INSTRUCCIONES

La segunda actividad corresponde a la elaboración de un archivo Markdown que reporte TODO lo programado hasta el momento. En otras palabras, todo lo programado hasta el

08 DE OCTUBRE 2021

En scripts se debe de reportar en un archivo Markdown compilado como HTML y publicado en Rpubs. Los comentarios insertados mediante el caracter “#” deben ser parte del escrito entre código del archivo HTML y las instrucciones, incluyendo su resultado de la consola, deben ser mostrados en los chunks realizados.

La fecha límite de entrega es el 15 de octubre del 2021 a las 23:59 hrs por este medio. El entregable debe de ser la liga de Rpubs.

CLASE DEL 16 DE AGOSTO DE 2021

Esta fue la primera clase. Exploramos algunas funciones de R para que nos arroje información sobre nuestros conjuntos de datos. Además aprendimos a hacerle preguntas a R sobre sus comandos.

#?rnorm
#Lo que está entre corchetees son posiciones
#lo que está entre paréntesis son argumentos de función u operaciones
apropos("sequ")#buscar entre los valores que tenemos en la base
## [1] "sequence"         "sequence.default"
vect1<-15
vect2<-18
plot(vect1)

vect3<-c(vect1,vect2) #concatenar=unir o juntar
vect4<- seq(from=10,to=40,by=10)
vect4
## [1] 10 20 30 40
dim_vec<-length(vect4)
dim_vec
## [1] 4
vect5<-rep(5,6) #rep es repetir
vect6<-rep(vect4,4)
vect7<-rep(vect4,each=4)
length(vect7)
## [1] 16
dim_vec<-length(vect4)
#operaciones vectoriales y matriciales

knitr::opts_chunk$set(echo = TRUE)

CLASE DEL 23 DE AGOSTO DE 2021

En esta clase aprendimos a multiplicar vectores y matrices por escalares, por vectores y por matrices.

##23-08-2021
## Operaciones punto por vector
5*vect3
## [1] 75 90
vect1*vect3
## [1] 225 270
## [fila, columna] Matriz 5x4
practi<-c(5,7,3,9,7,12,6,7)
practi_mat<-matrix(practi, ncol=4, byrow=TRUE) #Matrix
practi_mat2<-matrix(practi,nrow=4,byrow=TRUE) #byrow=TRUE para que lo acomode por fila
dim(practi_mat) #dimensiones de la matriz practi mat
## [1] 2 4
dim(practi_mat2)
## [1] 4 2
practi_mat3<-matrix(c(11,13,2,5,8,4,7,12,21,21,6,8),ncol=3,byrow=TRUE) #Matrix
3*practi_mat3
##      [,1] [,2] [,3]
## [1,]   33   39    6
## [2,]   15   24   12
## [3,]   21   36   63
## [4,]   63   18   24
##Indicadores de posición (matriz y vector) []
dim(practi_mat3)
## [1] 4 3
practi_mat3<-matrix(c(11,13,2,5,8,4,7,12,21,21,6,8), ncol=4,byrow=TRUE) #Matrix
practi_mat3[1,4] #Escalar]
## [1] 5
practi_mat3[,3] #Todos los renglones
## [1] 2 7 6
practi_mat3[2,] #Todas las columnas
## [1]  8  4  7 12
practi_mat3[1:2,] #Fila 1 y 2, todas las columnas
##      [,1] [,2] [,3] [,4]
## [1,]   11   13    2    5
## [2,]    8    4    7   12
practi_mat3[,1:2] #Fila 1 y 2, todas las columnas
##      [,1] [,2]
## [1,]   11   13
## [2,]    8    4
## [3,]   21   21
matri2<-practi_mat3[-1,-1] #fila 1 y 2, todas las columnas
matri2
##      [,1] [,2] [,3]
## [1,]    4    7   12
## [2,]   21    6    8
#practi_mat3[c(1,3),]
#practi_mat3[-c(2,3),]
#practi_mat3[-c(2,3),c(1,3)]

#Algebra de matrices
##
#t(practi_mat3) #Matriz transpuesta
#solve(practi_mat3) #resuelve sistemas de ecuaciones, tenemos que tener matrices cuadradas nxn
###DESACTIVÉ CON # LA MATRIZ practi_mat3 porque no era una matriz cuadrada, por lo tanto no se podía resolver con el comando "solve" 

practi_mate<-practi_mat3[-4,] #hacemos una matriz a partir de practi_mat3, pero le quitamos el cuarto renglon para que sea cuadrada


practi_mate
##      [,1] [,2] [,3] [,4]
## [1,]   11   13    2    5
## [2,]    8    4    7   12
## [3,]   21   21    6    8
practimatet<-t(practi_mate)
practimatet
##      [,1] [,2] [,3]
## [1,]   11    8   21
## [2,]   13    4   21
## [3,]    2    7    6
## [4,]    5   12    8
practi_mat4<-practi_mate[-4,]
practi_mat4
##      [,1] [,2] [,3] [,4]
## [1,]   11   13    2    5
## [2,]    8    4    7   12
## [3,]   21   21    6    8
t(practi_mat4)
##      [,1] [,2] [,3]
## [1,]   11    8   21
## [2,]   13    4   21
## [3,]    2    7    6
## [4,]    5   12    8
#inv_practi_mat_4<-solve(practi_mat4)#matriz cuadrada de nxn, inversa
t1<-t(practi_mat4)
t1
##      [,1] [,2] [,3]
## [1,]   11    8   21
## [2,]   13    4   21
## [3,]    2    7    6
## [4,]    5   12    8
practimat4<-t1[-4,]
practimat4 #ya le quté el renglón que no quería
##      [,1] [,2] [,3]
## [1,]   11    8   21
## [2,]   13    4   21
## [3,]    2    7    6
inv_practimat4<-solve(practimat4) #Matriz cuadrada de nxn, inversa
practi_mat3 #4x2
##      [,1] [,2] [,3] [,4]
## [1,]   11   13    2    5
## [2,]    8    4    7   12
## [3,]   21   21    6    8
matri2
##      [,1] [,2] [,3]
## [1,]    4    7   12
## [2,]   21    6    8
#practi_mat3%*%matri2 #Cuando hablamos de matrices, debemos usar %
matri2%*%practimat4
##      [,1] [,2] [,3]
## [1,]  159  144  303
## [2,]  325  248  615
#practimat4%*%matri2 #no se puede porque las matrices no se pueden multiplicar de esta forma
#matriz por su inversa=identidad
practimat4%*%inv_practimat4
##              [,1]          [,2] [,3]
## [1,] 1.000000e+00 -1.776357e-15    0
## [2,] 0.000000e+00  1.000000e+00    0
## [3,] 8.881784e-16 -4.440892e-16    1
knitr::opts_chunk$set(echo = TRUE)

CLASE DEL 24 DE AGOSTO DE 2021

En esta clase aprendimos a trabajar con vectores, escalares y matrices. Aplicamos las nociones de matrices para resolver un sistema de ecuaciones en R.

## Sistemas de ecuaciones
## 24 de agosto de 2021

#solve() vamos a resolver el siguiente sistema de ecuaciones
#5x-3y+2z=1
#-2x+2y-z=5
#4x+2y-4z=-3
5*2.38 -3*8.63 +2*7.44
## [1] 0.89
-2*2.38 +2*8.63 -1*7.44
## [1] 5.06
4*2.38 +2*8.63 -4*7.44
## [1] -2.98
coeficientes<-matrix(c(5,-3,2,-2,2,-1,4,2,-4), byrow=TRUE,ncol=3)
respuestas<-c(1,5,-3)
#?solve #el signo de interrogción es para preguntarle a R sobre un comando
respuestas
## [1]  1  5 -3
solve(coeficientes,respuestas)
## [1] 2.388889 8.611111 7.444444
ainv<-solve(coeficientes) #nos da la inversa de la matriz de coeficientes
solucion<-solve(coeficientes,respuestas) #asignamos el nombre solucion
length(solucion)
## [1] 3
###
##Intentamos sacar la matriz de respuestas del sistema de ecuaciones
#**es, decir, x=b*a^(-1)##
#1x3   3x3    3x1
respuestas%*%ainv
##          [,1]     [,2]      [,3]
## [1,] 1.666667 4.555556 0.4444444
ainv%*%respuestas #esta es la buena
##          [,1]
## [1,] 2.388889
## [2,] 8.611111
## [3,] 7.444444
solucion
## [1] 2.388889 8.611111 7.444444
#Suma hay que cuidar que las dimensiones de las matrices sean compatibles
coeficientes +practimat4
##      [,1] [,2] [,3]
## [1,]   16    5   23
## [2,]   11    6   20
## [3,]    6    9    2
(coeficientes +practimat4)%*%solve(coeficientes+practimat4) #nos tiene que dar la inversa
##               [,1]         [,2] [,3]
## [1,]  1.000000e+00 0.000000e+00    0
## [2,]  2.220446e-16 1.000000e+00    0
## [3,] -1.665335e-16 1.110223e-16    1
#¿ctrl+l en la consola?
#Rm? ls? <-son funciones relativamente hermanas
#Rm <-remueve objetos desde un ambiente especificado
#rm(list=c("xyy","xyz"))
#rm(list=ls()) <-remueve todos los elementos del ambiente
#ls <-muestra todos los elementos que tengo en mi ambiente
#rm(list=c("objeto que queremos borrar entre comillas"))
#Alt+a <-selecciona todo
ls()
##  [1] "ainv"           "coeficientes"   "dim_vec"        "inv_practimat4"
##  [5] "matri2"         "practi"         "practi_mat"     "practi_mat2"   
##  [9] "practi_mat3"    "practi_mat4"    "practi_mate"    "practimat4"    
## [13] "practimatet"    "respuestas"     "solucion"       "t1"            
## [17] "vect1"          "vect2"          "vect3"          "vect4"         
## [21] "vect5"          "vect6"          "vect7"
?rm
## starting httpd help server ... done
##
t(coeficientes)
##      [,1] [,2] [,3]
## [1,]    5   -2    4
## [2,]   -3    2    2
## [3,]    2   -1   -4
diag(coeficientes)
## [1]  5  2 -4
det(coeficientes) #determinante
## [1] -18
#?det

#vamos a calcular el determinante de forma un poco más rudimentaria
cbind(coeficientes,coeficientes[,1:2]) #aumentamos columnas hacemos la matriz extendida pegando por columnas
##      [,1] [,2] [,3] [,4] [,5]
## [1,]    5   -3    2    5   -3
## [2,]   -2    2   -1   -2    2
## [3,]    4    2   -4    4    2
rbind(coeficientes,coeficientes[1:2,]) #r=row, es decir, que le aumentamos un renglón
##      [,1] [,2] [,3]
## [1,]    5   -3    2
## [2,]   -2    2   -1
## [3,]    4    2   -4
## [4,]    5   -3    2
## [5,]   -2    2   -1
#factors(categóricos, de categorías), numerics(numéricos)
vari1<-c("M", "H")
vari1
## [1] "M" "H"
vari2<-c("M","H","M","H","H","M","M","M","M","H","H","H","M")
length(vari2)
## [1] 13
#rm=list=c("vari2")
table(vari2)#tabla de frecuencias
## vari2
## H M 
## 6 7
vari3<-c("1","0","1","0","0","1","1","1","1","0","0","0","1") 
#lo hacemos entre comillas para que ssea una variable nominal
length(vari3)
## [1] 13
#sum(vari3)
table(vari3) #tabla de frecuencias
## vari3
## 0 1 
## 6 7
table(vari2,vari3)
##      vari3
## vari2 0 1
##     H 6 0
##     M 0 7
#sum(as.numeric(vari3))#hace el summary statistics de la variable vari3
#forzandolo a ser tomado en cuenta como numérico
factor(vari3)
##  [1] 1 0 1 0 0 1 1 1 1 0 0 0 1
## Levels: 0 1
vari3n<-as.numeric(vari3)
vari3n
##  [1] 1 0 1 0 0 1 1 1 1 0 0 0 1
table(vari3n)
## vari3n
## 0 1 
## 6 7
sum(vari3n)
## [1] 7
vari3nom<-vari3
vari3nom[5]<-"cero" #cambia el elemento número 5 de la lista a "cero"
vari3nom[7]<-"uno" #cambia el elemento número 7 de la lista por "uno"
vari3n
##  [1] 1 0 1 0 0 1 1 1 1 0 0 0 1
vari3nom
##  [1] "1"    "0"    "1"    "0"    "cero" "1"    "uno"  "1"    "1"    "0"   
## [11] "0"    "0"    "1"
is.na(as.numeric(vari3nom)) #NA porque no puede tomar los valores nominales le estamos preguntando si es un valor NA
## Warning: NAs introducidos por coerción
##  [1] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE
#data.frame
#list(listas)
#listas<-list(matri2,practimat4,practi_mat3)
#listas2<-list(listas,practi,5)


knitr::opts_chunk$set(echo = TRUE)

CLASE DEL 30 DE AGOSTO DE 2021

En esta clase trabajamos con vectores, matrices y marcos de datos. Además, aprendimos a hacerle preguntas informativas sobre nuestros datos a R.

###CLASE 30/08/2021###
coeficientes
##      [,1] [,2] [,3]
## [1,]    5   -3    2
## [2,]   -2    2   -1
## [3,]    4    2   -4
vect6
##  [1] 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
vect7
##  [1] 10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40
matriz7<-cbind(vect6,vect7)
dim(matriz7)
## [1] 16  2
vari2
##  [1] "M" "H" "M" "H" "H" "M" "M" "M" "M" "H" "H" "H" "M"
vari3
##  [1] "1" "0" "1" "0" "0" "1" "1" "1" "1" "0" "0" "0" "1"
matriz8<-cbind(vari2,vari3)
dim(matriz8)
## [1] 13  2
###cómo localizar elementos de un vector###
vect6[1:6]
## [1] 10 20 30 40 10 20
matriz9<-cbind(vect6[1:13],vari2) #Todo a no numérico#
matriz9 #es una matriz con valores no numéricos#
##            vari2
##  [1,] "10" "M"  
##  [2,] "20" "H"  
##  [3,] "30" "M"  
##  [4,] "40" "H"  
##  [5,] "10" "H"  
##  [6,] "20" "M"  
##  [7,] "30" "M"  
##  [8,] "40" "M"  
##  [9,] "10" "M"  
## [10,] "20" "H"  
## [11,] "30" "H"  
## [12,] "40" "H"  
## [13,] "10" "M"
#######################################
###MARCOS DE DATOS conviven en la misma tabla, distintos tipos de elementos######
#######################################

data.frame(vector=vect6[1:13],vector2=vari2) #Esta me va a dar lo mismo de la matriz anterior a algo que sí es numérico
##    vector vector2
## 1      10       M
## 2      20       H
## 3      30       M
## 4      40       H
## 5      10       H
## 6      20       M
## 7      30       M
## 8      40       M
## 9      10       M
## 10     20       H
## 11     30       H
## 12     40       H
## 13     10       M
data.frame(vector=vect6[1:13],vector2=vari3) #Esta me va a dar lo mismo de la matriz anterior a algo que sí es numérico
##    vector vector2
## 1      10       1
## 2      20       0
## 3      30       1
## 4      40       0
## 5      10       0
## 6      20       1
## 7      30       1
## 8      40       1
## 9      10       1
## 10     20       0
## 11     30       0
## 12     40       0
## 13     10       1
matriz11<-data.frame(vector=as.numeric(vect6[1:13]),vector2=as.numeric(vari3)) #Esta me va a dar lo mismo de la matriz anterior a algo que sí es numérico
matriz12<-data.frame(vector=as.numeric(vect6[1:13]),vector2=as.factor(vari3),vector3=as.numeric(vect7[1:13])) #
matriz13<-data.frame(vector=as.numeric(vect6[1:13]),vector2=as.factor(vari3),vector3=as.numeric(vect7[1:13]),vector4=as.factor(vari2)) #

matriz11
##    vector vector2
## 1      10       1
## 2      20       0
## 3      30       1
## 4      40       0
## 5      10       0
## 6      20       1
## 7      30       1
## 8      40       1
## 9      10       1
## 10     20       0
## 11     30       0
## 12     40       0
## 13     10       1
matriz12
##    vector vector2 vector3
## 1      10       1      10
## 2      20       0      10
## 3      30       1      10
## 4      40       0      10
## 5      10       0      20
## 6      20       1      20
## 7      30       1      20
## 8      40       1      20
## 9      10       1      30
## 10     20       0      30
## 11     30       0      30
## 12     40       0      30
## 13     10       1      40
matriz13
##    vector vector2 vector3 vector4
## 1      10       1      10       M
## 2      20       0      10       H
## 3      30       1      10       M
## 4      40       0      10       H
## 5      10       0      20       H
## 6      20       1      20       M
## 7      30       1      20       M
## 8      40       1      20       M
## 9      10       1      30       M
## 10     20       0      30       H
## 11     30       0      30       H
## 12     40       0      30       H
## 13     10       1      40       M
####PREGUNTAS INFORMATIVAS####
is.data.frame(matriz12)
## [1] TRUE
is.data.frame(matriz9)
## [1] FALSE
is.numeric(matriz12$vector)
## [1] TRUE
is.numeric(matriz12$vector2)
## [1] FALSE
is.factor(matriz12$vector)
## [1] FALSE
is.factor(matriz12$vector2[1])
## [1] TRUE
is.numeric(matriz12$vector2[1])
## [1] FALSE
###Elementos del vector tienen que ser de la misma naturaleza, no pueden ser numéricos o no numéricos###

View(matriz12) ##ver todos los elementos de la matriz


#####RECAPITULACIÓN###
#* 1 escalares..... números sueltos (RECÁMARA 1)
#* 2 vectores (RECÁMARA 2)
#* 3 matrices (RECÁMARA 3)
#* 4 listas #agregar todos los anteriores (CASA)
#* 

