## Parallel analysis suggests that the number of factors = 4 and the number of components = 4
The suggested number of factors is 4, so we will start with a model with 4 factors.
Each factor consist of minimum 3 variables. None of the variables have loadings less than 0.3 None of the variables have equal loadings for more than one factor, which is good for our model.
## Factor Analysis using method = minres
## Call: fa(r = dataf1, nfactors = 4, cor = "mixed")
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR3 MR1 MR2 MR4 h2 u2 com
## beck -0.50 -0.35 -0.09 -0.09 0.49 0.51 2.0
## Ak.As 0.26 0.41 -0.06 0.60 0.71 0.29 2.2
## Bo 0.57 0.34 -0.06 -0.11 0.55 0.45 1.7
## Ca 0.21 0.69 -0.18 -0.05 0.64 0.36 1.3
## To.As 0.04 0.82 -0.17 -0.04 0.72 0.28 1.1
## Sp.As -0.40 -0.34 0.16 0.32 0.45 0.55 3.3
## Ak 0.35 0.12 0.22 0.52 0.49 0.51 2.3
## To -0.09 0.94 0.14 0.02 0.85 0.15 1.1
## Sp 0.88 0.02 0.15 0.11 0.81 0.19 1.1
## Us 0.84 0.07 0.01 0.03 0.74 0.26 1.0
## Ud 0.21 0.52 -0.08 0.12 0.41 0.59 1.5
## Po 0.29 0.17 -0.06 0.15 0.17 0.83 2.3
## glo1 0.24 0.17 0.07 -0.35 0.22 0.78 2.4
## glo2 0.13 0.19 0.19 -0.77 0.68 0.32 1.3
## glo3 -0.26 0.25 0.75 -0.12 0.66 0.34 1.5
## glo4 -0.68 0.27 0.23 0.24 0.54 0.46 1.9
## glo5 0.28 -0.21 0.86 -0.09 0.86 0.14 1.4
## glo6 -0.09 -0.04 0.69 0.11 0.49 0.51 1.1
##
## MR3 MR1 MR2 MR4
## SS loadings 3.47 3.32 2.08 1.63
## Proportion Var 0.19 0.18 0.12 0.09
## Cumulative Var 0.19 0.38 0.49 0.58
## Proportion Explained 0.33 0.32 0.20 0.16
## Cumulative Proportion 0.33 0.65 0.84 1.00
##
## With factor correlations of
## MR3 MR1 MR2 MR4
## MR3 1.00 0.27 -0.01 0.01
## MR1 0.27 1.00 -0.03 0.10
## MR2 -0.01 -0.03 1.00 -0.05
## MR4 0.01 0.10 -0.05 1.00
##
## Mean item complexity = 1.7
## Test of the hypothesis that 4 factors are sufficient.
##
## The degrees of freedom for the null model are 153 and the objective function was 15.35 with Chi Square of 417.03
## The degrees of freedom for the model are 87 and the objective function was 6.5
##
## The root mean square of the residuals (RMSR) is 0.08
## The df corrected root mean square of the residuals is 0.1
##
## The harmonic number of observations is 35 with the empirical chi square 65.02 with prob < 0.96
## The total number of observations was 35 with Likelihood Chi Square = 159.18 with prob < 3.8e-06
##
## Tucker Lewis Index of factoring reliability = 0.431
## RMSEA index = 0.151 and the 90 % confidence intervals are 0.117 0.194
## BIC = -150.14
## Fit based upon off diagonal values = 0.94
## Measures of factor score adequacy
## MR3 MR1 MR2 MR4
## Correlation of (regression) scores with factors 0.96 0.98 0.97 0.93
## Multiple R square of scores with factors 0.92 0.97 0.95 0.87
## Minimum correlation of possible factor scores 0.84 0.93 0.89 0.75
The mixed type of correlation was used which is automatically includes rotation in the model. As can be seen, there are correlations between factors presented. There is non-orthogonal rotation, There is a a medium positive correlation between factors 1 and 2. Therefore, such rotation is approved, the factors are connected with each other.
