZW50ZSBhIDIwMTkKICBmaWx0ZXIoc2lnbGFfdWYgPT0gIlBFIikgJT4lICNzZWxlY2lvbmFuZG8gYXBlbmFzIG8gZXN0YWRvIGRlIHBlcm5hbWJ1Y28KICBnZ3Bsb3QoYWVzKG5vdGFfc2FlYl9tYXRlbWF0aWNhLCBub3RhX3NhZWJfbGluZ3VhX3BvcnR1Z3Vlc2EsIGNvbG9yPWVuc2lubykpICsgCiAgZ2VvbV9wb2ludChhbHBoYT0wLjUpICsKICBmYWNldF93cmFwKH5yZWRlKSAjcGxvdGFuZG8gbWFpcyBkZSB1bSBncsOhZmljbyAocG9yIHRpcG8gZGUgcmVkZSkKYGBgCgojIyBEZW5zaWRhZGUgcGFyYSBlc2NvbGFzIGRvIGVuc2lubyBtw6lkaW8sIDIwMTkgZW0gUGVybmFtYnVjbwpgYGB7ciBkZW5zaWRhZGVFc3RhZHVhbEZlZGVyYWx9CiNkZW5zaWRhZGUgZW50cmUgYSBlc3RhZHVhbCBlIGZlZGVyYWwgCmRhZG9zICU+JSAKICBmaWx0ZXIoYW5vID09IDIwMTkpICU+JSAjZmlsdHJhbmRvIGFwZW5hcyBkYWRvcyBkZSAyMDE5CiAgZmlsdGVyKHNpZ2xhX3VmID09ICJQRSIpICU+JSAjZmlsdHJhbmRvIGFwZW5hcyBlc2NvbGFzIGRlIHBlcm5hbWJ1Y28KICBmaWx0ZXIoZW5zaW5vID09ICJtZWRpbyIpICU+JSAjZmlsdHJhbmRvIGFwZW5hcyBlc2NvbGFzIGRvIGVuc2lubyBtw6lkaW8KICBnZ3Bsb3QoYWVzKG5vdGFfc2FlYl9tZWRpYV9wYWRyb25pemFkYSwgZmlsbD1yZWRlKSkgKyAKICBnZW9tX2RlbnNpdHkoYWxwaGE9MC41KSAjcGxvdGFuZG8gdW0gZ3LDoWZpY28gZGUgZGVuc2lkYWRlIGNvbSBjb3Igc3Vhdml6YWRhCmBgYAoKIyMgVGF4YSBkZSBhcHJvdmHDp8OjbyBhbyBsb25nbyBkb3MgYW5vcyBwb3IgcmVkZSBkZSBlbnNpbm8KYGBge3IgdGF4YUFwcm92YcOnw6NvfQojdmVyaWZpY2FyIGEgdGF4YSBkZSBhcHJvdmHDp8OjbyAKZGFkb3MgJT4lIAogIGdncGxvdChhZXMoZmFjdG9yKGFubyksIHRheGFfYXByb3ZhY2FvLCBmaWxsPXJlZGUpKSArIAogIGdlb21fYm94cGxvdChhbHBoYT0wLjUpICsKICBsYWJzKHg9IiIsIHkgPSAiVGF4YSBkZSBBcHJvdmHDp8OjbyIsIGZpbGw9IlJlZGUgZGUgRW5zaW5vIikjcmVub21lYW5kbyBvcyBsYWJlbHMKYGBgCgojIyBCb3hwbG90IHBhcmEgZXNjb2xhcyBjb20gSURFQiBhY2ltYSBkZSA3LjAgcG9yIGVzdGFkbwpgYGB7ciBpZGViQWNpbWE3fQojZXN0YWRvcyBxdWUgdGVtIGlkZWIgYWNpbWEgZGUgNy4wCmRhZG9zICU+JSAKICBmaWx0ZXIoaWRlYiA+PSA3KSAlPiUgI3NlbGVjaW9uYW5kbyBlc2NvbGFzIGNvbSBtw6lkaWEgbm8gaWRlYiBhY2ltYSBkZSA3LjAKICBmaWx0ZXIoYW5vID09IDIwMTkpICU+JSAjc2VsZWNpb25hbmRvIGRhZG9zIGFwZW5hcyBkZSAyMDE5CiAgZ2dwbG90KGFlcyhzaWdsYV91ZiwgaWRlYikpICsgZ2VvbV9ib3hwbG90KCkgKyBmYWNldF93cmFwKH5yZWRlLDMpCmBgYAoKIyMgR3LDoWZpY28gZGUgbGluaGFzIHBhcmEgYXMgbcOpZGlhcyBkbyBJREVCIG5vIE5vcmRlc3RlCmBgYHtyIG1lZGlhSWRlYkVzdGFkb3NOb3JkZXN0ZXN9CiNtw6lkaWEgZG8gaWRlYiBwb3IgYW5vIG5vcyBlc3RhZG9zIGRvIG5vcmRlc3RlCnAgPC0gZGFkb3MgJT4lCiAgZmlsdGVyKHJlZGU9PSJtdW5pY2lwYWwiKSAlPiUgI3NlbGVjaW9uYW5kbyBlc2NvbGFzIGRhIHJlZGUgbXVuaWNpcGFsCiAgZmlsdGVyKHNpZ2xhX3VmID09IGMoIlBFIiwiUEIiLCJSTiIsIkFMIiwiQ0UiLCJCQSIsIlBJIikpICU+JSAjc2VsZWNpb25hbmRvIG5vcmRlc3RlCiAgZ3JvdXBfYnkoYW5vLCBzaWdsYV91ZikgJT4lICNhZ3J1cGFuZG8gcG9yIGFubyBlIFVGCiAgc3VtbWFyaXNlKAogICAgbWVkaWEgPSBtZWFuKGlkZWIpICNjYWxjdWxhbmRvIGFzIG3DqWRpYXMKICApICU+JSAKICBnZ3Bsb3QoYWVzKGFubywgbWVkaWEsIGNvbG9yPXNpZ2xhX3VmKSkgKwogIGdlb21fbGluZSgpICsKICBsYWJzKHk9Ik3DqWRpYSBubyBJREVCIiwgeD0iIiwgY29sb3I9IkVzdGFkb3MiKQpnZ3Bsb3RseShwKQpgYGAKCiMjIFRlc3RlIGRlIGhpcMOzdGVzZQpgYGB7ciB0ZXN0ZUhpcG90ZXNlfQojcmVhbGl6YW5kbyB1bSB0ZXN0ZSBkZSBoaXDDs3Rlc2UgcHJhIHZlcmlmaWNhciBhIGRpZmVyZW7Dp2EgZW50cmUgQ0UsQkEsQUwKZGFkb3MzIDwtICNuZXN0ZSBwb250byBlc3RhbW9zIGNyaWFuZG8gdW0gbm92byBkYXRhc2V0IHNvbWVudGUgY29tIG9zIHRyw6pzIGVzdGFkb3MKICBkYWRvcyAlPiUgCiAgZmlsdGVyKHNpZ2xhX3VmPT1jKCJDRSIsIkJBIiwiQUwiKSkgJT4lICNmaWx0cmFuZG8gcGVsb3MgZXN0YWRvcwogIGZpbHRlcihyZWRlPT0ibXVuaWNpcGFsIikgI2ZpbHRyYW5kbyBhcGVuYXMgZXNjb2xhcyBkYSByZWRlIG11bmljaXBhbAoKbXlfY29tcGFyaXNvbnMgPC0gbGlzdCggYygiQ0UiLCAiQUwiKSwgYygiQ0UiLCAiQkEiKSwgYygiQkEiLCAiQUwiKSApCmdnYm94cGxvdChkYWRvczMsIHggPSAic2lnbGFfdWYiLCB5ID0gImlkZWIiLAogICAgICAgICAgY29sb3IgPSAic2lnbGFfdWYiLCBwYWxldHRlID0gImpjbyIpKyAKICBzdGF0X2NvbXBhcmVfbWVhbnMoY29tcGFyaXNvbnMgPSBteV9jb21wYXJpc29ucykrIAogIHN0YXRfY29tcGFyZV9tZWFucyhsYWJlbC55ID0gMTEpICAKYGBgCgo=