#?list ###no importa la naturaleza de los elementos
casa<-list("Hola mundo en la lista", vari1, matriz13)
###el primero es un elemento, el segundo es un vector de dos elementos tipo factor y el teercerro es una matriz del tipo data frame
is.list(casa)
## [1] TRUE
#matriz12[i,j]
#vector[i]
#lista[i,j,k] #esto es un cubo#

casa<-list(Mensaje="Hola mundo en la lista",Vector= vari1, Matriz=matriz13, Generado=as.factor(seq(1,50)))
casa
## $Mensaje
## [1] "Hola mundo en la lista"
## 
## $Vector
## [1] "M" "H"
## 
## $Matriz
##    vector vector2 vector3 vector4
## 1      10       1      10       M
## 2      20       0      10       H
## 3      30       1      10       M
## 4      40       0      10       H
## 5      10       0      20       H
## 6      20       1      20       M
## 7      30       1      20       M
## 8      40       1      20       M
## 9      10       1      30       M
## 10     20       0      30       H
## 11     30       0      30       H
## 12     40       0      30       H
## 13     10       1      40       M
## 
## $Generado
##  [1] 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## 50 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 50
is.list(casa) #check si el elemento casa es una lista
## [1] TRUE
casa$Vector
## [1] "M" "H"
casa$Mensaje
## [1] "Hola mundo en la lista"
casa$Matriz
##    vector vector2 vector3 vector4
## 1      10       1      10       M
## 2      20       0      10       H
## 3      30       1      10       M
## 4      40       0      10       H
## 5      10       0      20       H
## 6      20       1      20       M
## 7      30       1      20       M
## 8      40       1      20       M
## 9      10       1      30       M
## 10     20       0      30       H
## 11     30       0      30       H
## 12     40       0      30       H
## 13     10       1      40       M
####El signo de $ significa que extraigan dentro de esa lista, tal elemento

casa$Vector[2]
## [1] "H"
casa$Matriz$Vector
## NULL
casa$Generado
##  [1] 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## 50 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 50
Generar_secuencia<-as.factor(seq(1,50))



####RESUMENES####
#Estadística de resumen/genéricas
#solve
#mean
#sd
#var
#max
#min

matriz_13<-cbind(matriz13$Vector,matriz13$Vector3)

mean(matriz13[,1])### la media de la PRIMERA columna
## [1] 23.84615
sd(matriz13[,1])
## [1] 11.92928
var(matriz13[,1])
## [1] 142.3077
max(matriz13[,1])
## [1] 40
min(matriz13[,1])
## [1] 10
summary(matriz13)
##      vector      vector2    vector3      vector4
##  Min.   :10.00   0:6     Min.   :10.00   H:6    
##  1st Qu.:10.00   1:7     1st Qu.:10.00   M:7    
##  Median :20.00           Median :20.00          
##  Mean   :23.85           Mean   :21.54          
##  3rd Qu.:30.00           3rd Qu.:30.00          
##  Max.   :40.00           Max.   :40.00
matriz13
##    vector vector2 vector3 vector4
## 1      10       1      10       M
## 2      20       0      10       H
## 3      30       1      10       M
## 4      40       0      10       H
## 5      10       0      20       H
## 6      20       1      20       M
## 7      30       1      20       M
## 8      40       1      20       M
## 9      10       1      30       M
## 10     20       0      30       H
## 11     30       0      30       H
## 12     40       0      30       H
## 13     10       1      40       M
mean(matriz13[,3])### la media de la TERCERA columna
## [1] 21.53846
sd(matriz13[,3])
## [1] 9.870962
var(matriz13[,3])
## [1] 97.4359
max(matriz13[,3])
## [1] 40
min(matriz13[,3])
## [1] 10
summary(matriz13[,1])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.00   10.00   20.00   23.85   30.00   40.00
summary(matriz13[,2])
## 0 1 
## 6 7
summary(matriz13[,3])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.00   10.00   20.00   21.54   30.00   40.00
summary(matriz13[,4])
## H M 
## 6 7
knitr::opts_chunk$set(echo = TRUE)

CLASE DEL 31 DE AGOSTO 2021

En esta case exploramos la base de datos que ya viene precargada en R iris y aplicamos alguno comandos que ya vienen en R con el comando apply

#31/agosto/2021
#nuevo proyecto
#cargar datos pre-instalados en R
#data(cars)
#data(USAarrests)
#
data(iris)
#?iris
data(iris3)
iris
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1            5.1         3.5          1.4         0.2     setosa
## 2            4.9         3.0          1.4         0.2     setosa
## 3            4.7         3.2          1.3         0.2     setosa
## 4            4.6         3.1          1.5         0.2     setosa
## 5            5.0         3.6          1.4         0.2     setosa
## 6            5.4         3.9          1.7         0.4     setosa
## 7            4.6         3.4          1.4         0.3     setosa
## 8            5.0         3.4          1.5         0.2     setosa
## 9            4.4         2.9          1.4         0.2     setosa
## 10           4.9         3.1          1.5         0.1     setosa
## 11           5.4         3.7          1.5         0.2     setosa
## 12           4.8         3.4          1.6         0.2     setosa
## 13           4.8         3.0          1.4         0.1     setosa
## 14           4.3         3.0          1.1         0.1     setosa
## 15           5.8         4.0          1.2         0.2     setosa
## 16           5.7         4.4          1.5         0.4     setosa
## 17           5.4         3.9          1.3         0.4     setosa
## 18           5.1         3.5          1.4         0.3     setosa
## 19           5.7         3.8          1.7         0.3     setosa
## 20           5.1         3.8          1.5         0.3     setosa
## 21           5.4         3.4          1.7         0.2     setosa
## 22           5.1         3.7          1.5         0.4     setosa
## 23           4.6         3.6          1.0         0.2     setosa
## 24           5.1         3.3          1.7         0.5     setosa
## 25           4.8         3.4          1.9         0.2     setosa
## 26           5.0         3.0          1.6         0.2     setosa
## 27           5.0         3.4          1.6         0.4     setosa
## 28           5.2         3.5          1.5         0.2     setosa
## 29           5.2         3.4          1.4         0.2     setosa
## 30           4.7         3.2          1.6         0.2     setosa
## 31           4.8         3.1          1.6         0.2     setosa
## 32           5.4         3.4          1.5         0.4     setosa
## 33           5.2         4.1          1.5         0.1     setosa
## 34           5.5         4.2          1.4         0.2     setosa
## 35           4.9         3.1          1.5         0.2     setosa
## 36           5.0         3.2          1.2         0.2     setosa
## 37           5.5         3.5          1.3         0.2     setosa
## 38           4.9         3.6          1.4         0.1     setosa
## 39           4.4         3.0          1.3         0.2     setosa
## 40           5.1         3.4          1.5         0.2     setosa
## 41           5.0         3.5          1.3         0.3     setosa
## 42           4.5         2.3          1.3         0.3     setosa
## 43           4.4         3.2          1.3         0.2     setosa
## 44           5.0         3.5          1.6         0.6     setosa
## 45           5.1         3.8          1.9         0.4     setosa
## 46           4.8         3.0          1.4         0.3     setosa
## 47           5.1         3.8          1.6         0.2     setosa
## 48           4.6         3.2          1.4         0.2     setosa
## 49           5.3         3.7          1.5         0.2     setosa
## 50           5.0         3.3          1.4         0.2     setosa
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
## 101          6.3         3.3          6.0         2.5  virginica
## 102          5.8         2.7          5.1         1.9  virginica
## 103          7.1         3.0          5.9         2.1  virginica
## 104          6.3         2.9          5.6         1.8  virginica
## 105          6.5         3.0          5.8         2.2  virginica
## 106          7.6         3.0          6.6         2.1  virginica
## 107          4.9         2.5          4.5         1.7  virginica
## 108          7.3         2.9          6.3         1.8  virginica
## 109          6.7         2.5          5.8         1.8  virginica
## 110          7.2         3.6          6.1         2.5  virginica
## 111          6.5         3.2          5.1         2.0  virginica
## 112          6.4         2.7          5.3         1.9  virginica
## 113          6.8         3.0          5.5         2.1  virginica
## 114          5.7         2.5          5.0         2.0  virginica
## 115          5.8         2.8          5.1         2.4  virginica
## 116          6.4         3.2          5.3         2.3  virginica
## 117          6.5         3.0          5.5         1.8  virginica
## 118          7.7         3.8          6.7         2.2  virginica
## 119          7.7         2.6          6.9         2.3  virginica
## 120          6.0         2.2          5.0         1.5  virginica
## 121          6.9         3.2          5.7         2.3  virginica
## 122          5.6         2.8          4.9         2.0  virginica
## 123          7.7         2.8          6.7         2.0  virginica
## 124          6.3         2.7          4.9         1.8  virginica
## 125          6.7         3.3          5.7         2.1  virginica
## 126          7.2         3.2          6.0         1.8  virginica
## 127          6.2         2.8          4.8         1.8  virginica
## 128          6.1         3.0          4.9         1.8  virginica
## 129          6.4         2.8          5.6         2.1  virginica
## 130          7.2         3.0          5.8         1.6  virginica
## 131          7.4         2.8          6.1         1.9  virginica
## 132          7.9         3.8          6.4         2.0  virginica
## 133          6.4         2.8          5.6         2.2  virginica
## 134          6.3         2.8          5.1         1.5  virginica
## 135          6.1         2.6          5.6         1.4  virginica
## 136          7.7         3.0          6.1         2.3  virginica
## 137          6.3         3.4          5.6         2.4  virginica
## 138          6.4         3.1          5.5         1.8  virginica
## 139          6.0         3.0          4.8         1.8  virginica
## 140          6.9         3.1          5.4         2.1  virginica
## 141          6.7         3.1          5.6         2.4  virginica
## 142          6.9         3.1          5.1         2.3  virginica
## 143          5.8         2.7          5.1         1.9  virginica
## 144          6.8         3.2          5.9         2.3  virginica
## 145          6.7         3.3          5.7         2.5  virginica
## 146          6.7         3.0          5.2         2.3  virginica
## 147          6.3         2.5          5.0         1.9  virginica
## 148          6.5         3.0          5.2         2.0  virginica
## 149          6.2         3.4          5.4         2.3  virginica
## 150          5.9         3.0          5.1         1.8  virginica
is.matrix(iris)
## [1] FALSE
is.data.frame(iris)
## [1] TRUE
is.list(iris)
## [1] TRUE
is.data.frame(iris3) #es un marco de datos
## [1] FALSE
is.list(iris3)
## [1] FALSE
is.matrix(iris3)
## [1] FALSE
View(iris3)
iris3
## , , Setosa
## 
##       Sepal L. Sepal W. Petal L. Petal W.
##  [1,]      5.1      3.5      1.4      0.2
##  [2,]      4.9      3.0      1.4      0.2
##  [3,]      4.7      3.2      1.3      0.2
##  [4,]      4.6      3.1      1.5      0.2
##  [5,]      5.0      3.6      1.4      0.2
##  [6,]      5.4      3.9      1.7      0.4
##  [7,]      4.6      3.4      1.4      0.3
##  [8,]      5.0      3.4      1.5      0.2
##  [9,]      4.4      2.9      1.4      0.2
## [10,]      4.9      3.1      1.5      0.1
## [11,]      5.4      3.7      1.5      0.2
## [12,]      4.8      3.4      1.6      0.2
## [13,]      4.8      3.0      1.4      0.1
## [14,]      4.3      3.0      1.1      0.1
## [15,]      5.8      4.0      1.2      0.2
## [16,]      5.7      4.4      1.5      0.4
## [17,]      5.4      3.9      1.3      0.4
## [18,]      5.1      3.5      1.4      0.3
## [19,]      5.7      3.8      1.7      0.3
## [20,]      5.1      3.8      1.5      0.3
## [21,]      5.4      3.4      1.7      0.2
## [22,]      5.1      3.7      1.5      0.4
## [23,]      4.6      3.6      1.0      0.2
## [24,]      5.1      3.3      1.7      0.5
## [25,]      4.8      3.4      1.9      0.2
## [26,]      5.0      3.0      1.6      0.2
## [27,]      5.0      3.4      1.6      0.4
## [28,]      5.2      3.5      1.5      0.2
## [29,]      5.2      3.4      1.4      0.2
## [30,]      4.7      3.2      1.6      0.2
## [31,]      4.8      3.1      1.6      0.2
## [32,]      5.4      3.4      1.5      0.4
## [33,]      5.2      4.1      1.5      0.1
## [34,]      5.5      4.2      1.4      0.2
## [35,]      4.9      3.1      1.5      0.2
## [36,]      5.0      3.2      1.2      0.2
## [37,]      5.5      3.5      1.3      0.2
## [38,]      4.9      3.6      1.4      0.1
## [39,]      4.4      3.0      1.3      0.2
## [40,]      5.1      3.4      1.5      0.2
## [41,]      5.0      3.5      1.3      0.3
## [42,]      4.5      2.3      1.3      0.3
## [43,]      4.4      3.2      1.3      0.2
## [44,]      5.0      3.5      1.6      0.6
## [45,]      5.1      3.8      1.9      0.4
## [46,]      4.8      3.0      1.4      0.3
## [47,]      5.1      3.8      1.6      0.2
## [48,]      4.6      3.2      1.4      0.2
## [49,]      5.3      3.7      1.5      0.2
## [50,]      5.0      3.3      1.4      0.2
## 
## , , Versicolor
## 
##       Sepal L. Sepal W. Petal L. Petal W.
##  [1,]      7.0      3.2      4.7      1.4
##  [2,]      6.4      3.2      4.5      1.5
##  [3,]      6.9      3.1      4.9      1.5
##  [4,]      5.5      2.3      4.0      1.3
##  [5,]      6.5      2.8      4.6      1.5
##  [6,]      5.7      2.8      4.5      1.3
##  [7,]      6.3      3.3      4.7      1.6
##  [8,]      4.9      2.4      3.3      1.0
##  [9,]      6.6      2.9      4.6      1.3
## [10,]      5.2      2.7      3.9      1.4
## [11,]      5.0      2.0      3.5      1.0
## [12,]      5.9      3.0      4.2      1.5
## [13,]      6.0      2.2      4.0      1.0
## [14,]      6.1      2.9      4.7      1.4
## [15,]      5.6      2.9      3.6      1.3
## [16,]      6.7      3.1      4.4      1.4
## [17,]      5.6      3.0      4.5      1.5
## [18,]      5.8      2.7      4.1      1.0
## [19,]      6.2      2.2      4.5      1.5
## [20,]      5.6      2.5      3.9      1.1
## [21,]      5.9      3.2      4.8      1.8
## [22,]      6.1      2.8      4.0      1.3
## [23,]      6.3      2.5      4.9      1.5
## [24,]      6.1      2.8      4.7      1.2
## [25,]      6.4      2.9      4.3      1.3
## [26,]      6.6      3.0      4.4      1.4
## [27,]      6.8      2.8      4.8      1.4
## [28,]      6.7      3.0      5.0      1.7
## [29,]      6.0      2.9      4.5      1.5
## [30,]      5.7      2.6      3.5      1.0
## [31,]      5.5      2.4      3.8      1.1
## [32,]      5.5      2.4      3.7      1.0
## [33,]      5.8      2.7      3.9      1.2
## [34,]      6.0      2.7      5.1      1.6
## [35,]      5.4      3.0      4.5      1.5
## [36,]      6.0      3.4      4.5      1.6
## [37,]      6.7      3.1      4.7      1.5
## [38,]      6.3      2.3      4.4      1.3
## [39,]      5.6      3.0      4.1      1.3
## [40,]      5.5      2.5      4.0      1.3
## [41,]      5.5      2.6      4.4      1.2
## [42,]      6.1      3.0      4.6      1.4
## [43,]      5.8      2.6      4.0      1.2
## [44,]      5.0      2.3      3.3      1.0
## [45,]      5.6      2.7      4.2      1.3
## [46,]      5.7      3.0      4.2      1.2
## [47,]      5.7      2.9      4.2      1.3
## [48,]      6.2      2.9      4.3      1.3
## [49,]      5.1      2.5      3.0      1.1
## [50,]      5.7      2.8      4.1      1.3
## 
## , , Virginica
## 
##       Sepal L. Sepal W. Petal L. Petal W.
##  [1,]      6.3      3.3      6.0      2.5
##  [2,]      5.8      2.7      5.1      1.9
##  [3,]      7.1      3.0      5.9      2.1
##  [4,]      6.3      2.9      5.6      1.8
##  [5,]      6.5      3.0      5.8      2.2
##  [6,]      7.6      3.0      6.6      2.1
##  [7,]      4.9      2.5      4.5      1.7
##  [8,]      7.3      2.9      6.3      1.8
##  [9,]      6.7      2.5      5.8      1.8
## [10,]      7.2      3.6      6.1      2.5
## [11,]      6.5      3.2      5.1      2.0
## [12,]      6.4      2.7      5.3      1.9
## [13,]      6.8      3.0      5.5      2.1
## [14,]      5.7      2.5      5.0      2.0
## [15,]      5.8      2.8      5.1      2.4
## [16,]      6.4      3.2      5.3      2.3
## [17,]      6.5      3.0      5.5      1.8
## [18,]      7.7      3.8      6.7      2.2
## [19,]      7.7      2.6      6.9      2.3
## [20,]      6.0      2.2      5.0      1.5
## [21,]      6.9      3.2      5.7      2.3
## [22,]      5.6      2.8      4.9      2.0
## [23,]      7.7      2.8      6.7      2.0
## [24,]      6.3      2.7      4.9      1.8
## [25,]      6.7      3.3      5.7      2.1
## [26,]      7.2      3.2      6.0      1.8
## [27,]      6.2      2.8      4.8      1.8
## [28,]      6.1      3.0      4.9      1.8
## [29,]      6.4      2.8      5.6      2.1
## [30,]      7.2      3.0      5.8      1.6
## [31,]      7.4      2.8      6.1      1.9
## [32,]      7.9      3.8      6.4      2.0
## [33,]      6.4      2.8      5.6      2.2
## [34,]      6.3      2.8      5.1      1.5
## [35,]      6.1      2.6      5.6      1.4
## [36,]      7.7      3.0      6.1      2.3
## [37,]      6.3      3.4      5.6      2.4
## [38,]      6.4      3.1      5.5      1.8
## [39,]      6.0      3.0      4.8      1.8
## [40,]      6.9      3.1      5.4      2.1
## [41,]      6.7      3.1      5.6      2.4
## [42,]      6.9      3.1      5.1      2.3
## [43,]      5.8      2.7      5.1      1.9
## [44,]      6.8      3.2      5.9      2.3
## [45,]      6.7      3.3      5.7      2.5
## [46,]      6.7      3.0      5.2      2.3
## [47,]      6.3      2.5      5.0      1.9
## [48,]      6.5      3.0      5.2      2.0
## [49,]      6.2      3.4      5.4      2.3
## [50,]      5.9      3.0      5.1      1.8
dim(iris3)
## [1] 50  4  3
head(iris3)
## , , Setosa
## 
##      Sepal L. Sepal W. Petal L. Petal W.
## [1,]      5.1      3.5      1.4      0.2
## [2,]      4.9      3.0      1.4      0.2
## [3,]      4.7      3.2      1.3      0.2
## [4,]      4.6      3.1      1.5      0.2
## [5,]      5.0      3.6      1.4      0.2
## [6,]      5.4      3.9      1.7      0.4
## 
## , , Versicolor
## 
##      Sepal L. Sepal W. Petal L. Petal W.
## [1,]      7.0      3.2      4.7      1.4
## [2,]      6.4      3.2      4.5      1.5
## [3,]      6.9      3.1      4.9      1.5
## [4,]      5.5      2.3      4.0      1.3
## [5,]      6.5      2.8      4.6      1.5
## [6,]      5.7      2.8      4.5      1.3
## 
## , , Virginica
## 
##      Sepal L. Sepal W. Petal L. Petal W.
## [1,]      6.3      3.3      6.0      2.5
## [2,]      5.8      2.7      5.1      1.9
## [3,]      7.1      3.0      5.9      2.1
## [4,]      6.3      2.9      5.6      1.8
## [5,]      6.5      3.0      5.8      2.2
## [6,]      7.6      3.0      6.6      2.1
#?head
#?iris3
tail(iris3)
## , , Setosa
## 
##       Sepal L. Sepal W. Petal L. Petal W.
## [45,]      5.1      3.8      1.9      0.4
## [46,]      4.8      3.0      1.4      0.3
## [47,]      5.1      3.8      1.6      0.2
## [48,]      4.6      3.2      1.4      0.2
## [49,]      5.3      3.7      1.5      0.2
## [50,]      5.0      3.3      1.4      0.2
## 
## , , Versicolor
## 
##       Sepal L. Sepal W. Petal L. Petal W.
## [45,]      5.6      2.7      4.2      1.3
## [46,]      5.7      3.0      4.2      1.2
## [47,]      5.7      2.9      4.2      1.3
## [48,]      6.2      2.9      4.3      1.3
## [49,]      5.1      2.5      3.0      1.1
## [50,]      5.7      2.8      4.1      1.3
## 
## , , Virginica
## 
##       Sepal L. Sepal W. Petal L. Petal W.
## [45,]      6.7      3.3      5.7      2.5
## [46,]      6.7      3.0      5.2      2.3
## [47,]      6.3      2.5      5.0      1.9
## [48,]      6.5      3.0      5.2      2.0
## [49,]      6.2      3.4      5.4      2.3
## [50,]      5.9      3.0      5.1      1.8
iris[,1] #primer columna de la base iris
##   [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1
##  [19] 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0
##  [37] 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0 6.4 6.9 5.5
##  [55] 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1
##  [73] 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3 5.6 5.5
##  [91] 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3
## [109] 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0 6.9 5.6 7.7 6.3 6.7 7.2
## [127] 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8
## [145] 6.7 6.7 6.3 6.5 6.2 5.9
is.factor(iris[,5])
## [1] TRUE
is.numeric(iris[,1])
## [1] TRUE
iris3[1,,] #todos los primeros renglones de la base iris3
##          Setosa Versicolor Virginica
## Sepal L.    5.1        7.0       6.3
## Sepal W.    3.5        3.2       3.3
## Petal L.    1.4        4.7       6.0
## Petal W.    0.2        1.4       2.5
iris3[,1,] #fila, columna, profundidad
##       Setosa Versicolor Virginica
##  [1,]    5.1        7.0       6.3
##  [2,]    4.9        6.4       5.8
##  [3,]    4.7        6.9       7.1
##  [4,]    4.6        5.5       6.3
##  [5,]    5.0        6.5       6.5
##  [6,]    5.4        5.7       7.6
##  [7,]    4.6        6.3       4.9
##  [8,]    5.0        4.9       7.3
##  [9,]    4.4        6.6       6.7
## [10,]    4.9        5.2       7.2
## [11,]    5.4        5.0       6.5
## [12,]    4.8        5.9       6.4
## [13,]    4.8        6.0       6.8
## [14,]    4.3        6.1       5.7
## [15,]    5.8        5.6       5.8
## [16,]    5.7        6.7       6.4
## [17,]    5.4        5.6       6.5
## [18,]    5.1        5.8       7.7
## [19,]    5.7        6.2       7.7
## [20,]    5.1        5.6       6.0
## [21,]    5.4        5.9       6.9
## [22,]    5.1        6.1       5.6
## [23,]    4.6        6.3       7.7
## [24,]    5.1        6.1       6.3
## [25,]    4.8        6.4       6.7
## [26,]    5.0        6.6       7.2
## [27,]    5.0        6.8       6.2
## [28,]    5.2        6.7       6.1
## [29,]    5.2        6.0       6.4
## [30,]    4.7        5.7       7.2
## [31,]    4.8        5.5       7.4
## [32,]    5.4        5.5       7.9
## [33,]    5.2        5.8       6.4
## [34,]    5.5        6.0       6.3
## [35,]    4.9        5.4       6.1
## [36,]    5.0        6.0       7.7
## [37,]    5.5        6.7       6.3
## [38,]    4.9        6.3       6.4
## [39,]    4.4        5.6       6.0
## [40,]    5.1        5.5       6.9
## [41,]    5.0        5.5       6.7
## [42,]    4.5        6.1       6.9
## [43,]    4.4        5.8       5.8
## [44,]    5.0        5.0       6.8
## [45,]    5.1        5.6       6.7
## [46,]    4.8        5.7       6.7
## [47,]    5.1        5.7       6.3
## [48,]    4.6        6.2       6.5
## [49,]    5.3        5.1       6.2
## [50,]    5.0        5.7       5.9
iris3[,,1] #muestrame los elementos de la primera dimensión de profundidad de la base iris 3
##       Sepal L. Sepal W. Petal L. Petal W.
##  [1,]      5.1      3.5      1.4      0.2
##  [2,]      4.9      3.0      1.4      0.2
##  [3,]      4.7      3.2      1.3      0.2
##  [4,]      4.6      3.1      1.5      0.2
##  [5,]      5.0      3.6      1.4      0.2
##  [6,]      5.4      3.9      1.7      0.4
##  [7,]      4.6      3.4      1.4      0.3
##  [8,]      5.0      3.4      1.5      0.2
##  [9,]      4.4      2.9      1.4      0.2
## [10,]      4.9      3.1      1.5      0.1
## [11,]      5.4      3.7      1.5      0.2
## [12,]      4.8      3.4      1.6      0.2
## [13,]      4.8      3.0      1.4      0.1
## [14,]      4.3      3.0      1.1      0.1
## [15,]      5.8      4.0      1.2      0.2
## [16,]      5.7      4.4      1.5      0.4
## [17,]      5.4      3.9      1.3      0.4
## [18,]      5.1      3.5      1.4      0.3
## [19,]      5.7      3.8      1.7      0.3
## [20,]      5.1      3.8      1.5      0.3
## [21,]      5.4      3.4      1.7      0.2
## [22,]      5.1      3.7      1.5      0.4
## [23,]      4.6      3.6      1.0      0.2
## [24,]      5.1      3.3      1.7      0.5
## [25,]      4.8      3.4      1.9      0.2
## [26,]      5.0      3.0      1.6      0.2
## [27,]      5.0      3.4      1.6      0.4
## [28,]      5.2      3.5      1.5      0.2
## [29,]      5.2      3.4      1.4      0.2
## [30,]      4.7      3.2      1.6      0.2
## [31,]      4.8      3.1      1.6      0.2
## [32,]      5.4      3.4      1.5      0.4
## [33,]      5.2      4.1      1.5      0.1
## [34,]      5.5      4.2      1.4      0.2
## [35,]      4.9      3.1      1.5      0.2
## [36,]      5.0      3.2      1.2      0.2
## [37,]      5.5      3.5      1.3      0.2
## [38,]      4.9      3.6      1.4      0.1
## [39,]      4.4      3.0      1.3      0.2
## [40,]      5.1      3.4      1.5      0.2
## [41,]      5.0      3.5      1.3      0.3
## [42,]      4.5      2.3      1.3      0.3
## [43,]      4.4      3.2      1.3      0.2
## [44,]      5.0      3.5      1.6      0.6
## [45,]      5.1      3.8      1.9      0.4
## [46,]      4.8      3.0      1.4      0.3
## [47,]      5.1      3.8      1.6      0.2
## [48,]      4.6      3.2      1.4      0.2
## [49,]      5.3      3.7      1.5      0.2
## [50,]      5.0      3.3      1.4      0.2
#iris
#promedio de la longitud del sépalo de la base que estamos trabajando