Cumulative Var = 0.58 Proportion Explained varies from 0.16 to 0.3. The variables should be equally distributed between factors,and here we have a kind of bad distribution. Proportion Variance: each factor should describe at least 10%, all of the factors do.
| ALL | PK | EK | SK | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 79.57 | 74.32 – 84.82 | <0.001 | 25.57 | 23.40 – 27.74 | <0.001 | 26.71 | 24.99 – 28.44 | <0.001 | 27.60 | 25.71 – 29.49 | <0.001 |
| MR1 | 1.46 | -4.28 – 7.19 | 0.608 | 0.71 | -1.67 – 3.08 | 0.548 | 0.12 | -1.77 – 2.01 | 0.896 | 0.81 | -1.26 – 2.87 | 0.431 |
| MR2 | -3.16 | -8.67 – 2.34 | 0.250 | -0.69 | -2.96 – 1.59 | 0.542 | -2.21 | -4.03 – -0.40 | 0.018 | -0.39 | -2.37 – 1.59 | 0.690 |
| MR3 | -0.28 | -6.09 – 5.53 | 0.923 | 0.48 | -1.92 – 2.88 | 0.687 | -0.14 | -2.05 – 1.77 | 0.882 | -0.51 | -2.59 – 1.58 | 0.625 |
| MR4 | -3.13 | -8.89 – 2.64 | 0.277 | -1.91 | -4.30 – 0.47 | 0.112 | -0.73 | -2.63 – 1.17 | 0.437 | -0.12 | -2.19 – 1.95 | 0.906 |
| Observations | 35 | 35 | 35 | 35 | ||||||||
| R2 / R2 adjusted | 0.082 / -0.041 | 0.103 / -0.016 | 0.182 / 0.073 | 0.030 / -0.099 | ||||||||
| ALL | PK | EK | SK | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 167.78 | 59.40 – 276.16 | 0.005 | 60.75 | 20.17 – 101.33 | 0.006 | 48.23 | 15.52 – 80.94 | 0.007 | 51.50 | 4.50 – 98.50 | 0.034 |
| beck | -1.46 | -2.67 – -0.24 | 0.022 | -0.60 | -1.06 – -0.15 | 0.012 | -0.08 | -0.45 – 0.29 | 0.651 | -0.72 | -1.25 – -0.19 | 0.010 |
| Ak-As | -0.30 | -1.04 – 0.44 | 0.409 | -0.21 | -0.48 – 0.07 | 0.135 | 0.18 | -0.04 – 0.41 | 0.103 | -0.28 | -0.60 – 0.05 | 0.088 |
| Bo | -0.37 | -1.47 – 0.73 | 0.490 | -0.21 | -0.63 – 0.20 | 0.286 | 0.03 | -0.31 – 0.36 | 0.870 | -0.17 | -0.65 – 0.30 | 0.451 |
| Ca | 0.43 | -0.86 – 1.72 | 0.491 | 0.07 | -0.41 – 0.55 | 0.765 | -0.04 | -0.43 – 0.35 | 0.814 | 0.39 | -0.17 – 0.95 | 0.155 |
| To-As | -0.09 | -1.11 – 0.92 | 0.846 | -0.06 | -0.44 – 0.32 | 0.746 | 0.13 | -0.18 – 0.44 | 0.391 | -0.12 | -0.57 – 0.32 | 0.561 |
| Sp-As | -1.11 | -2.27 – 0.05 | 0.059 | -0.45 | -0.88 – -0.01 | 0.045 | -0.28 | -0.63 – 0.07 | 0.111 | -0.30 | -0.80 – 0.21 | 0.227 |