iris3[,1,]
##       Setosa Versicolor Virginica
##  [1,]    5.1        7.0       6.3
##  [2,]    4.9        6.4       5.8
##  [3,]    4.7        6.9       7.1
##  [4,]    4.6        5.5       6.3
##  [5,]    5.0        6.5       6.5
##  [6,]    5.4        5.7       7.6
##  [7,]    4.6        6.3       4.9
##  [8,]    5.0        4.9       7.3
##  [9,]    4.4        6.6       6.7
## [10,]    4.9        5.2       7.2
## [11,]    5.4        5.0       6.5
## [12,]    4.8        5.9       6.4
## [13,]    4.8        6.0       6.8
## [14,]    4.3        6.1       5.7
## [15,]    5.8        5.6       5.8
## [16,]    5.7        6.7       6.4
## [17,]    5.4        5.6       6.5
## [18,]    5.1        5.8       7.7
## [19,]    5.7        6.2       7.7
## [20,]    5.1        5.6       6.0
## [21,]    5.4        5.9       6.9
## [22,]    5.1        6.1       5.6
## [23,]    4.6        6.3       7.7
## [24,]    5.1        6.1       6.3
## [25,]    4.8        6.4       6.7
## [26,]    5.0        6.6       7.2
## [27,]    5.0        6.8       6.2
## [28,]    5.2        6.7       6.1
## [29,]    5.2        6.0       6.4
## [30,]    4.7        5.7       7.2
## [31,]    4.8        5.5       7.4
## [32,]    5.4        5.5       7.9
## [33,]    5.2        5.8       6.4
## [34,]    5.5        6.0       6.3
## [35,]    4.9        5.4       6.1
## [36,]    5.0        6.0       7.7
## [37,]    5.5        6.7       6.3
## [38,]    4.9        6.3       6.4
## [39,]    4.4        5.6       6.0
## [40,]    5.1        5.5       6.9
## [41,]    5.0        5.5       6.7
## [42,]    4.5        6.1       6.9
## [43,]    4.4        5.8       5.8
## [44,]    5.0        5.0       6.8
## [45,]    5.1        5.6       6.7
## [46,]    4.8        5.7       6.7
## [47,]    5.1        5.7       6.3
## [48,]    4.6        6.2       6.5
## [49,]    5.3        5.1       6.2
## [50,]    5.0        5.7       5.9
iris3[,1,1] #Sepal length de setosa
##  [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1 5.7
## [20] 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0 5.5 4.9
## [39] 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0
iris3[,1,2] #Sepal l de versicolor
##  [1] 7.0 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2
## [20] 5.6 5.9 6.1 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3
## [39] 5.6 5.5 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7
iris3[,1,3] #Sepal l de virginica
##  [1] 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7
## [20] 6.0 6.9 5.6 7.7 6.3 6.7 7.2 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4
## [39] 6.0 6.9 6.7 6.9 5.8 6.8 6.7 6.7 6.3 6.5 6.2 5.9
mean(iris3[,1,1]) #media de Sepal length de setosa
## [1] 5.006
mean(iris3[,1,2]) #Sepal l de versicolor
## [1] 5.936
mean(iris3[,1,3]) #Sepal l de virginica
## [1] 6.588
mean(iris3[,2,1]) #media de Sepal width de setosa
## [1] 3.428
mean(iris3[,2,2]) #Sepal w de versicolor
## [1] 2.77
mean(iris3[,2,3]) #Sepal w de virginica
## [1] 2.974
mean(iris[1:50,1]) #sepal l setosa
## [1] 5.006
mean(iris[51:100,1]) #sepal l versicolor
## [1] 5.936
mean(iris[101:150,1]) #sepal l virginica
## [1] 6.588
###Promedios por columnas o por filas de manera automática
#apply() primero va el conjunto de datos, luego va el vector(1 para filas y 2 para columnas) y luego va la función
#aggregate()
#ambas se complementan y sirven para lo mismo, pero tienen argumentos distintos
#?apply

apply(iris[,-5],2,mean)
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##     5.843333     3.057333     3.758000     1.199333
apply(iris[,-5],2,summary)
##         Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min.        4.300000    2.000000        1.000    0.100000
## 1st Qu.     5.100000    2.800000        1.600    0.300000
## Median      5.800000    3.000000        4.350    1.300000
## Mean        5.843333    3.057333        3.758    1.199333
## 3rd Qu.     6.400000    3.300000        5.100    1.800000
## Max.        7.900000    4.400000        6.900    2.500000
apply(iris[1:50,-5],2,mean) #promedio de setosa
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##        5.006        3.428        1.462        0.246
apply(iris[51:100,-5],2,mean) #promedio de versicolor
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##        5.936        2.770        4.260        1.326
apply(iris[101:150,-5],2,mean) #promedio de virginica
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##        6.588        2.974        5.552        2.026
###conjuntar información de las medias en una sola tabla
a<-apply(iris[1:50,-5],2,mean) #promedio de setosa
b<-apply(iris[51:100,-5],2,mean) #promedio de versicolor
c<-apply(iris[101:150,-5],2,mean) #promedio de virginica
promedio_flores<-data.frame(Setosa=a,Versicolor=b,Virginica=c) #vamos a hacer una tabla con las medias de las plantas
promedio_flores
##              Setosa Versicolor Virginica
## Sepal.Length  5.006      5.936     6.588
## Sepal.Width   3.428      2.770     2.974
## Petal.Length  1.462      4.260     5.552
## Petal.Width   0.246      1.326     2.026
###OBTENER LA DESVIACIÓN ESTÁNDAR DE CADA FLOR DE SUS 4 VARIABLES DE LA BASE IRIS3
#HACER UNA TABLA PARECIDA A DATAFRAME promedio_flores


d<-apply(iris3[,,1],2,sd) #desviación estándar de setosa
#dado que queremos todos los renglones y todas las columnas, no especificamos ,, y sólo ponemos el 1 que es de la profundidad 1
#2 porque 1 es para filas y 2 para columnas
e<-apply(iris3[,,2],2,sd) #desviación estándar de versicolor
f<-apply(iris3[,,3],2,sd) #desviación estándar de virginica
dsflores3<-data.frame(Setosa=d,Versicolor=e,Virginica=f)
dsflores3
##             Setosa Versicolor Virginica
## Sepal L. 0.3524897  0.5161711 0.6358796
## Sepal W. 0.3790644  0.3137983 0.3224966
## Petal L. 0.1736640  0.4699110 0.5518947
## Petal W. 0.1053856  0.1977527 0.2746501
iris3
## , , Setosa
## 
##       Sepal L. Sepal W. Petal L. Petal W.
##  [1,]      5.1      3.5      1.4      0.2
##  [2,]      4.9      3.0      1.4      0.2
##  [3,]      4.7      3.2      1.3      0.2
##  [4,]      4.6      3.1      1.5      0.2
##  [5,]      5.0      3.6      1.4      0.2
##  [6,]      5.4      3.9      1.7      0.4
##  [7,]      4.6      3.4      1.4      0.3
##  [8,]      5.0      3.4      1.5      0.2
##  [9,]      4.4      2.9      1.4      0.2
## [10,]      4.9      3.1      1.5      0.1
## [11,]      5.4      3.7      1.5      0.2
## [12,]      4.8      3.4      1.6      0.2
## [13,]      4.8      3.0      1.4      0.1
## [14,]      4.3      3.0      1.1      0.1
## [15,]      5.8      4.0      1.2      0.2
## [16,]      5.7      4.4      1.5      0.4
## [17,]      5.4      3.9      1.3      0.4
## [18,]      5.1      3.5      1.4      0.3
## [19,]      5.7      3.8      1.7      0.3
## [20,]      5.1      3.8      1.5      0.3
## [21,]      5.4      3.4      1.7      0.2
## [22,]      5.1      3.7      1.5      0.4
## [23,]      4.6      3.6      1.0      0.2
## [24,]      5.1      3.3      1.7      0.5
## [25,]      4.8      3.4      1.9      0.2
## [26,]      5.0      3.0      1.6      0.2
## [27,]      5.0      3.4      1.6      0.4
## [28,]      5.2      3.5      1.5      0.2
## [29,]      5.2      3.4      1.4      0.2
## [30,]      4.7      3.2      1.6      0.2
## [31,]      4.8      3.1      1.6      0.2
## [32,]      5.4      3.4      1.5      0.4
## [33,]      5.2      4.1      1.5      0.1
## [34,]      5.5      4.2      1.4      0.2
## [35,]      4.9      3.1      1.5      0.2
## [36,]      5.0      3.2      1.2      0.2
## [37,]      5.5      3.5      1.3      0.2
## [38,]      4.9      3.6      1.4      0.1
## [39,]      4.4      3.0      1.3      0.2
## [40,]      5.1      3.4      1.5      0.2
## [41,]      5.0      3.5      1.3      0.3
## [42,]      4.5      2.3      1.3      0.3
## [43,]      4.4      3.2      1.3      0.2
## [44,]      5.0      3.5      1.6      0.6
## [45,]      5.1      3.8      1.9      0.4
## [46,]      4.8      3.0      1.4      0.3
## [47,]      5.1      3.8      1.6      0.2
## [48,]      4.6      3.2      1.4      0.2
## [49,]      5.3      3.7      1.5      0.2
## [50,]      5.0      3.3      1.4      0.2
## 
## , , Versicolor
## 
##       Sepal L. Sepal W. Petal L. Petal W.
##  [1,]      7.0      3.2      4.7      1.4
##  [2,]      6.4      3.2      4.5      1.5
##  [3,]      6.9      3.1      4.9      1.5
##  [4,]      5.5      2.3      4.0      1.3
##  [5,]      6.5      2.8      4.6      1.5
##  [6,]      5.7      2.8      4.5      1.3
##  [7,]      6.3      3.3      4.7      1.6
##  [8,]      4.9      2.4      3.3      1.0
##  [9,]      6.6      2.9      4.6      1.3
## [10,]      5.2      2.7      3.9      1.4
## [11,]      5.0      2.0      3.5      1.0
## [12,]      5.9      3.0      4.2      1.5
## [13,]      6.0      2.2      4.0      1.0
## [14,]      6.1      2.9      4.7      1.4
## [15,]      5.6      2.9      3.6      1.3
## [16,]      6.7      3.1      4.4      1.4
## [17,]      5.6      3.0      4.5      1.5
## [18,]      5.8      2.7      4.1      1.0
## [19,]      6.2      2.2      4.5      1.5
## [20,]      5.6      2.5      3.9      1.1
## [21,]      5.9      3.2      4.8      1.8
## [22,]      6.1      2.8      4.0      1.3
## [23,]      6.3      2.5      4.9      1.5
## [24,]      6.1      2.8      4.7      1.2
## [25,]      6.4      2.9      4.3      1.3
## [26,]      6.6      3.0      4.4      1.4
## [27,]      6.8      2.8      4.8      1.4
## [28,]      6.7      3.0      5.0      1.7
## [29,]      6.0      2.9      4.5      1.5
## [30,]      5.7      2.6      3.5      1.0
## [31,]      5.5      2.4      3.8      1.1
## [32,]      5.5      2.4      3.7      1.0
## [33,]      5.8      2.7      3.9      1.2
## [34,]      6.0      2.7      5.1      1.6
## [35,]      5.4      3.0      4.5      1.5
## [36,]      6.0      3.4      4.5      1.6
## [37,]      6.7      3.1      4.7      1.5
## [38,]      6.3      2.3      4.4      1.3
## [39,]      5.6      3.0      4.1      1.3
## [40,]      5.5      2.5      4.0      1.3
## [41,]      5.5      2.6      4.4      1.2
## [42,]      6.1      3.0      4.6      1.4
## [43,]      5.8      2.6      4.0      1.2
## [44,]      5.0      2.3      3.3      1.0
## [45,]      5.6      2.7      4.2      1.3
## [46,]      5.7      3.0      4.2      1.2
## [47,]      5.7      2.9      4.2      1.3
## [48,]      6.2      2.9      4.3      1.3
## [49,]      5.1      2.5      3.0      1.1
## [50,]      5.7      2.8      4.1      1.3
## 
## , , Virginica
## 
##       Sepal L. Sepal W. Petal L. Petal W.
##  [1,]      6.3      3.3      6.0      2.5
##  [2,]      5.8      2.7      5.1      1.9
##  [3,]      7.1      3.0      5.9      2.1
##  [4,]      6.3      2.9      5.6      1.8
##  [5,]      6.5      3.0      5.8      2.2
##  [6,]      7.6      3.0      6.6      2.1
##  [7,]      4.9      2.5      4.5      1.7
##  [8,]      7.3      2.9      6.3      1.8
##  [9,]      6.7      2.5      5.8      1.8
## [10,]      7.2      3.6      6.1      2.5
## [11,]      6.5      3.2      5.1      2.0
## [12,]      6.4      2.7      5.3      1.9
## [13,]      6.8      3.0      5.5      2.1
## [14,]      5.7      2.5      5.0      2.0
## [15,]      5.8      2.8      5.1      2.4
## [16,]      6.4      3.2      5.3      2.3
## [17,]      6.5      3.0      5.5      1.8
## [18,]      7.7      3.8      6.7      2.2
## [19,]      7.7      2.6      6.9      2.3
## [20,]      6.0      2.2      5.0      1.5
## [21,]      6.9      3.2      5.7      2.3
## [22,]      5.6      2.8      4.9      2.0
## [23,]      7.7      2.8      6.7      2.0
## [24,]      6.3      2.7      4.9      1.8
## [25,]      6.7      3.3      5.7      2.1
## [26,]      7.2      3.2      6.0      1.8
## [27,]      6.2      2.8      4.8      1.8
## [28,]      6.1      3.0      4.9      1.8
## [29,]      6.4      2.8      5.6      2.1
## [30,]      7.2      3.0      5.8      1.6
## [31,]      7.4      2.8      6.1      1.9
## [32,]      7.9      3.8      6.4      2.0
## [33,]      6.4      2.8      5.6      2.2
## [34,]      6.3      2.8      5.1      1.5
## [35,]      6.1      2.6      5.6      1.4
## [36,]      7.7      3.0      6.1      2.3
## [37,]      6.3      3.4      5.6      2.4
## [38,]      6.4      3.1      5.5      1.8
## [39,]      6.0      3.0      4.8      1.8
## [40,]      6.9      3.1      5.4      2.1
## [41,]      6.7      3.1      5.6      2.4
## [42,]      6.9      3.1      5.1      2.3
## [43,]      5.8      2.7      5.1      1.9
## [44,]      6.8      3.2      5.9      2.3
## [45,]      6.7      3.3      5.7      2.5
## [46,]      6.7      3.0      5.2      2.3
## [47,]      6.3      2.5      5.0      1.9
## [48,]      6.5      3.0      5.2      2.0
## [49,]      6.2      3.4      5.4      2.3
## [50,]      5.9      3.0      5.1      1.8
iris
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1            5.1         3.5          1.4         0.2     setosa
## 2            4.9         3.0          1.4         0.2     setosa
## 3            4.7         3.2          1.3         0.2     setosa
## 4            4.6         3.1          1.5         0.2     setosa
## 5            5.0         3.6          1.4         0.2     setosa
## 6            5.4         3.9          1.7         0.4     setosa
## 7            4.6         3.4          1.4         0.3     setosa
## 8            5.0         3.4          1.5         0.2     setosa
## 9            4.4         2.9          1.4         0.2     setosa
## 10           4.9         3.1          1.5         0.1     setosa
## 11           5.4         3.7          1.5         0.2     setosa
## 12           4.8         3.4          1.6         0.2     setosa
## 13           4.8         3.0          1.4         0.1     setosa
## 14           4.3         3.0          1.1         0.1     setosa
## 15           5.8         4.0          1.2         0.2     setosa
## 16           5.7         4.4          1.5         0.4     setosa
## 17           5.4         3.9          1.3         0.4     setosa
## 18           5.1         3.5          1.4         0.3     setosa
## 19           5.7         3.8          1.7         0.3     setosa
## 20           5.1         3.8          1.5         0.3     setosa
## 21           5.4         3.4          1.7         0.2     setosa
## 22           5.1         3.7          1.5         0.4     setosa
## 23           4.6         3.6          1.0         0.2     setosa
## 24           5.1         3.3          1.7         0.5     setosa
## 25           4.8         3.4          1.9         0.2     setosa
## 26           5.0         3.0          1.6         0.2     setosa
## 27           5.0         3.4          1.6         0.4     setosa
## 28           5.2         3.5          1.5         0.2     setosa
## 29           5.2         3.4          1.4         0.2     setosa
## 30           4.7         3.2          1.6         0.2     setosa
## 31           4.8         3.1          1.6         0.2     setosa
## 32           5.4         3.4          1.5         0.4     setosa
## 33           5.2         4.1          1.5         0.1     setosa
## 34           5.5         4.2          1.4         0.2     setosa
## 35           4.9         3.1          1.5         0.2     setosa
## 36           5.0         3.2          1.2         0.2     setosa
## 37           5.5         3.5          1.3         0.2     setosa
## 38           4.9         3.6          1.4         0.1     setosa
## 39           4.4         3.0          1.3         0.2     setosa
## 40           5.1         3.4          1.5         0.2     setosa
## 41           5.0         3.5          1.3         0.3     setosa
## 42           4.5         2.3          1.3         0.3     setosa
## 43           4.4         3.2          1.3         0.2     setosa
## 44           5.0         3.5          1.6         0.6     setosa
## 45           5.1         3.8          1.9         0.4     setosa
## 46           4.8         3.0          1.4         0.3     setosa
## 47           5.1         3.8          1.6         0.2     setosa
## 48           4.6         3.2          1.4         0.2     setosa
## 49           5.3         3.7          1.5         0.2     setosa
## 50           5.0         3.3          1.4         0.2     setosa
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
## 101          6.3         3.3          6.0         2.5  virginica
## 102          5.8         2.7          5.1         1.9  virginica
## 103          7.1         3.0          5.9         2.1  virginica
## 104          6.3         2.9          5.6         1.8  virginica
## 105          6.5         3.0          5.8         2.2  virginica
## 106          7.6         3.0          6.6         2.1  virginica
## 107          4.9         2.5          4.5         1.7  virginica
## 108          7.3         2.9          6.3         1.8  virginica
## 109          6.7         2.5          5.8         1.8  virginica
## 110          7.2         3.6          6.1         2.5  virginica
## 111          6.5         3.2          5.1         2.0  virginica
## 112          6.4         2.7          5.3         1.9  virginica
## 113          6.8         3.0          5.5         2.1  virginica
## 114          5.7         2.5          5.0         2.0  virginica
## 115          5.8         2.8          5.1         2.4  virginica
## 116          6.4         3.2          5.3         2.3  virginica
## 117          6.5         3.0          5.5         1.8  virginica
## 118          7.7         3.8          6.7         2.2  virginica
## 119          7.7         2.6          6.9         2.3  virginica
## 120          6.0         2.2          5.0         1.5  virginica
## 121          6.9         3.2          5.7         2.3  virginica
## 122          5.6         2.8          4.9         2.0  virginica
## 123          7.7         2.8          6.7         2.0  virginica
## 124          6.3         2.7          4.9         1.8  virginica
## 125          6.7         3.3          5.7         2.1  virginica
## 126          7.2         3.2          6.0         1.8  virginica
## 127          6.2         2.8          4.8         1.8  virginica
## 128          6.1         3.0          4.9         1.8  virginica
## 129          6.4         2.8          5.6         2.1  virginica
## 130          7.2         3.0          5.8         1.6  virginica
## 131          7.4         2.8          6.1         1.9  virginica
## 132          7.9         3.8          6.4         2.0  virginica
## 133          6.4         2.8          5.6         2.2  virginica
## 134          6.3         2.8          5.1         1.5  virginica
## 135          6.1         2.6          5.6         1.4  virginica
## 136          7.7         3.0          6.1         2.3  virginica
## 137          6.3         3.4          5.6         2.4  virginica
## 138          6.4         3.1          5.5         1.8  virginica
## 139          6.0         3.0          4.8         1.8  virginica
## 140          6.9         3.1          5.4         2.1  virginica
## 141          6.7         3.1          5.6         2.4  virginica
## 142          6.9         3.1          5.1         2.3  virginica
## 143          5.8         2.7          5.1         1.9  virginica
## 144          6.8         3.2          5.9         2.3  virginica
## 145          6.7         3.3          5.7         2.5  virginica
## 146          6.7         3.0          5.2         2.3  virginica
## 147          6.3         2.5          5.0         1.9  virginica
## 148          6.5         3.0          5.2         2.0  virginica
## 149          6.2         3.4          5.4         2.3  virginica
## 150          5.9         3.0          5.1         1.8  virginica
rownames(dsflores3)<-c("Largo Sépalo", "Ancho Sépalo", "Largo Pétalo", "Ancho Pétalo")
colnames(dsflores3)<-c("Setosa","Versicolor","Virgínica")

dsflores3
##                 Setosa Versicolor Virgínica
## Largo Sépalo 0.3524897  0.5161711 0.6358796
## Ancho Sépalo 0.3790644  0.3137983 0.3224966
## Largo Pétalo 0.1736640  0.4699110 0.5518947
## Ancho Pétalo 0.1053856  0.1977527 0.2746501
knitr::opts_chunk$set(echo = TRUE)

CLASE DEL 06 DE SEPTIEMBRE 2021

En esta clase trabajamos con las bases de datos que ya vienen precargadas en R iris e iris3. Además comenzamos a explorar las funciones que ya vienen precargadas en R, así como el comando aggregate.

########CLASE 06 DE SEPTIEMBRE 2021############

apply(iris3[,,3],2,summary) #Estadísticos de resumen
##         Sepal L. Sepal W. Petal L. Petal W.
## Min.       4.900    2.200    4.500    1.400
## 1st Qu.    6.225    2.800    5.100    1.800
## Median     6.500    3.000    5.550    2.000
## Mean       6.588    2.974    5.552    2.026
## 3rd Qu.    6.900    3.175    5.875    2.300
## Max.       7.900    3.800    6.900    2.500
colMeans(iris[,-5])
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##     5.843333     3.057333     3.758000     1.199333
rbind(colMeans(iris[1:50,-5]) ,
colMeans(iris[51:100,-5]) ,
colMeans(iris[101:150,-5]) )
##      Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,]        5.006       3.428        1.462       0.246
## [2,]        5.936       2.770        4.260       1.326
## [3,]        6.588       2.974        5.552       2.026
#Aggregate + ~
#x~Y #Izquierd, numérica... derecha, puede ser no numérica

aggregate(Sepal.Length ~ Species,data=iris,mean)
##      Species Sepal.Length
## 1     setosa        5.006
## 2 versicolor        5.936
## 3  virginica        6.588
Sepal.Length ~ Species (max)
## Sepal.Length ~ Species(max)
iris
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1            5.1         3.5          1.4         0.2     setosa
## 2            4.9         3.0          1.4         0.2     setosa
## 3            4.7         3.2          1.3         0.2     setosa
## 4            4.6         3.1          1.5         0.2     setosa
## 5            5.0         3.6          1.4         0.2     setosa
## 6            5.4         3.9          1.7         0.4     setosa
## 7            4.6         3.4          1.4         0.3     setosa
## 8            5.0         3.4          1.5         0.2     setosa
## 9            4.4         2.9          1.4         0.2     setosa
## 10           4.9         3.1          1.5         0.1     setosa
## 11           5.4         3.7          1.5         0.2     setosa
## 12           4.8         3.4          1.6         0.2     setosa
## 13           4.8         3.0          1.4         0.1     setosa
## 14           4.3         3.0          1.1         0.1     setosa
## 15           5.8         4.0          1.2         0.2     setosa
## 16           5.7         4.4          1.5         0.4     setosa
## 17           5.4         3.9          1.3         0.4     setosa
## 18           5.1         3.5          1.4         0.3     setosa
## 19           5.7         3.8          1.7         0.3     setosa
## 20           5.1         3.8          1.5         0.3     setosa
## 21           5.4         3.4          1.7         0.2     setosa
## 22           5.1         3.7          1.5         0.4     setosa
## 23           4.6         3.6          1.0         0.2     setosa
## 24           5.1         3.3          1.7         0.5     setosa
## 25           4.8         3.4          1.9         0.2     setosa
## 26           5.0         3.0          1.6         0.2     setosa
## 27           5.0         3.4          1.6         0.4     setosa
## 28           5.2         3.5          1.5         0.2     setosa
## 29           5.2         3.4          1.4         0.2     setosa
## 30           4.7         3.2          1.6         0.2     setosa
## 31           4.8         3.1          1.6         0.2     setosa
## 32           5.4         3.4          1.5         0.4     setosa
## 33           5.2         4.1          1.5         0.1     setosa
## 34           5.5         4.2          1.4         0.2     setosa
## 35           4.9         3.1          1.5         0.2     setosa
## 36           5.0         3.2          1.2         0.2     setosa
## 37           5.5         3.5          1.3         0.2     setosa
## 38           4.9         3.6          1.4         0.1     setosa
## 39           4.4         3.0          1.3         0.2     setosa
## 40           5.1         3.4          1.5         0.2     setosa
## 41           5.0         3.5          1.3         0.3     setosa
## 42           4.5         2.3          1.3         0.3     setosa
## 43           4.4         3.2          1.3         0.2     setosa
## 44           5.0         3.5          1.6         0.6     setosa
## 45           5.1         3.8          1.9         0.4     setosa
## 46           4.8         3.0          1.4         0.3     setosa
## 47           5.1         3.8          1.6         0.2     setosa
## 48           4.6         3.2          1.4         0.2     setosa
## 49           5.3         3.7          1.5         0.2     setosa
## 50           5.0         3.3          1.4         0.2     setosa
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
## 101          6.3         3.3          6.0         2.5  virginica
## 102          5.8         2.7          5.1         1.9  virginica
## 103          7.1         3.0          5.9         2.1  virginica
## 104          6.3         2.9          5.6         1.8  virginica
## 105          6.5         3.0          5.8         2.2  virginica
## 106          7.6         3.0          6.6         2.1  virginica
## 107          4.9         2.5          4.5         1.7  virginica
## 108          7.3         2.9          6.3         1.8  virginica
## 109          6.7         2.5          5.8         1.8  virginica
## 110          7.2         3.6          6.1         2.5  virginica
## 111          6.5         3.2          5.1         2.0  virginica
## 112          6.4         2.7          5.3         1.9  virginica
## 113          6.8         3.0          5.5         2.1  virginica
## 114          5.7         2.5          5.0         2.0  virginica
## 115          5.8         2.8          5.1         2.4  virginica
## 116          6.4         3.2          5.3         2.3  virginica
## 117          6.5         3.0          5.5         1.8  virginica
## 118          7.7         3.8          6.7         2.2  virginica
## 119          7.7         2.6          6.9         2.3  virginica
## 120          6.0         2.2          5.0         1.5  virginica
## 121          6.9         3.2          5.7         2.3  virginica
## 122          5.6         2.8          4.9         2.0  virginica
## 123          7.7         2.8          6.7         2.0  virginica
## 124          6.3         2.7          4.9         1.8  virginica
## 125          6.7         3.3          5.7         2.1  virginica
## 126          7.2         3.2          6.0         1.8  virginica
## 127          6.2         2.8          4.8         1.8  virginica
## 128          6.1         3.0          4.9         1.8  virginica
## 129          6.4         2.8          5.6         2.1  virginica
## 130          7.2         3.0          5.8         1.6  virginica
## 131          7.4         2.8          6.1         1.9  virginica
## 132          7.9         3.8          6.4         2.0  virginica
## 133          6.4         2.8          5.6         2.2  virginica
## 134          6.3         2.8          5.1         1.5  virginica
## 135          6.1         2.6          5.6         1.4  virginica
## 136          7.7         3.0          6.1         2.3  virginica
## 137          6.3         3.4          5.6         2.4  virginica
## 138          6.4         3.1          5.5         1.8  virginica
## 139          6.0         3.0          4.8         1.8  virginica
## 140          6.9         3.1          5.4         2.1  virginica
## 141          6.7         3.1          5.6         2.4  virginica
## 142          6.9         3.1          5.1         2.3  virginica
## 143          5.8         2.7          5.1         1.9  virginica
## 144          6.8         3.2          5.9         2.3  virginica
## 145          6.7         3.3          5.7         2.5  virginica
## 146          6.7         3.0          5.2         2.3  virginica
## 147          6.3         2.5          5.0         1.9  virginica
## 148          6.5         3.0          5.2         2.0  virginica
## 149          6.2         3.4          5.4         2.3  virginica
## 150          5.9         3.0          5.1         1.8  virginica
aggregate(Sepal.Width ~ Species,data=iris,mean)
##      Species Sepal.Width
## 1     setosa       3.428
## 2 versicolor       2.770
## 3  virginica       2.974
aggregate( cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,data=iris,mean)
##      Species Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1     setosa        5.006       3.428        1.462       0.246
## 2 versicolor        5.936       2.770        4.260       1.326
## 3  virginica        6.588       2.974        5.552       2.026
aggregate( cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,data=iris,sd)
##      Species Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1     setosa    0.3524897   0.3790644    0.1736640   0.1053856
## 2 versicolor    0.5161711   0.3137983    0.4699110   0.1977527
## 3  virginica    0.6358796   0.3224966    0.5518947   0.2746501
Sepal.Length~Species(max)
## Sepal.Length ~ Species(max)
#######VAMOS A TRABAJAR CON OTRA BASE DE DATOS PRECARGADA EN R############