| Ak | 0.26 | -0.45 – 0.98 | 0.446 | 0.11 | -0.16 – 0.38 | 0.387 | 0.09 | -0.13 – 0.31 | 0.388 | 0.10 | -0.21 – 0.41 | 0.490 |
| To | -0.53 | -1.62 – 0.56 | 0.315 | -0.02 | -0.43 – 0.39 | 0.918 | -0.30 | -0.63 – 0.03 | 0.072 | -0.20 | -0.67 – 0.27 | 0.377 |
| Sp | -0.03 | -1.01 – 0.95 | 0.950 | 0.05 | -0.32 – 0.42 | 0.771 | 0.08 | -0.22 – 0.37 | 0.591 | -0.15 | -0.57 – 0.28 | 0.470 |
| Us | -0.03 | -1.76 – 1.71 | 0.973 | 0.21 | -0.44 – 0.86 | 0.505 | -0.19 | -0.72 – 0.33 | 0.451 | -0.03 | -0.78 – 0.72 | 0.932 |
| Ud | -0.61 | -1.35 – 0.13 | 0.099 | -0.33 | -0.61 – -0.06 | 0.021 | -0.16 | -0.39 – 0.06 | 0.146 | -0.08 | -0.40 – 0.24 | 0.611 |
| Po | 0.17 | -0.95 – 1.28 | 0.755 | -0.03 | -0.45 – 0.38 | 0.869 | -0.12 | -0.46 – 0.22 | 0.460 | 0.29 | -0.19 – 0.78 | 0.217 |
| glo1 | 0.11 | -0.66 – 0.87 | 0.775 | 0.07 | -0.21 – 0.36 | 0.591 | 0.04 | -0.19 – 0.28 | 0.689 | -0.01 | -0.34 – 0.32 | 0.957 |
| glo2 | -0.06 | -0.88 – 0.76 | 0.873 | -0.05 | -0.35 – 0.26 | 0.748 | 0.18 | -0.07 – 0.42 | 0.149 | -0.17 | -0.53 – 0.18 | 0.316 |
| glo3 | 0.29 | -0.72 – 1.30 | 0.550 | 0.19 | -0.19 – 0.56 | 0.315 | -0.04 | -0.34 – 0.27 | 0.805 | 0.10 | -0.34 – 0.53 | 0.651 |
| glo4 | 1.18 | 0.19 – 2.17 | 0.022 | 0.45 | 0.08 – 0.82 | 0.020 | 0.24 | -0.05 – 0.54 | 0.101 | 0.45 | 0.02 – 0.88 | 0.040 |
| glo5 | 0.20 | -0.70 – 1.11 | 0.637 | 0.02 | -0.32 – 0.36 | 0.915 | -0.10 | -0.37 – 0.17 | 0.446 | 0.25 | -0.15 – 0.64 | 0.201 |
| glo6 | -1.04 | -1.94 – -0.14 | 0.027 | -0.42 | -0.76 – -0.08 | 0.018 | -0.13 | -0.40 – 0.14 | 0.332 | -0.43 | -0.82 – -0.04 | 0.033 |
| Observations | 35 | 35 | 35 | 35 | ||||||||
| R2 / R2 adjusted | 0.705 / 0.372 | 0.764 / 0.498 | 0.779 / 0.531 | 0.546 / 0.034 | ||||||||
## Parallel analysis suggests that the number of factors = 2 and the number of components = 2
The suggested number of factors is 3, so we will start with a model with 2 factors.
Each factor consist of minimum 5 variables. None of the variables have loadings less than 0.3 None of the variables have equal loadings for more than one factor, which is good for our model.