data("ToothGrowth")
ToothGrowth
##     len supp dose
## 1   4.2   VC  0.5
## 2  11.5   VC  0.5
## 3   7.3   VC  0.5
## 4   5.8   VC  0.5
## 5   6.4   VC  0.5
## 6  10.0   VC  0.5
## 7  11.2   VC  0.5
## 8  11.2   VC  0.5
## 9   5.2   VC  0.5
## 10  7.0   VC  0.5
## 11 16.5   VC  1.0
## 12 16.5   VC  1.0
## 13 15.2   VC  1.0
## 14 17.3   VC  1.0
## 15 22.5   VC  1.0
## 16 17.3   VC  1.0
## 17 13.6   VC  1.0
## 18 14.5   VC  1.0
## 19 18.8   VC  1.0
## 20 15.5   VC  1.0
## 21 23.6   VC  2.0
## 22 18.5   VC  2.0
## 23 33.9   VC  2.0
## 24 25.5   VC  2.0
## 25 26.4   VC  2.0
## 26 32.5   VC  2.0
## 27 26.7   VC  2.0
## 28 21.5   VC  2.0
## 29 23.3   VC  2.0
## 30 29.5   VC  2.0
## 31 15.2   OJ  0.5
## 32 21.5   OJ  0.5
## 33 17.6   OJ  0.5
## 34  9.7   OJ  0.5
## 35 14.5   OJ  0.5
## 36 10.0   OJ  0.5
## 37  8.2   OJ  0.5
## 38  9.4   OJ  0.5
## 39 16.5   OJ  0.5
## 40  9.7   OJ  0.5
## 41 19.7   OJ  1.0
## 42 23.3   OJ  1.0
## 43 23.6   OJ  1.0
## 44 26.4   OJ  1.0
## 45 20.0   OJ  1.0
## 46 25.2   OJ  1.0
## 47 25.8   OJ  1.0
## 48 21.2   OJ  1.0
## 49 14.5   OJ  1.0
## 50 27.3   OJ  1.0
## 51 25.5   OJ  2.0
## 52 26.4   OJ  2.0
## 53 22.4   OJ  2.0
## 54 24.5   OJ  2.0
## 55 24.8   OJ  2.0
## 56 30.9   OJ  2.0
## 57 26.4   OJ  2.0
## 58 27.3   OJ  2.0
## 59 29.4   OJ  2.0
## 60 23.0   OJ  2.0
head(ToothGrowth)
##    len supp dose
## 1  4.2   VC  0.5
## 2 11.5   VC  0.5
## 3  7.3   VC  0.5
## 4  5.8   VC  0.5
## 5  6.4   VC  0.5
## 6 10.0   VC  0.5
dim(ToothGrowth)
## [1] 60  3
# ?ToothGrowth

mean(ToothGrowth$len)
## [1] 18.81333
mean(ToothGrowth$dose)
## [1] 1.166667
sd(ToothGrowth$dose)
## [1] 0.6288722
max(ToothGrowth$len)
## [1] 33.9
min(ToothGrowth$len)
## [1] 4.2
###Cuál es el promedio de crecimiento por método de aplicación (supp)?###

aggregate(len~supp,data=ToothGrowth,mean)
##   supp      len
## 1   OJ 20.66333
## 2   VC 16.96333
Sepal.Length~Species(max)
## Sepal.Length ~ Species(max)
head(ToothGrowth)
##    len supp dose
## 1  4.2   VC  0.5
## 2 11.5   VC  0.5
## 3  7.3   VC  0.5
## 4  5.8   VC  0.5
## 5  6.4   VC  0.5
## 6 10.0   VC  0.5
aggregate(len~dose,data=ToothGrowth,mean)
##   dose    len
## 1  0.5 10.605
## 2  1.0 19.735
## 3  2.0 26.100
aggregate(len~supp+dose,data=ToothGrowth,mean)
##   supp dose   len
## 1   OJ  0.5 13.23
## 2   VC  0.5  7.98
## 3   OJ  1.0 22.70
## 4   VC  1.0 16.77
## 5   OJ  2.0 26.06
## 6   VC  2.0 26.14
aggregate(len~dose+supp,data=ToothGrowth,mean)
##   dose supp   len
## 1  0.5   OJ 13.23
## 2  1.0   OJ 22.70
## 3  2.0   OJ 26.06
## 4  0.5   VC  7.98
## 5  1.0   VC 16.77
## 6  2.0   VC 26.14
####VAMOS A AGREGARLE UNA COLUMNA A NUESTRA BASE DE DATOS, GENERANDO UN VECTOR ALEATORIO
set.seed(15148)
pesos<-rnorm(60,10,2)
peso_dientes<-data.frame(ToothGrowth,pesos)
peso_dientes
##     len supp dose     pesos
## 1   4.2   VC  0.5 10.280418
## 2  11.5   VC  0.5  8.110956
## 3   7.3   VC  0.5 12.450044
## 4   5.8   VC  0.5  9.648081
## 5   6.4   VC  0.5 10.382548
## 6  10.0   VC  0.5  8.637649
## 7  11.2   VC  0.5  8.320436
## 8  11.2   VC  0.5  9.866794
## 9   5.2   VC  0.5  9.063384
## 10  7.0   VC  0.5 10.679695
## 11 16.5   VC  1.0  8.781847
## 12 16.5   VC  1.0 11.540903
## 13 15.2   VC  1.0 11.184907
## 14 17.3   VC  1.0  9.652038
## 15 22.5   VC  1.0  9.319646
## 16 17.3   VC  1.0 12.283228
## 17 13.6   VC  1.0  9.666190
## 18 14.5   VC  1.0  9.822652
## 19 18.8   VC  1.0  8.834662
## 20 15.5   VC  1.0 11.847592
## 21 23.6   VC  2.0  7.859877
## 22 18.5   VC  2.0 11.709384
## 23 33.9   VC  2.0 10.325133
## 24 25.5   VC  2.0  8.811817
## 25 26.4   VC  2.0  9.850443
## 26 32.5   VC  2.0  7.835931
## 27 26.7   VC  2.0 12.702399
## 28 21.5   VC  2.0  8.360866
## 29 23.3   VC  2.0  9.530358
## 30 29.5   VC  2.0  7.831811
## 31 15.2   OJ  0.5 11.143076
## 32 21.5   OJ  0.5  8.543388
## 33 17.6   OJ  0.5  5.731709
## 34  9.7   OJ  0.5 13.895892
## 35 14.5   OJ  0.5  8.338295
## 36 10.0   OJ  0.5 11.676682
## 37  8.2   OJ  0.5  8.623471
## 38  9.4   OJ  0.5 11.092726
## 39 16.5   OJ  0.5 10.913397
## 40  9.7   OJ  0.5 10.282987
## 41 19.7   OJ  1.0  9.485296
## 42 23.3   OJ  1.0  8.471348
## 43 23.6   OJ  1.0  7.686649
## 44 26.4   OJ  1.0  8.507136
## 45 20.0   OJ  1.0  6.140012
## 46 25.2   OJ  1.0  8.039177
## 47 25.8   OJ  1.0 11.511190
## 48 21.2   OJ  1.0  9.451776
## 49 14.5   OJ  1.0  6.942627
## 50 27.3   OJ  1.0  6.824122
## 51 25.5   OJ  2.0 10.135482
## 52 26.4   OJ  2.0  9.587137
## 53 22.4   OJ  2.0  8.938045
## 54 24.5   OJ  2.0  6.171893
## 55 24.8   OJ  2.0  9.583907
## 56 30.9   OJ  2.0  8.308800
## 57 26.4   OJ  2.0 11.405421
## 58 27.3   OJ  2.0  8.396101
## 59 29.4   OJ  2.0  8.690716
## 60 23.0   OJ  2.0 10.741280
aggregate(cbind(pesos,len)~dose+supp,data=peso_dientes,mean)
##   dose supp     pesos   len
## 1  0.5   OJ 10.024162 13.23
## 2  1.0   OJ  8.305933 22.70
## 3  2.0   OJ  9.195878 26.06
## 4  0.5   VC  9.744000  7.98
## 5  1.0   VC 10.293366 16.77
## 6  2.0   VC  9.481802 26.14
aggregate(cbind(len,pesos)~dose+supp,data=peso_dientes,mean)
##   dose supp   len     pesos
## 1  0.5   OJ 13.23 10.024162
## 2  1.0   OJ 22.70  8.305933
## 3  2.0   OJ 26.06  9.195878
## 4  0.5   VC  7.98  9.744000
## 5  1.0   VC 16.77 10.293366
## 6  2.0   VC 26.14  9.481802
pesos2<-runif(60)
aggregate(cbind(len,pesos,pesos2)~dose+supp,data=peso_dientes,mean)
##   dose supp   len     pesos    pesos2
## 1  0.5   OJ 13.23 10.024162 0.4034515
## 2  1.0   OJ 22.70  8.305933 0.5679498
## 3  2.0   OJ 26.06  9.195878 0.4765870
## 4  0.5   VC  7.98  9.744000 0.4664007
## 5  1.0   VC 16.77 10.293366 0.5118205
## 6  2.0   VC 26.14  9.481802 0.3408846
knitr::opts_chunk$set(echo = TRUE)

CLASE DEL 07 DE SEPTIEMBRE 2021 Y DEL 14 DE SEPTIEMBRE 2021

En estas dos clases trabajamos con los datos de Aguascalientes. Aprendimos a aplicar funciones que ya vienen precargadas en R a un conjunto de datos. Para esto es de especial utilidad el comando aggregate.

### CLASE 07 DE SEPTIEMBRE 2021

#install.packages("readxl")
library(readxl)
#install.packages("kernlab")
library("kernlab")
datos10<-read_excel("C:/Users/mez1/Documents/CIDE/METPOL/1 SEMESTRE/BASES DE DATOS/datos_ags_estado_2020.xlsx",sheet="Hoja1",range="A1:HV481",na=c("*","N/D"))
attach(datos10)

datos10
## # A tibble: 480 x 230
##    ENTIDAD NOM_ENT  MUN   NOM_MUN LOC   NOM_LOC AGEB  MZA   POBTOT POBFEM POBMAS
##    <chr>   <chr>    <chr> <chr>   <chr> <chr>   <chr> <chr> <chr>  <chr>  <chr> 
##  1 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0017  000   2237   1137   1100  
##  2 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 006A  000   1411   712    699   
##  3 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0106  000   2962   1497   1465  
##  4 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0163  000   2698   1305   1393  
##  5 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0182  000   2218   1110   1108  
##  6 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0229  000   300    147    153   
##  7 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0233  000   1400   731    669   
##  8 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0286  000   3262   1679   1583  
##  9 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0290  000   1668   906    762   
## 10 01      Aguasca~ 001   Aguasc~ 0001  Total ~ 0303  000   2202   1217   985   
## # ... with 470 more rows, and 219 more variables: P_0A2 <chr>, P_0A2_F <chr>,
## #   P_0A2_M <chr>, P_3YMAS <chr>, P_3YMAS_F <chr>, P_3YMAS_M <chr>,
## #   P_5YMAS <chr>, P_5YMAS_F <chr>, P_5YMAS_M <chr>, P_12YMAS <chr>,
## #   P_12YMAS_F <chr>, P_12YMAS_M <chr>, P_15YMAS <chr>, P_15YMAS_F <chr>,
## #   P_15YMAS_M <chr>, P_18YMAS <chr>, P_18YMAS_F <chr>, P_18YMAS_M <chr>,
## #   P_3A5 <chr>, P_3A5_F <chr>, P_3A5_M <chr>, P_6A11 <chr>, P_6A11_F <chr>,
## #   P_6A11_M <chr>, P_8A14 <chr>, P_8A14_F <chr>, P_8A14_M <chr>, ...
View(datos10)
mean(as.numeric(datos10$POBTOT))
## [1] 2497.315
#mean(datos10$POBTOT)
is.data.frame(datos10)
## [1] TRUE
#¿cUÁL ES LA POBLACIÓN TOTAL DE LOS 11 MUNICIPIOS?

#TOTAL(sum)
aggregate(as.numeric(POBTOT)~NOM_MUN,data=datos10,mean)
##                      NOM_MUN as.numeric(POBTOT)
## 1             Aguascalientes           2707.045
## 2                   Asientos           1110.000
## 3                   Calvillo           1668.647
## 4                      Cosío           1211.000
## 5                   El Llano           2102.333
## 6                Jesús María           2378.634
## 7        Pabellón de Arteaga           2356.733
## 8            Rincón de Romos           2660.125
## 9  San Francisco de los Romo           2431.368
## 10        San José de Gracia            934.500
## 11                  Tepezalá           1302.000
aggregate(as.numeric(POBTOT)~NOM_MUN,data=datos10,sum)
##                      NOM_MUN as.numeric(POBTOT)
## 1             Aguascalientes             901446
## 2                   Asientos              17760
## 3                   Calvillo              28367
## 4                      Cosío               8477
## 5                   El Llano               6307
## 6                Jesús María              97524
## 7        Pabellón de Arteaga              35351
## 8            Rincón de Romos              42562
## 9  San Francisco de los Romo              46196
## 10        San José de Gracia               5607
## 11                  Tepezalá               9114
#¿cUÁL ES EL TOTAL DE HOMBRES DE LOS 11 MUNICIPIOS?

aggregate(as.numeric(POBMAS)~NOM_MUN,data=datos10,sum)
##                      NOM_MUN as.numeric(POBMAS)
## 1             Aguascalientes             437749
## 2                   Asientos               8673
## 3                   Calvillo              13806
## 4                      Cosío               4067
## 5                   El Llano               3088
## 6                Jesús María              48011
## 7        Pabellón de Arteaga              17305
## 8            Rincón de Romos              20808
## 9  San Francisco de los Romo              22865
## 10        San José de Gracia               2635
## 11                  Tepezalá               4524
#¿CUÁL ES EL TOTAL DE MUJERES DE LOS 11 MUNICIPIOS (PROPORCIÓN)?

aggregate(as.numeric(POBFEM)~NOM_MUN,data=datos10,sum)
##                      NOM_MUN as.numeric(POBFEM)
## 1             Aguascalientes             463697
## 2                   Asientos               9087
## 3                   Calvillo              14561
## 4                      Cosío               4410
## 5                   El Llano               3219
## 6                Jesús María              49513
## 7        Pabellón de Arteaga              18046
## 8            Rincón de Romos              21748
## 9  San Francisco de los Romo              23331
## 10        San José de Gracia               2972
## 11                  Tepezalá               4590
###TABLA POBLACIÓN TOTAL HOMBRES Y MUJERES

tabla1<-aggregate(cbind(as.numeric(POBTOT),as.numeric(POBFEM),as.numeric(POBMAS))~NOM_MUN,data=datos10,sum)

View(tabla1)

attach(tabla1)
## The following object is masked from datos10:
## 
##     NOM_MUN
prop_fem<-tabla1$V2/tabla1$V1
tabla2<-data.frame(tabla1,Prop_fem=prop_fem)

View(tabla2)


tabla15<-aggregate(cbind(as.numeric(VIVTOT))~NOM_MUN,data=datos10, FUN=sum)

#rm(TABLA15)

#tabla15$Pro_viv<-tabla15$V2/tabla15$V1
#View(tabla15$Pro_viv)


san_jose<-which(datos10$NOM_MUN=="San José de Gracia")

datos_san_jose<-datos10[san_jose,]

datos_san_jose$POBTOT<-sum(as.numeric(datos_san_jose$POBTOT))

tabla18<-aggregate(cbind(as.numeric(POBTOT),as.numeric(POBFEM))~NOM_MUN+AGEB,data=datos10,FUN=sum)

tabla18$Prop_muj<-tabla18$V2/tabla18$V1

tabla18$V2/tabla18$V1
##   [1] 0.51292802 0.50827000 0.51157728 0.51379691 0.52498458 0.49601100
##   [7] 0.51008493 0.51936555 0.52561608 0.51428571 0.50460666 0.51669545
##  [13] 0.50812547 0.51571520 0.51531654 0.51763367 0.51771872 0.50113379
##  [19] 0.51734694 0.50205950 0.50818331 0.50540176 0.53290083 0.53894081
##  [25] 0.52068345 0.51226693 0.50962672 0.52140351 0.51143854 0.52059004
##  [31] 0.51796994 0.52838428 0.50661925 0.50947314 0.49973291 0.47257384
##  [37] 0.52464789 0.49200710 0.51657356 0.50402576 0.50255220 0.51721612
##  [43] 0.51612903 0.49252839 0.50419287 0.50642674 0.50210970 0.50646950
##  [49] 0.49324932 0.48760331 0.48369162 0.54703196 0.48809524 0.50874738
##  [55] 0.51339764 0.50365497 0.53590193 0.49734357 0.51113173 0.52342641
##  [61] 0.54148472 0.51586844 0.50045086 0.54868270 0.53222342 0.50633293
##  [67] 0.49836334 0.50863836 0.51502030 0.49926145 0.51529412 0.48843188
##  [73] 0.52459016 0.51201923 0.48798799 0.49480249 0.49509804 0.52655889
##  [79] 0.51129944 0.51023465 0.52240896 0.51342129 0.48263349 0.49000000
##  [85] 0.52214286 0.51095690 0.46472019 0.51287910 0.49880178 0.51020408
##  [91] 0.49202128 0.50492754 0.51205185 0.51001214 0.46952835 0.51224784
##  [97] 0.50999512 0.46511628 0.50835866 0.48866499 0.51612903 0.50746269
## [103] 0.55555556 0.51539708 0.50060606 0.51173322 0.52534562 0.51471490
## [109] 0.51918559 0.54316547 0.51898734 0.51396226 0.50059312 0.55267938
## [115] 0.51446541 0.46416382 0.52750225 0.49921198 0.52457695 0.51786727
## [121] 0.54007782 0.51094891 0.50326797 0.50929669 0.54450583 0.52549020
## [127] 0.48958333 0.50420463 0.55180442 0.45121951 0.51648352 0.53341861
## [133] 0.51167445 0.49934938 0.49133449 0.50801688 0.56974460 0.53638814
## [139] 0.50814011 0.53248899 0.50952986 0.51981506 0.51722282 0.50161812
## [145] 0.53098071 0.50160624 0.53289474 0.50000000 0.49589858 0.52793103
## [151] 0.50038329 0.52586558 0.51662887 0.49551387 0.51036637 0.53268859
## [157] 0.52520803 0.50548847 0.52484342 0.50669643 0.51859256 0.49285714
## [163] 0.53990285 0.55109232 0.50568182 0.53288288 0.50219780 0.51966741
## [169] 0.51495378 0.52935323 0.50683413 0.53333333 0.50754098 0.53794731
## [175] 0.54084507 0.53753754 0.52194656 0.54025424 0.49264706 0.55382331
## [181] 0.50061050 0.52290679 0.52259763 0.54618227 0.55524862 0.54326123
## [187] 0.52141467 0.51154734 0.56028369 0.48888889 0.52449799 0.50813871
## [193] 0.52915159 0.54800591 0.51254480 0.54615385 0.55075758 0.55078684
## [199] 0.53624762 0.56538763 0.52917093 0.51030928 0.55446927 0.53321033
## [205] 0.50208160 0.52035887 0.56030702 0.51774113 0.49950249 0.53460246
## [211] 0.52579468 0.50882825 0.52005871 0.52037803 0.49433962 0.49836468
## [217] 0.49543677 0.49770759 0.50223297 0.48270181 0.49449204 0.48189046
## [223] 0.48954373 0.52368648 0.51186270 0.50610717 0.48611111 0.51825935
## [229] 0.51360634 0.50840673 0.50522840 0.50000000 0.52877634 0.52586207
## [235] 0.54191617 0.48802083 0.47058824 0.50936330 0.53164557 0.53392857
## [241] 0.50847458 0.51850401 0.51826923 0.50854449 0.50963763 0.52455048
## [247] 0.50323375 0.51938700        NaN 0.49355625 0.52380952 0.54131054
## [253] 0.53697749 0.51545530 0.54064772 0.52420917 0.52882985 0.54115226
## [259] 0.50841889 0.53441683 0.51382170 0.52796774 0.50792812 0.51900437
## [265] 0.55603080 0.51770658 0.51783518 0.52411041 0.51239669 0.51684263
## [271] 0.51614114 0.54347008 0.51189373 0.52313297 0.50538014 0.50581528
## [277] 0.50631912 0.51206492 0.54510309 0.53114887 0.51802704 0.52247191
## [283] 0.53896104 0.53881098 0.52987066 0.51794728 0.53286853 0.52828380
## [289] 0.49565454 0.50490050 0.49378882 0.50256598 0.53269398 0.51471215
## [295] 0.51616231 0.51172708 0.52283105 0.52586005 0.51136364 0.52548821
## [301] 0.51390801 0.52744186 0.52104080 0.50521610 0.52570574 0.52168525
## [307] 0.53281639 0.51137850 0.50827572 0.52081362 0.51338346 0.51906841
## [313] 0.50976845 0.52470696 0.51417973 0.52245720 0.51888044 0.51875545
## [319] 0.51684509 0.51482480 0.51721715 0.51968504 0.52712846 0.50580396
## [325] 0.50630782 0.51660587 0.50746840 0.51418951 0.50050454 0.51317006
## [331] 0.51710489 0.53259141 0.46453089 0.50127226 0.50914634 0.50366610
## [337] 0.50742983 0.50483255 0.50478522 0.52460457 0.51592357 0.51047248
## [343] 0.51065292 0.49834188 0.51409052 0.51869159 0.51038422 0.51725293
## [349] 0.49699571 0.49097018 0.52252693 0.50571037 0.51631557 0.51934409
## [355] 0.50332712 0.51721377 0.50676111 0.50759878 0.49025579 0.48943270
## [361] 0.51621339 0.51007299 0.51482386 0.52941176 0.53061224 0.50374724
## [367] 0.51694487 0.50389144 0.51643979 0.51018699 0.48687172 0.49491049
## [373] 0.51913379 0.49634026 0.50323276 0.52631579 0.39473684 0.52094972
## [379] 0.05555556 0.51010309 0.50909091 0.51469194 0.47163121 0.49723375
## [385] 0.48750000 0.49505840 0.52150697 0.51218248 0.51865828 0.51236641
## [391] 0.50070588 0.53067729 0.50276799 0.50976997 0.51333333 0.51043155
## [397] 0.50729858 0.49936176 0.52369942 0.51254753 0.51728272 0.54551008
## [403] 0.50880000 0.52427184 0.50788022 0.50629874 0.51083130 0.50877909
## [409] 0.50522534 0.52108037 0.50088928 0.51380928 0.51085142 0.50958096
## [415] 0.50746269 0.50944444 0.48830285 0.50698324 0.49745006 0.51609384
## [421] 0.54155496 0.50264296 0.51005143 0.52080891 0.50699001 0.49787152
## [427] 0.48875256 0.52493438 0.51684088 0.49451888 0.49376947 0.52896552
## [433] 0.50427350 0.49084465 0.49634108 0.50687146 0.50512821 0.49945652
## [439] 0.51355422 0.51947195 0.50701754 0.49249094 0.47274633 0.56276151
## [445] 0.49148418 0.51369356 0.50490490 0.53803596 0.36111111 0.57142857
## [451] 0.49489796 0.49318182 0.49871465 0.50494857 0.49420608 0.51515152
## [457] 0.45454545 0.54612546 0.50838635 0.47849462 0.51309789 0.50271641
## [463] 0.51595457 0.49581173 0.51237113 0.51330989 0.54078014 0.49816850
## [469] 0.50311365 0.50350989 0.50789474 0.47846890 0.49271137 0.49362477
## [475] 0.49218550 0.51851852 0.49814126 0.50966023 0.49686099
#?sort

mean(as.numeric(datos10$P_0A2_F))
## [1] NA
mean(as.numeric(datos10$P_0A2_F),na.rm=TRUE) 
## [1] 62.48817
####REMOVIÓ LOS NAs PARA QUE ME DIERA UN VALOR NUMÉRICO

sum(is.na(as.numeric(datos10$P_0A2_F)))
## [1] 15
# summary(as.numeric(datos10$P_0A2_F)
#summary(as.numeric(datos10$P_0A2_F)[7]

#aggregate(as.numeric(P_0A2_F)~NOM_MUN,FUN=mean,data=datos10,na.rm=TRUE)

#LÓGICA DE R: 0=FALSO   1=VERDADERO

#PROMEDIO POR MUNICIPIO
aggregate(as.numeric(P_0A2_F)~NOM_MUN,FUN=mean,data=datos10,na.rm=TRUE)
##                      NOM_MUN as.numeric(P_0A2_F)
## 1             Aguascalientes            63.59077
## 2                   Asientos            40.57143
## 3                   Calvillo            51.06667
## 4                      Cosío            36.42857
## 5                   El Llano            63.66667
## 6                Jesús María            64.17949
## 7        Pabellón de Arteaga            63.66667
## 8            Rincón de Romos            83.26667
## 9  San Francisco de los Romo            74.47368
## 10        San José de Gracia            36.50000
## 11                  Tepezalá            38.42857
#*COEFICIENTE DE VARIACIÓN...
#*FUN= función realizada por nosotros ¿Y cómo la realizamos?
#*
#*FUNCIONES PERSONALIZADAS ##FUNCIONES DEL USUARIO##
#*¿ENTRADA DE LA FUNCIÓN?¿CUÁL ES LA SALIDA?
#*
#*PROGRAMAN COMO SE REQUIERA
#*
#*FUNCIONES PERSONALIZADAS
#*   *1) RANGO(max-min)
#*   *2) COEFICIENTE DE VARIABILIDAD SIGMA/ABS(media)
#    *3) MEDIA CORTADA (descartar los valores mayores o menores)

rango<-function(x){max(x)-min(x)}




### CLASE 14 DE SEPTIEMBRE 2021


#CLASE 2###
NOM_MUN=="San José de Gracia"
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#*MUN=="011"
#*sanjose<-which(ags$NOM_MUN=="San José de Gracia")
#*dsanjose<-ags[sanjose,]
#*pobsanjose<-dsanjose$POBTOT
#sum(as.numeric(pobsanjose))
#tabla18<-aggregate(cbind(as.numeric(NPOBTOT),as.numeric(NPOBFEM))~NOM_MUN+AGEB,DATA=ags,FUN=sum)
#na.omit(ags)
#NPOBTOT<-gsub(POBTOT)
#NPOBFEM<-na.exclude(POBFEM)
#?gsub

knitr::opts_chunk$set(echo = TRUE)

CLASE 21 DE SEPTIEMBRE 2021

En esta clase aprendimos a diseñar funciones y a aplicarlos a un conjunto de datos. Para esto es de especial utilidad el comando apply.

###CLASE 21 DE SEPTIEMBRE 2021

eigen(cor(iris[,-5]))
## eigen() decomposition
## $values
## [1] 2.91849782 0.91403047 0.14675688 0.02071484
## 
## $vectors
##            [,1]        [,2]       [,3]       [,4]
## [1,]  0.5210659 -0.37741762  0.7195664  0.2612863
## [2,] -0.2693474 -0.92329566 -0.2443818 -0.1235096
## [3,]  0.5804131 -0.02449161 -0.1421264 -0.8014492
## [4,]  0.5648565 -0.06694199 -0.6342727  0.5235971
descomposi<-function(w){
  return(eigen(cor(w))$vector)
}
descomposi(iris3[,,1])
##           [,1]       [,2]          [,3]        [,4]
## [1,] 0.6044164  0.3349908 -0.0673598261  0.71966982
## [2,] 0.5756194  0.4408461 -0.0007138239 -0.68870645
## [3,] 0.3754348 -0.6269717 -0.6770628102 -0.08683986
## [4,] 0.4029788 -0.5480350  0.7328356536 -0.01475204
descomposi(iris3[,,1])
##           [,1]       [,2]          [,3]        [,4]
## [1,] 0.6044164  0.3349908 -0.0673598261  0.71966982
## [2,] 0.5756194  0.4408461 -0.0007138239 -0.68870645
## [3,] 0.3754348 -0.6269717 -0.6770628102 -0.08683986
## [4,] 0.4029788 -0.5480350  0.7328356536 -0.01475204
descomposi(iris3[,1:3,2])
##            [,1]       [,2]        [,3]
## [1,] -0.5954707  0.4261450  0.68103976
## [2,] -0.5289341 -0.8460217  0.06690233
## [3,] -0.6046845  0.3203868 -0.72918374
descomposi(iris3[1:10,,2])
##            [,1]       [,2]       [,3]        [,4]
## [1,] -0.5023311  0.5888137  0.1850325  0.60557812
## [2,] -0.4971351 -0.0577743 -0.8607149 -0.09321322
## [3,] -0.5247149  0.1978622  0.3700007 -0.74069177
## [4,] -0.4745466 -0.7815440  0.2967024  0.27561229
descomposi2<-function(w){
  lista1<-eigen(cor(w))
  return(list(lista1$vectors,lista1$values))
}
descomposi2(iris3[,,1])
## [[1]]
##           [,1]       [,2]          [,3]        [,4]
## [1,] 0.6044164  0.3349908 -0.0673598261  0.71966982
## [2,] 0.5756194  0.4408461 -0.0007138239 -0.68870645
## [3,] 0.3754348 -0.6269717 -0.6770628102 -0.08683986
## [4,] 0.4029788 -0.5480350  0.7328356536 -0.01475204
## 
## [[2]]
## [1] 2.0585402 1.0221782 0.6678202 0.2514613
descomposi2(iris3[,,1])[[1]][,1]
## [1] 0.6044164 0.5756194 0.3754348 0.4029788
descomposi3<-function(w){
  lista1<-eigen(cor(w))
  return(list(Vector=lista1$vectors,Valores=lista1$values))
}
descomposi3(iris3[,,1])$Vector
##           [,1]       [,2]          [,3]        [,4]
## [1,] 0.6044164  0.3349908 -0.0673598261  0.71966982
## [2,] 0.5756194  0.4408461 -0.0007138239 -0.68870645
## [3,] 0.3754348 -0.6269717 -0.6770628102 -0.08683986
## [4,] 0.4029788 -0.5480350  0.7328356536 -0.01475204
descomposi3(iris3[,,1])$Valores
## [1] 2.0585402 1.0221782 0.6678202 0.2514613
coeficiente<-matrix(c(3,2,1,5,3,4,1,1,-1),ncol=3,byrow=TRUE)
respuesta<-c(1,2,1)

solve(coeficiente,respuesta)
## [1] -4  6  1
res_ecua<-function(matriz,respu){
  solve(matriz,respu) }

res_ecua(coeficiente,respuesta)
## [1] -4  6  1
res_ecua2<-function(x,y){
  solucion<-solve(x,y)
return(paste0("La solución al sistema es: x=",solucion[1]))
}
res_ecua2(y=respuesta,x=coeficiente)
## [1] "La solución al sistema es: x=-3.99999999999999"
coef2<-matrix(c(5,-3,-1,1,4,-6,2,3,4),ncol=3,byrow=TRUE)
resp2<-c(1,-1,9)

res_ecua2(y=resp2,x=coef2)
## [1] "La solución al sistema es: x=1"
#res_ecua3<-function(x,y){
 # solucion<-solve(x,y)
  #return(paste0("La solución al sistema es: x=",solucion[1]))
  #return(paste0("La solución al sistema es: y=",solucion[2]))
 # return(paste0("La solución al sistema es: z=",solucion[3]))
#}
#res_ecua3(y=resp2,x=coef2)

#res_ecua3<-function(x,y){
 # solucion<-solve(x,y)
  #return(paste0("La solución al sistema es: x=",solucion[1]),
#         "La solución al sistema es: y=",solucion[2],
#         "La solución al sistema es: z=",solucion[3]) 
#}
#res_ecua3(y=resp2,x=coef2)



res_ecua4<-function(x,y){
  solucion<-solve(x,y)
  return(cat("La solución al sistema es:","\n",
             "x=",solucion[1],",","\n",
             "y=",solucion[2],", ","\n",
             "z=",solucion[3]) )
}
res_ecua4(y=respuesta,x=coeficiente)
## La solución al sistema es: 
##  x= -4 , 
##  y= 6 ,  
##  z= 1
#Investigar: substr


#https://rpubs.com/coronamexico/662718

#https://rpubs.com/coronamexico/intentoclase

library(readxl)

covid_oaxaca<-read.csv("C:/Users/mez1/Documents/CIDE/METPOL/1 SEMESTRE/BASES DE DATOS/covid_oaxaca.csv")

funcionas2<-as.Date(covid_oaxaca$FECHA_INGRESO,format="%Y-%m-%d")

as.Date #Transform dates
## function (x, ...) 
## UseMethod("as.Date")
## <bytecode: 0x0000000022363348>
## <environment: namespace:base>
strptime #Handling time and dates at the same time
## function (x, format, tz = "") 
## {
##     y <- .Internal(strptime(as.character(x), format, tz))
##     names(y$year) <- names(x)
##     y
## }
## <bytecode: 0x00000000238e21a8>
## <environment: namespace:base>
#install.packages("lubridate")
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
funcionas3<-as.Date(covid_oaxaca$FECHA_SINTOMAS,format="%Y-%m-%d")

table(month(funcionas2))
## 
##    1    2    3    4    5    6    7    8    9   10 
##  162  149  384  912 3358 6812 7155 4721 5233 4481
hist(as.numeric(funcionas2-funcionas3))


funcionas3<-as.Date(covid_oaxaca$FECHA_SINTOMAS,format="%Y-%m-%d")