## Factor Analysis using method = minres
## Call: fa(r = data_f1, nfactors = 3, cor = "mixed")
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 MR2 MR3 h2 u2 com
## beck -0.74 0.07 -0.05 0.57 0.43 1.0
## Ak.As 0.84 -0.07 0.10 0.76 0.24 1.0
## Bo 0.71 -0.17 0.11 0.60 0.40 1.2
## Ca 0.92 -0.12 -0.05 0.84 0.16 1.0
## To.As 0.91 -0.02 -0.01 0.83 0.17 1.0
## Sp.As -0.60 0.27 -0.46 0.80 0.20 2.3
## Ak 0.29 0.39 0.37 0.37 0.63 2.8
## To 0.89 0.36 -0.03 0.89 0.11 1.3
## Sp 0.12 0.09 0.80 0.68 0.32 1.1
## Us 0.22 -0.08 0.84 0.86 0.14 1.2
## Ud 0.43 0.14 0.36 0.37 0.63 2.2
## Po -0.11 0.07 0.95 0.86 0.14 1.0
## glo1 0.13 0.35 -0.50 0.41 0.59 2.0
## glo2 0.29 0.82 -0.15 0.78 0.22 1.3
## glo3 0.16 0.86 -0.24 0.87 0.13 1.2
## glo4 0.17 0.32 -0.39 0.29 0.71 2.4
## glo5 -0.21 1.00 0.22 1.02 -0.02 1.2
## glo6 -0.22 0.83 0.01 0.75 0.25 1.1
##
## MR1 MR2 MR3
## SS loadings 5.28 3.82 3.45
## Proportion Var 0.29 0.21 0.19
## Cumulative Var 0.29 0.51 0.70
## Proportion Explained 0.42 0.30 0.28
## Cumulative Proportion 0.42 0.72 1.00
##
## With factor correlations of
## MR1 MR2 MR3
## MR1 1.00 -0.04 0.20
## MR2 -0.04 1.00 -0.16
## MR3 0.20 -0.16 1.00
##
## Mean item complexity = 1.5
## Test of the hypothesis that 3 factors are sufficient.
##
## The degrees of freedom for the null model are 153 and the objective function was 108.73 with Chi Square of 779.23
## The degrees of freedom for the model are 102 and the objective function was 92.49
##
## The root mean square of the residuals (RMSR) is 0.08
## The df corrected root mean square of the residuals is 0.1
##
## The harmonic number of observations is 15 with the empirical chi square 29.36 with prob < 1
## The total number of observations was 15 with Likelihood Chi Square = 477.88 with prob < 5.8e-50
##
## Tucker Lewis Index of factoring reliability = -0.379
## RMSEA index = 0.491 and the 90 % confidence intervals are 0.467 0.56
## BIC = 201.66
## Fit based upon off diagonal values = 0.96
The mixed type of correlation was used which is automatically includes rotation in the model. As can be seen, there are correlations between factors presented. There is non-orthogonal rotation, There is a a medium positive correlation between factors 1 and 2. Therefore, such rotation is approved, the factors are connected with each other.
Cumulative Var = 0.7 Proportion Explained varies from 0.28 to 0.42. The variables should be equally distributed between factors,and here we have almost ok distribution. Proportion Variance: each factor should describe at least 10%, all of the factors do.
| ALL | PK | EK | SK | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 77.13 | 69.34 – 84.92 | <0.001 | 24.20 | 21.16 – 27.24 | <0.001 | 26.47 | 23.46 – 29.47 | <0.001 | 26.47 | 23.60 – 29.33 | <0.001 |
| MR1 | 3.20 | -4.50 – 10.91 | 0.380 | 1.20 | -1.81 – 4.21 | 0.400 | 1.35 | -1.63 – 4.32 | 0.341 | 0.66 | -2.17 – 3.49 | 0.618 |
| MR2 | -4.35 | -11.35 – 2.65 | 0.199 | -1.40 | -4.13 – 1.34 | 0.284 | -1.84 | -4.54 – 0.86 | 0.162 | -1.11 | -3.68 – 1.47 | 0.363 |
| MR3 | -4.23 | -12.42 – 3.96 | 0.280 | -1.21 | -4.41 – 1.99 | 0.424 | -2.60 | -5.76 – 0.56 | 0.098 | -0.42 | -3.44 – 2.59 | 0.762 |
| Observations | 15 | 15 | 15 | 15 | ||||||||
| R2 / R2 adjusted | 0.263 / 0.061 | 0.204 / -0.014 | 0.347 / 0.168 | 0.119 / -0.121 | ||||||||
## Parallel analysis suggests that the number of factors = 2 and the number of components = 2
The suggested number of factors is 2, so we will start with a model with 2 factors.
Each factor consist of minimum 5 variables. None of the variables have loadings less than 0.3 None of the variables have equal loadings for more than one factor, which is good for our model.