#library(lubridate)
day(funcionas2)
##     [1]  6 31  4 27 26 30 22 31 28 25 30 26 29 13 13 25 20 31 31  1 26  8 31 23
##    [25] 25 23  6  3  6 29 21 31 24 19  5 24 23 14  7 30 29 11 14 16  8  1 12  1
##    [49] 18 18  3 29 15  2  6 31 24  5 21 27 17  3 24  2 27  2 27 12 26 31 11 24
##    [73] 18 27 25 27 31 16  5 31 27  7  6 17 25  9 27  4 13 24  4 10  6 25 10 24
##    [97] 16 20 28 25 17  5 13 17 24 14 12 27 14 13 13 21 29  9 26 18 23  2 27 26
##   [121] 14 29 23 17 31 13  1 26  1 15 21 24 17 23 29  2 28 20  1 28  2 17 30 19
##   [145]  2 22 19 25 17  4 16 27 21 23  4  1 16 23  8 10 18 19 24 10 29 30 11  6
##   [169]  9 31 17 27 12 27  5 26 22  2  6 31 12 31 12 20  3 31 27  3 21 18 26 12
##   [193] 14  6 26 30 22  3 26 22  2 16 27 27 13 22 25  2  1 31 11 14 27 17 25 18
##   [217] 24 22  7 20 15 19 17 15 27  9 18  8 29 16 13 22 25 21 27 18 27 30  5 10
##   [241] 12 20 19 27 20 28 19 31 13  1 27 26  5 19 19 25 20 28 27 27  9 10 27 31
##   [265]  2 15 29 29 22  7 25  5 21  6 31 23 19 28  9  3 26 27 27 18  2 25  2  1
##   [289]  1 17 14 27 19 26 30 13  2 17 27  2 31 11 27 25  1 17 13  6 10 28 27 11
##   [313]  9  2 24  6  8 19 26 31 17 12 16 23  3  2  3 10 22 14  3 26 19 27  2 31
##   [337] 26  6  6  8 25 18 31 17 13 21 19 31  6 25 25  2 27 26  9 29 22 25 25 31
##   [361] 28 10 12 20 19 22 15 18 22 14 14 25 10  2 27 18 13 11  3 15 16 21 26  3
##   [385] 11  3  1  3  3  3 11  1 28 19  2  1 16 16 23  1 30 24 25 14 26 10 26  8
##   [409] 28 28 25  6 24  1 19 30 27 18 13  5 29 29 16 24 27  2  4 11 10 19 25  4
##   [433] 25  8 28 30 30 23 26 29  1  2 18 26  2  5  2 28 26 26 14 23 16  3 26 21
##   [457]  1 27 15 22  2 25  1  2 23 16 27  8 25 10 18 21  5 27  8 17  4 29  3 26
##   [481]  1  2 25 15  6 14 13 10  1  4 12  3  1 20 31 28 30 25  9 12 29 29 27 27
##   [505]  3  3  2 28  7 24  6 12 15 18  5 29  3 25 11 24 14  2  9 22 17 31  4  2
##   [529] 18 15 31 22  6 30 15 16 28 28 27 29 13 31  2 31 25  7  6 22 27  5 20 13
##   [553] 10 27  1 28  8  1 23 16 19 27  3 24  3  2  4 12 21 26 24 13 26 26 13 31
##   [577]  1  8 21  2  9  2  9  8  2  3  2 24 25 28 21  4 19  1 23 24 27 27  3 11
##   [601] 27 10  4 30 15 24 31 22  1 30 25  4 27 27  8 13 22  4  9 17 15 17 18 26
##   [625] 16 19 30 19 19 18  9 26 26 26  8 24 19  2  3 17 30  1 15  2 19 26 26 12
##   [649] 10 27 25  7 30 25 20 20  2 19 25  1 25 30 26 13 27  2 18 25  4 15  1 30
##   [673] 28  2 26 12 18  1 11  3 30 21 28 26 21 21  1 10  9 21 24 27 27 26 30 13
##   [697] 11 26 14 15 13 21  6 27 24 20 25  4 10 14 19 26 19 20 17 22 10 14  2 30
##   [721] 18 30 26 22 23  3 26 20 26 10 19 27 11 16  5 19 31  2  3  2 27  2 19 20
##   [745] 30 14 27 18 10 26 25 31 26 11 30 23 29  5 30  1  6 31 20 16 19 20 30 18
##   [769] 15  1  3 27 17  2 16  1 30 22  3  3 18 27 29 31  1 26 23 18 14  1 25 26
##   [793] 19 18  2  8 10 22  5 27 15 11 13 13 27 11 21 21  3 23  2  2 30  5 30 22
##   [817]  8 23 17  2  4  6  9 12 14  4 24  5 12 14  3 24 30 15 16  4 29  7 28 29
##   [841]  2 23 11 31  2  8 11 25 12 11 16 11  1  4 19 22 27 13 10  1  6 26  6 12
##   [865] 24 25  1  7  4 12  8 30 21 15  8 13  7 12 30 26 21 12 13 23 12 10 11  4
##   [889] 27 26 13 20 18  4  1 26 19 14 29 15 14 24  2  3 14 14  2 13  8  5  8 14
##   [913] 22  2 17 30 17 29 14 23 22  5 18 27  2 31 29 26 12  1 16 14 22 29 22  2
##   [937]  2 30 30 30 18 10 24 18  2  9 16  9 11  5 19  4  2  5  2 25 25 24 25  3
##   [961] 18 30 27 28 21 30 30 30 19 12 20 15 25 14 17 21  8 18 17 26  1 21 24 18
##   [985]  8 19 13 30 14  4 18 22 29  3 29  3 11 25 23 27 30 30 25 15 13 16  4 10
##  [1009] 31  4 28  4 24 21 20 17  1 21  1 10  8 31 10  2 12 18  6 20 20 30 29 11
##  [1033]  5 22  3  1 18 10  2  2 15 18  5  1  3 15 10  5 22  4 19 22 19  8 29 26
##  [1057] 18 30 24  2  6 26 16 12  4 23  8 28 28 23  1 30 22 10 15 19 20  8 26 12
##  [1081]  8  1 30 27 23 15 29 11 16 13 13 23 28 28 21  4  4  4 13 15 20 20 28  7
##  [1105] 22 28 23 20 15 15 13  3 28 18 20  6 15 18 11 12 18  4 28 12 23 18 25  9
##  [1129] 26 23 14  4 26  3  1 29  4 29 22 29 29  4 30 27 11 23 19  6 22  4 15  4
##  [1153]  7  5  3 14  7  6 11 15 11  8  5  8 29 24  3  9  2 16 17  9 14 18  4 14
##  [1177]  5  8  6 11 10 25 21 26 21 23  8 17 12 20 29 23 28 31 22 15 25 26 11  1
##  [1201] 30 17 11 19 18 16 11 11 20 24  1 22  5 18  2 15 21 30  2 10 11 19 20  9
##  [1225] 25  1  1  7  8  4 20 21 30 12 24  2 14 12 15 29 19 27 28 27 13 11 11 11
##  [1249] 13 31 18 18 13 16  6 10  1 22 16  2 23 29  4 16 15  5 17 27 10 21 24 15
##  [1273] 26 16 17 17 22  2  1  1  6  4  1  1  7 27 10  6  3  2 13  3 10 23  3  8
##  [1297] 30 22 16 24  8 23 11 11 26 26 23  2 27 12 24  2  3 16 28  1 17 24 22  2
##  [1321] 24 14  9 28  3 28 23 11  8 14 30 24  9  8  3 27 27 23  3 19 19 13  8  3
##  [1345]  8 30 18 25 29  9  3 27 18 25 29 24 15 28 17 24 12 22 29 13 23 29 29  4
##  [1369] 29  4  1  3 10 11  6 21  1 26 27  7 25 13  7  8 10  2 18  1 18 27  2 26
##  [1393]  2 10  8  8 24 29 11 11 27 20 12 15 15 27 30 22 27  9 29 25 20  4 16  1
##  [1417] 18 19 23  1 12  6  7 19 22  5 30 11 22 12 26 20 18  4  4 11  3 23 18 21
##  [1441] 22 15 16 12 12 21  6 22  1 13 19 22 18 10 12 22  1  6 11  1 30 17 28  3
##  [1465] 16  5 14 14 12 18  2 10 26 18 16 15 27 18 10  2 29  3 24  2 20  4  4 13
##  [1489]  2 28 30 16  4 15 15 23 17 22  4  1  2 13 29 16  4 25 26  8 20 18  1 25
##  [1513] 18 27 18 24  9  3 16 11  3 14 15 27 22 25  6 18 11 11 19 27 13 28  5 19
##  [1537] 28 27  5 22 18 22  5  5  4  2 10 29  3 25 25  5  1 16 29 19 13 22 20 21
##  [1561] 29 19 29 12 20  3  2 18 11 18 27 29 29  7  4  2  2 24 12 30  5 31 27 22
##  [1585] 30 29 12 16  4 12 23 17 29 16 30  3 28 21 23 19 29 23  8 30 23  9 26 15
##  [1609]  5 27 22  4 12 18 27 28 27  2 27 25 18 25  2 28 11 21 15 10  3 20  8  5
##  [1633]  9 16 19  5 16 27 29 21  5 20  1 22  3  5 12 14 26  4 16 20  4 28 15  1
##  [1657] 21 23 26 29  2  8 22 23 17 25  1 29 30 17 14 15 15 21 29 15 20 15 10 15
##  [1681] 21 16 24  1 25 14 13  9 30 24  1 17 12 17 13 20 23 29 28 13 15 19  8 13
##  [1705] 15 26 21  6 15 18 14  5 25 25  8 22  1 18 18  3 15  5 11  9 19 26 26 11
##  [1729]  4 18  8  4 29  6 18 30 24 27  6 27 29  6 17 24  1 30 22 25  4 21 10 12
##  [1753] 12 19 27 17 21  5 11 11  4  1 28 17 20 11 20  3 22 19 25  1  3 28 16 16
##  [1777] 10 22 29 30  3  3 29 26 28  8  4 12  5  2 13 28 11  2 23 22  9 18 10  9
##  [1801]  6 27  9  1 25  3 13 30  6 19 26 18 30  3 22 19  7 13 26 29 28 18  4  1
##  [1825] 11 30 11 10 12 13  4  1 22  2 24 23 29 20  2 24  8 30 18 23  5 27 17  7
##  [1849] 21 29 22  1 30  5 16  1 28  2 12  4 24  8 26 24 17  2  3 12 11 18 13 23
##  [1873] 23 23 23  1  5  1 22  6 21 21  6 30  3  4 27 27 15 24 19 28 16 22  6 10
##  [1897] 22 25  3 26 25 26 28  8  1 18  2 24 10 25  2 20 17 19  2 10 10  2 23 25
##  [1921] 22 13 29 27 30 26  1  1  2 29 27 23 29 12 10 11 19  2 23 20 20 25  2  4
##  [1945] 30 31 22 19 11  5  3  8 27 12 26 20  7  7  5 23 15 16 25 17  7  8 16  8
##  [1969] 25 26  8 13  2 13 11  3  1 16 30 26  9  2 25  3 13 13  4  5 31 20 22 20
##  [1993] 23 17 21  8 30  9 23 17  8  3  5  5  3  4  2  2  1 14  9 15 21 15 17 28
##  [2017]  2 22  3  9 15 15 19 19 29  4 24 14 27 27 12 18 30 16 25 30  8 28 27 13
##  [2041] 23  4  3 20 15 25  8  3 15 30  2 18 30 19  8 26  7 29  2 18  5 20 25 25
##  [2065]  9 25 13 22 18  8  1 28 14  3 24 14  6  9 22 10  1 29  5 12  8 19 20 25
##  [2089] 10  1 22 12  2 25 25 14 17 17 18  9 15 15 14 12  9 28 14 15 18 17 14 24
##  [2113] 25 12 27 20 13 20 19  6 27 20 13  3 12 29 29  6 13 28  7  6  1  3 20 22
##  [2137] 28 23 17 28  5  1 11 12 30 16 16 23  8 20 22 16 29 16 18 27 16 30 28 29
##  [2161]  4 16 29 21 19 22 14 24 23 18 17 18 12 12 18 16 22 18 30  5  3  2  1 29
##  [2185] 26 28 30  4  5  5 15 19  8 19 23 11  6 29  1 30 20  1  4  4 20 26  8 12
##  [2209] 22 23 22 23  4 19 22 19  6 15 12  6 17 10 24 14 10 29  4 22 18 11  6 25
##  [2233] 30  8 10  4  5 24  3 18 12 13 12 24 11 22 28 30  1 20 16 31  6  7  4 24
##  [2257] 24 14  5  6 12 28 27  1 30 16 17  3  1 15  4  1 13  7  2 30  2 14  1 29
##  [2281]  1 13 24 23 23 15 17 28 28 19 29  2  1 25  7 17 15  2 28 29  2 12 18  2
##  [2305] 11  3  3  3 24 17  2  2 19  8 16  2 19  4 29 20  6 25 29 31  2 29  7 12
##  [2329] 29  9  4  9 22 16 30 30  4  3  8 23  5 15  1 22 29 30 15 21  8 10  1 19
##  [2353]  3 14  9  6  4  4  4 16 22 29 20  3 20 10  9  9  1 13 18 15 28 30 28 15
##  [2377] 13  9 21 13 15 20 27 25  6  6  6  4 16 15  2 10  4  8 11 13 24 23 28 28
##  [2401]  5  8 20  2  7 22 27 25  9 12 17 22  1  5  7  1 15 24  8 27  7  4 30 23
##  [2425]  4 28 29 28  1  1 15 25 14 21 29 28 29 29  8 28 19 26 29  1  6 25 23 23
##  [2449] 29  8  2  4 19 31  4  8 24 24 11  9 19  2 13 19 27 27 30 17 15 13  1  4
##  [2473] 22  9  4 18 24 28 28 13 18 25 11 25  7  6 27  2 27 18 28  8 15 30 28  5
##  [2497] 26 28 22  2  7  5 25 25 15 26  8 29  2  2 26  1  8 25 24 26 13  1  6 26
##  [2521] 28  8 20 27 27 27 27 13  2  8  4  2 19 22 26 10 21 15 18  4 17 20 26 25
##  [2545] 16 25 30 19 10 27 28  3 14  3  5 26 14 27  8 23 23  6 14 27 15 19 29 17
##  [2569] 17  1  2 20 24 25 23 26 23 20 22  3 12  1 26  1 16 25 24 18 13 20  5  4
##  [2593]  8  2 29 21 29  6 18 29 28  1 13 24 23 12 18  4 22  7 25  9 13  6  9 18
##  [2617] 30  5 14 15  1 18 18 29 19 29 30  9  9 30 28 30  3 15 18  4  6  4 19 10
##  [2641] 28 10  5 19 29 25 23 18  4 29 25 21 20 17  1  6  4 12 26 19  1  5  5  5
##  [2665] 25 16  5 21  5  1  1  1 30  3  1 29 27  6  1 11 26  2  1 24 17 17 24 28
##  [2689] 26 28 30  6 10 27  1  3 10 30  5 16 22 20 18 22 30 25 16 15 12 13 13 17
##  [2713]  2 17  5 26 23 17 28  3  1  4 10 10 12  2  1  9 14 25 27 29  3  2  3 11
##  [2737] 20 26 27  4  1  8 22 25 30 29  1 12  1 30 12 11 18 18 22  4  4 20  2 28
##  [2761] 16  6 19 28  4 12 10  3  9  4  4 21 19 10 30 19 29  7 22 10  8  5  5  1
##  [2785] 30 26 26 11 15 23 22  4 30 26 13 20 22 29  7 21  3 17 30 29 26 25 19 26
##  [2809] 17 18 27 27 10 19 22 22  3 29 26 19 24  9 26 16 15 17 15 22 11  8 30  3
##  [2833]  6  1 15 18 29  9 18  3 24  9  5 22 23  4 18  2 13 13 14 30 23  2  8 12
##  [2857]  2  3 21 11 23  1  6  4  2  4 25 22  9 30  8 27 18 15 26 17 22  9  3  8
##  [2881] 22 28  2 23  5 26 27 27 26  8 23 14 12 22  8  1  2 23 12 27  1 29 28 24
##  [2905]  2 29 10  2  8 21 11  8 12 20 22  5  2 25  8  9 22 22 13 22 23 22 10  8
##  [2929] 25  3 26 28 29 28 16 19 12 26 13  9 27 10 22  4 30 18 16  5 10  5  2  4
##  [2953]  3 22  1  4  9 25 19 21 17 25 31  2 17 17  3 13 16  1 26 29 11  9 12  7
##  [2977]  1 17  2 26 30 10 25 23  3 22  2  2  5 22 27 19 27 20 27 29 19 15  4 16
##  [3001] 16 13  2  3 13 20 24 30 13  8 10 13 25  7 23 13 16  3 26  9  1 18 22 27
##  [3025] 17 14 14  9  6 18 10 15 22  4  9 15 12  5 27  3 24 13 16 26  3 16 15 28
##  [3049] 30 15 12 31  2 27 20 29  1 25  8 29 25 28 15 19 10 26 18 25  2 19 30 13
##  [3073] 18 19 18  3  4 25 22 22  5 30 18 14  3 19 18 12  9 27 13 18 26 26  1  9
##  [3097]  1  4 22  2  3  3  2 13 23 26 28  4  4  6 15 22 11 16 17  5 12 27  2 10
##  [3121] 12 12 13 26 22 23 11 19  3 14 22 23  6 24  8  7  9  2 12 24 25 26 20 29
##  [3145] 27 30 16  3  8  6  1 25  7  3  4 14  9 27 13 16 17 28 17 17 18 23 21 22
##  [3169] 15 14  8 12 22 17 16 24 19  4 11 20 16  7  3 17 29 25 13 29  3 11 18  3
##  [3193] 30 22 24 24  8 20 22  3 22 16 28 10 24 23 23  2  1  9  2 29 30 13  2  3
##  [3217] 22 23 13 17 18  2 17  1 30 23 10 12 25 28  4 16 29 22 14 21  2  6 29 29
##  [3241] 30 23 17 26  1 27 16 15  3 15  9 31 30 11 19 30  8 15  3  3 25 22  9 26
##  [3265] 17 18 12 15 10 29 13 21  3 15  2 15 30 10  8 29 17 17 24  3 10 20  4 13
##  [3289] 12 20  1  2 14  1 16  6 10 17  5  1 19  4 21  9 27 22 18 27 12 21  6 25
##  [3313] 16 22 21 20 30 15 22 26 24 27 24  5 13 25 28 18 18 25 15  6 13 29 13 13
##  [3337] 23 29 13 11 15 14 18 26 26  3 13 14 14  2 26 25 22  9 15 15 29 25 14  9
##  [3361]  3 21 21 18 24 11  1 26  2  8  1  5 15 21 13 12 13  4 18  2 18 18  4 19
##  [3385] 24 16 26 29  6 28 13 20 19  2  4 15 26  9  4  5 16 29 25  7 23 23 16 16
##  [3409] 31 11 16 22  5  2 18 11 13 17  6  5 22 17 28 15  2  2 13 15 15 30 18 10
##  [3433] 18 13  8 13 15 23 12 11  5 29  9 20  8 16 28 26  6 29  3 26 28 29  3 23
##  [3457] 23 20 21 19 29  9 29 13  3 15 29 18 22 26  4 22 27  4  4  6 18 20 27  3
##  [3481]  6  5 27 16 11  6 25  6 19 22  5  5 30 23 12  4 27 23 23  3  1 30 29 19
##  [3505] 10  2 25 29  6 23  5 11  3  4 23 18 24 23 19  9  2  8 23 28 25 29 15 29
##  [3529] 28 22  8 18 22  4 12 