## Factor Analysis using method = minres
## Call: fa(r = data.f1, nfactors = 2, cor = "mixed")
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 MR2 h2 u2 com
## beck -0.61 -0.39 0.6104 0.39 1.7
## Ak.As -0.05 0.92 0.8229 0.18 1.0
## Bo 0.80 0.19 0.7359 0.26 1.1
## Ca 0.39 0.46 0.4370 0.56 2.0
## To.As 0.27 0.61 0.5124 0.49 1.4
## Sp.As -0.50 0.25 0.2613 0.74 1.5
## Ak 0.11 0.54 0.3200 0.68 1.1
## To 0.18 0.64 0.4775 0.52 1.2
## Sp 0.78 0.26 0.7460 0.25 1.2
## Us 0.77 0.18 0.6737 0.33 1.1
## Ud 0.23 0.62 0.4970 0.50 1.3
## Po 0.12 0.38 0.1798 0.82 1.2
## glo1 0.71 -0.08 0.4912 0.51 1.0
## glo2 0.59 -0.59 0.5625 0.44 2.0
## glo3 -0.02 -0.09 0.0097 0.99 1.1
## glo4 -0.84 0.19 0.6730 0.33 1.1
## glo5 0.58 -0.33 0.3718 0.63 1.6
## glo6 -0.01 0.00 0.0001 1.00 1.0
##
## MR1 MR2
## SS loadings 4.77 3.62
## Proportion Var 0.26 0.20
## Cumulative Var 0.26 0.47
## Proportion Explained 0.57 0.43
## Cumulative Proportion 0.57 1.00
##
## With factor correlations of
## MR1 MR2
## MR1 1.00 0.19
## MR2 0.19 1.00
##
## Mean item complexity = 1.3
## Test of the hypothesis that 2 factors are sufficient.
##
## The degrees of freedom for the null model are 153 and the objective function was 53.71 with Chi Square of 653.52
## The degrees of freedom for the model are 118 and the objective function was 45.66
##
## The root mean square of the residuals (RMSR) is 0.14
## The df corrected root mean square of the residuals is 0.16
##
## The harmonic number of observations is 20 with the empirical chi square 128.12 with prob < 0.25
## The total number of observations was 20 with Likelihood Chi Square = 494.68 with prob < 1.4e-47
##
## Tucker Lewis Index of factoring reliability = -0.139
## RMSEA index = 0.396 and the 90 % confidence intervals are 0.373 0.448
## BIC = 141.18
## Fit based upon off diagonal values = 0.84
The mixed type of correlation was used which is automatically includes rotation in the model. As can be seen, there are correlations between factors presented. There is non-orthogonal rotation, There is a a medium positive correlation between factors 1 and 2. Therefore, such rotation is approved, the factors are connected with each other.
Cumulative Var = 0.47 Proportion Explained varies from 0.2 to 0.26. The variables should be equally distributed between factors,and here we have almost perfect distribution. Proportion Variance: each factor should describe at least 10%, all of the factors do.
| ALL | PK | EK | SK | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 81.40 | 73.90 – 88.90 | <0.001 | 26.60 | 23.39 – 29.81 | <0.001 | 26.90 | 24.54 – 29.26 | <0.001 | 28.45 | 25.72 – 31.18 | <0.001 |
| MR1 | -0.40 | -5.17 – 4.38 | 0.863 | 0.14 | -1.90 – 2.18 | 0.887 | -0.23 | -1.73 – 1.27 | 0.751 | -0.15 | -1.89 – 1.58 | 0.857 |
| MR2 | -3.25 | -9.68 – 3.18 | 0.301 | -1.68 | -4.44 – 1.07 | 0.215 | -0.87 | -2.89 – 1.15 | 0.376 | -0.30 | -2.64 – 2.04 | 0.792 |
| Observations | 20 | 20 | 20 | 20 | ||||||||
| R2 / R2 adjusted | 0.063 / -0.047 | 0.101 / -0.005 | 0.047 / -0.065 | 0.005 / -0.112 | ||||||||