25  3 10 11 10 30 20 29  8 30 18 10 15  5  6 27 30
##  [3553] 11 12 15  9 20  9 12 16 30 24  9 25 25 29 13 14 29  5  9 28  1 25 26 31
##  [3577]  9  2 15 15  9  6 15 15 12 13  4 19 30 30  1  5 10 14  1 27  6 25 23 23
##  [3601]  4 17  3 25 19 13 15 13 28 18 25 28 12 18 13  1 12 10  6  1  1  3 28 25
##  [3625] 22  6 26 18  9 16 23  1 19  2 19 30  7 12  7 28 16 23  1 24 21 25 26  8
##  [3649] 12 18  3 28 20 26 27 22  6 19 26 12 19 13 12 23 29  3 22 12 23  9 19 22
##  [3673] 22 18 18 19 10  2  8  4  1 31 23  5 26 29 11 25 15  8  6 24 18 17 14 13
##  [3697]  6 26  3 23  4 14  3 26  4 25  2  4 29 25  8 15  4  8 10 29 27  3 25 22
##  [3721] 30 18 30 22 19 29 30  5  6  5  1  9 26 28 29  7 30 28 10 24  9 14 24 22
##  [3745] 24  3 24 10 14  5  5 30 11 25 27 29 29 11 11 23  1 27 12  3 21 18 18 15
##  [3769] 23 25  4  5 29 26 19 12 23  3  7 27  3 15 20 15  3 24 23 23  3 17 28 12
##  [3793] 14  2  5  2  2 25 12 17 13 18  1 23 27 11 22 14  2 30  3 15 10 28  1  1
##  [3817] 27 11 26 26 20 30 16 12 14 14 29  1 23 27 25 26  8 18  2  3 19 13  6  8
##  [3841] 14 29  9  9  5 26  6  3  9 12  4  4  4 17 23 19 18  1 20 19  6  1 30 27
##  [3865] 15 11 29  5  5  6  3 30 30 11 30 30 20 26 27 29 24 17 30 16 10 17 16 12
##  [3889] 31 29 10 17  5 30 24 19 14 12  1  1 17 10  5 24 13 10  1  2 11  1 23 29
##  [3913]  7 16 22  2 19 29  2 30 28 20  4 12 23  7  5  7 25 23  2 10  2 24 19 10
##  [3937] 26 28  9 18 30 20 22  9  6 26 24 21  9 17 24 25 19 18 30  5 28  5 22  6
##  [3961] 18 19 26 26 11 11 30  6  6 12  6  7  3 13 25 20  1 23  1 18 16 23  4  2
##  [3985] 27 19 13  2  8 19 10 23  1 24 29 23 12 30  7  3 18 24  6 22 25 12 29 16
##  [4009] 14 14 18 26 19 23 28 16 11 18 30  9 23 30 15  9  3 30  8  7  3  5 22 13
##  [4033]  4 18 15  1  1 13  4 17  2  1  6 17 24  3  1 30 21  2 25 17 15 30  1  3
##  [4057]  1  8  8 10 14 30 17  5 17  4 31 12 15 24  8 25 17 27 29 10 17  6  2  6
##  [4081] 12 11  9  2 22 25 19 23 10  2 26 15  5  3 15 25 27 26 23 12  2  6 26  2
##  [4105]  3 23 18 15 30  6 23  9 13 24 11 22 29 25 25 20 26  8 27  8  7  5  5 30
##  [4129] 18  4  9 17 19 13 29 25 28 13  5  3  5 20 24  3  6 17 27 11 10 31 29 20
##  [4153] 30 25 12 12 26  4 19 16 28  3 12  4 14 13  1 27  4  5 11 23  1 29 28 22
##  [4177] 10  9 19 30  4 15  6 29 16 23 27 23  8  1 24 17  4  6 28 21 15 16 23  9
##  [4201] 26  2 10  2  8  1  4  1 21 21 28 11  8 26 12  4 10 16 17 27 26 30  7 11
##  [4225]  6  6 27 29 26 17 29 29  1 14 18 21 20 30  1 30 19 19 28 16 13  5  2 26
##  [4249] 17 19 12 24  5 29 23  6 16 30  6  4 22  5 15 27 28 25 30  6 28  5 23 18
##  [4273]  1  3  8 16  3 24 28 25 13 18 25 19 23 30 18 21 21 27 20 22 27 27 26 16
##  [4297]  2 20 22 19 11 22 10 19  9  5 10 26 25 26 23 12  1  1 13 14  2 22 22  4
##  [4321] 14  8 24  1 25  5 14 25  6 16 26 19  7 18 11 28  1  1  9 15 18 19 24  8
##  [4345] 22  2 25 11 29 29 13 19 22  3  4  9 22 30 24 13  9  3 15  2 26  6  1 30
##  [4369] 17  1  9 18  2 24 25  3 23 15 25 26 19 20 23  3 22  3 18 10  1 26 15 24
##  [4393] 18 19 12  3 16  8 27 27  3 22 10  1 27  5 26  3 12  5  9 25  4 25 27  3
##  [4417]  4  1 29 17 29 18 26 17 19 20  2 18 19 30  7 28 15 12 15 25  6 30 14 10
##  [4441]  2 23 14 15 27 10 30 19 20 22 19 29 15 16 22 19 11  6  5 12 22 26 17 11
##  [4465] 12 28  1 24 24  7  6  7 23  2 20  2 30 22  1 10 29 19  1 13 14  1 13 30
##  [4489] 15  2 17 26 20 20  3 26  8 13  4  4 15  6  2 19 13 31 19 26  1  6 10  8
##  [4513] 26 18 18 26 26 27 17 27  2 19 13 19  3  4 19 13 16 18 17 18  3 11 24  3
##  [4537] 20 20 27  8 19  3 22  8 18 19 19 20 26 11 15 15 23 15  6 19 30 22 18 10
##  [4561] 25 18 19 23 17  7 18  3 29  5 26 10  1 15 25  4 16  9 28  8  6 30 30 25
##  [4585] 10  3 20 22  5  5 14 12 30 24 19  2 16 12 12  1 23 29 16 29  8 29  4  8
##  [4609] 18  4 29 17 22  4 27 23 22 29 28 19 13  8 27 16  9 12  6  1  3 24  4 20
##  [4633] 29 30 23  4  8 28 13 22  2 21 13  5 18  3 22  1  6 17  3  9  2  4 23  3
##  [4657] 10 10 17  1  4  9 10  6 13 10  2 24  9 19  2 18  3 25 18  8 16  9  3  2
##  [4681] 24  8  3 20 19 30 28 28  3 15 25  1  3 29 26 21 28 23 25 25  5 16 21  8
##  [4705] 19  3 16 30 22 27 25 26 15 22  1 13 19  9 19  3 23  5  4  4  5 24 25  4
##  [4729]  7 30  9  2 20 15  1 29 24 27  4 10  2  6 28 16 13 16 10 27 27 15  3 25
##  [4753] 25 18  4 17 14  1 17 16 30 20  6 23  6 30 25 14 10 17 18 29 20 26  4 30
##  [4777]  8 22 22 30  3 17 26 26 28 28 22 11 28  9 11 22  3 10  4  1 13 21  6 27
##  [4801]  4 17 28  2 18 15  2 25  6  2  6 23 27 29  5 20 15 22 29 12 29  3 29 29
##  [4825]  5 22  2  2  6  3  5 29 30 16  3 16 28 14 14 23  2 17 17 29 11 14 10  1
##  [4849] 10  4 18  4  4  5 17 24 24 27 12  3 22  2 21  8  1 20 19  4 18 21 30 10
##  [4873] 18 29  6 19 29 25 26 30  5 19  6 30 31 22  2 23 23 31 16  1 28  9  7 16
##  [4897] 30 23  7  1  1 18  2 18 11 23 19 28 14  1 22 17 19 17 16 20  1 18 16 19
##  [4921] 19 10 30 15 24 30 30 23  2  3  1  3 17 17  9 23 30 17 26 29 16 23 12  3
##  [4945]  2 13  9  2 26  8 11  1 12 29  3 14 18  5 21 22  5 20  6  3 18 18  2 24
##  [4969] 24 14  1 29 28 27 27 18  5 18  3 21  5 23 17  5  3  1  6 16  1 12 22 30
##  [4993] 10 24 15 26 11 26 29  3 10 14 19 25 25 26 24 10 27 29  5 11 18 22  4 23
##  [5017] 28  3 28 30 12 15 20 10 12 22 23 25 13 18 12 25  3  5 27  1 22  1 11  7
##  [5041] 12  9 28 11  3  1 23 30 26  3 29  9 10  9 21 10 23 16  6  8  9  3 18 17
##  [5065] 12 18 28 25 19  2 18 17  1 14 17 19 30  2 18 25 17  2  2  2  2 12  2 29
##  [5089] 21  2  4 15 25  3 22 13 28 19 24 27  2  2  6 11  4 27 29  5 19 19  5 17
##  [5113] 18 13 20 21 18 27 27 13 26 12 11 17 20 19 18  7 15 14  5 15 24  2  5 18
##  [5137] 30 22  4 19  4 15 27 11 19 30 19  2  2  1  4 23 12 24 22 25 12 17 20 12
##  [5161] 15 15  6  7  4  8 30  5 23 24 15  4  4 30 21 25  6 20  1  7 18 10 28 17
##  [5185]  6 23 30 16 30  4  4  1 20 21  4 16  9  4 13  8 26  2 22 18  3 10 21 23
##  [5209] 28  1  1  3  3  3 15 30 29 16 15 18 23 21  1 17 25 22  1 18  5 23 19 13
##  [5233] 29 25 25 11 26 25 14  8 30 30 27 30  1  3 20 25 11 19 16  2  2 10 30 20
##  [5257] 12 22 18 20  2  3 15 21 26 10 22 14  1 23 15 25 20 20 25  4 25 22 19 22
##  [5281] 12 18 27  2 28 16 16  4  2  9 17 20 27  3 26  6  2 25 30 17 10 14 25  1
##  [5305] 17  4 10  2 25  8 28  6 13 17 10 22 27 25 15 29 29 30 23 26 27 27 10  6
##  [5329] 24 11  8 18 10 19  5 29 11 31  1  3  5 15 13 27 21 23  5 10 19 24  3 20
##  [5353] 18  6 27  2  8 19 19 13 18 26 14 10 25 28 13  9 11 19 13 18 16 26  1  9
##  [5377] 29 25 26  3  8 25 26  5  8 22 24 12 18 29 20  1 25  3  3 12 13 16 20  2
##  [5401] 22 27 16  5 26 15  6 25 27 11  5 15 18 21  5 30 24 17 25 25 22 16 26 17
##  [5425]  9 22 30 17  4 13 15 29  2 20  3 22 26 22 29  1  2 24  5 17  1 16  7  1
##  [5449] 15  3 13  5  6  6 15  8 15 29  8  5  1 18 23 10 20 16 14  5 13 29 10 20
##  [5473] 25 20 25  1 30 16 15 31 16  3 15 20  2  6 28 23 29 24 25 29 28  2 30 26
##  [5497] 26 30  3 22  4 13 11 14  1  4 19 11 14 10 16 29  1 20  3 17 25 24  8  2
##  [5521] 21 11  1 16  5 22 10 20  4  4 30 18  8 15 26 31  1  4  1 24 20 10 24  9
##  [5545]  2 25 24 30 27 27 19 28 25 14 16 28  2 19 26  2 26 28 29 12 29 23 19 26
##  [5569] 10 14  6 15 13  1  1  3 27 12  4 24 12 25 27  1  3 30  1 25  1 24 21  6
##  [5593] 25 22 23 18 17  4 30  4 17  5 23 31 22 26  4  1 23 29  2 13 30 29  3 24
##  [5617]  8 12 23 26 25 30  1 17 15 25 11  9  3  8 29  9 13 26  3 19 30 28  9 27
##  [5641] 15  6  5  1 10 21 11 13 20 29 29 29 11 22  2  3  4 26  4 26 26 26  5  5
##  [5665] 10 20  1 22  5 30 28 13 13  1  1  3 23 13  1  4  6 22  4  5 13 15 11 25
##  [5689]  8 15  5  2 11 18 27 10  2  4 26 29 12 20 23 23 15 31 17  4 30 28  5  1
##  [5713] 24 26  5 11 18 12 18  3 16  6 15 11 10 27 26 29 27 20 27 20 30  2  1 25
##  [5737] 10 21 16  2  5 28  3  8 29 29  5  5  1 18 14 24  4 29 23 22 15 23  8  3
##  [5761] 15 10 14 28 29 29  8 19 21 20 21 20 29 29 25 27 19 19 31 22  6 20 25  5
##  [5785] 23  1  5 12  4  1 23 12  9 29  9  8 12 15  1 23  8 23 27 27  4  2  3 29
##  [5809] 30 23 23 29  7 10 22  2  2  2 18 25 18 19 10  1 11  8  2 22  1 20 24 24
##  [5833] 13 29 16  3  2 17 27 16 18 15 15  3  2 25 19 19 14 24 17  9  2 19  8 21
##  [5857]  1 28 15  3 15  3 20 11  2 26  2  3 19 13  6 30 16 21 30 20  1 19 12 19
##  [5881] 18 20 20  2 27 15 12 20 21  1 12  2  8 30 28 30  2 14 30 22 24 18  2 20
##  [5905] 21 30  4  4 20 24 17  1 13 17 29 11  1 26 17 13 10 24  7 24  1 13 24  2
##  [5929]  4 16 18 13  3 29 15  3  2 16  3 18 30 26  6 18 25 22 28 15 13 18  8  4
##  [5953]  2 27 10 11 14 15  1 13 18 10  3 27 27 19 25 25 27 26 18  5 23  4 13 26
##  [5977]  5  5 17 19 23 29  8  6  2  7  6 21 30 29 20 13 16 30 23 16 12 28 12 15
##  [6001]  3 12 19 19  3 24 15  3  9  3 28 23  3  6 15 17  1 30  6  1  3 19 17 17
##  [6025]  5 28 27 28 10  2  6 19  1 19 20 24 17 21  4 25 11 21 22 25 28  8 13  8
##  [6049] 28 14  3  2  6 11 25 24 12 14  9  1 18 10  3 15  2 10 13 18 22  1 30  3
##  [6073] 22 27 21  4  6 24 30  7 25  3 24 15 15 30 22 21 21 29 16 15 21 11  8 23
##  [6097]  1 29  7 30 23 12 17  5  1 30 15 29 18  6 15  3 17 17 22  6 15 19 21 29
##  [6121] 23 20 17 29  3  2  2 12 10  2 26 21  2  8 29  1 19  4 14 21  9  4 30 22
##  [6145] 31 11  4  4 27 16 23  1  1 21  5 24  5 12  4 22  4 23  5 19  5 26  5  2
##  [6169] 22 25 24 11 29 13  8 12 11 23 17 26 25 29 21 17 17 29 20 11 29  6 27 28
##  [6193]  2 27 25 11 23 22 19  5 13  2  7 12  3 31 28 19 18  8  9  1 26 16 16  1
##  [6217] 28  1  4 16  9  9  1 18 27 15 15 15 29 11  8 18 11 22 23 23 18 29 25  7
##  [6241] 15 25 10 24  8 19 17 27  3 26  8 24 30 12 27 13 26 15 10 11 27 25 17 11
##  [6265]  3 26 13 20 13 29 10 10 10  6  4  9  1 22  4 26 29 24 23 11 22 30  9 28
##  [6289] 14  4 16 12 30  8  3  3 11 27  6  1 30 24 25  4 31 31 10 23  1  1 26 26
##  [6313] 25 15 22 20 15 10 18  2 12 24  2  3 26  1  2 11 22  3 24 21 23 20 30 16
##  [6337] 26 15  1 23 14 30  1 23 18  8 25  1  9 14 21 29 12 18 25 24 26 13 29 17
##  [6361] 21 29  4 15  2  8 29 23  4 28 11 13  9 24 16 16 26  2 16 18 18 22  3  8
##  [6385]  9 11  6 29 26 28 30 27 25 25  3  3 15 17 13 14 19 12 26  4  2  3 29 22
##  [6409]  3 30 13 20  2 17 29 12 29 23 26 28 27 22 29  2  9  5  8 28 11 27 27  2
##  [6433] 13  6  6 12 31  9 17 20 23  1 20 26  5 11 12 18 20 22  1  9  5  2 20 10
##  [6457] 27  2  5 12 25 25 29 28 11 30 18 15 13 12  2  5 26 28  6 29 15  5 26 23
##  [6481]  1  3  8 21 27 30 21 30 10 30 29  5 22  4 23 22 21  5  6  1 18 27 23 22
##  [6505] 15 11  4 18 22 17  2 23 16 13 29 10 17  1 17 11 26  8 11  2  4 22  2  2
##  [6529] 27 12 12  2 26  3  3  6 24 24  7 25  8 22 18 14 19  8  2  1  1  6  6  7
##  [6553] 25  4 14 11 29  2  5  3 19 29 28  1  8 21 10 22 10 27 27 29  9 30  1 25
##  [6577]  3  2 16 19 15 15 29  2  1 10 17 15 16  9  1 12 10 14  2  2  1 27  8 25
##  [6601]  1  8  2 18 16  2 28  7  6 21  9 30 17  1 13 24  6 18 24 19 14  2 14  6
##  [6625] 14 23 29 23 13 16  3 25 15  3 11 20 28  9 14 13 15 29 22 18 18 22  9 27
##  [6649]  4 14 21  2 11  8 25  4 11  3  3  3 26 24  2 29 29 29 12 12  8 13 18 20
##  [6673] 20 30 13 18  1  3 22 30 15 28  5  2 11 25  1  6  1 29 18 26 29  3  3 12
##  [6697] 29  1 26 29  4 22  2 29 13 12 27  2  3  4 27  4 13 15  9 17 15 23 13  5
##  [6721]  5  8 17  1 13 16  1 20 22  1 12 24 24  6 15 23 21 22 22  8  8 24  6  1
##  [6745]  9 27  2 10  1 29 29  4 29  2  3  3 25 25  4 15 11  8  8 22 11 19 18 19
##  [6769]  1 18  2 16 23 20 10 23  8 15  1 26  3  5 28 30 24 11  1 16 25 19 24 30
##  [6793] 12 12 25  1  1 11  2  9 15  1 29  2 14  2  4 23 22 20  1 26 30 10 12 17
##  [6817] 25  7  5 24  6 28  3 25 11 22  2 25 11 10 25 25 11 28 26 27 25 26 10 13
##  [6841] 27 19 16 11 18 29  4 19 20 13 16 14 23 11 13 26 26 27 15  6  3  8 24 15
##  [6865] 21 25 30 11 21 29 23 18 30 17  1  6 22 22 19 30 11  1 25 17  1 13 20 23
##  [6889] 20 19 10 10 19 11 28  3 28 26  4  2 24  2  2 14 25 24 28 20 16 21  1 23
##  [6913] 24 27  3  9 26 28 17 27  6 23 27 23  4 22  1 29 18 14 16  4 20 13  3  9
##  [6937] 27  4  5 17 28 23  1 23 23 23 15 22 13 21 15  7 29  4 19 11 25 29 15 28
##  [6961]  4 19  4 16  5 16 13 24 17 14 16 13 25  3  3  4 19 20 18 30 25 11  6  5
##  [6985]  4 25 30 18 22 29  1 30 23 28 23 16  6  6 23  2  7 11  7  5 26 26 18 15
##  [7009] 29  6 26  9 29 30 28 28 18  5 24 29  1 19 19  1  4 22  9  3  6  9 10 23
##  [7033] 26  8  6 27 23  2 13  5 13 15  2 19  9 20 20 20 15 22 13  3 24 27 15 25
##  [7057] 17  6  1 10 25 30  1 29 22 14 17 28  3 28 22 24 19 19  1 24  1 16  3 26
##  [7081] 23 15 15 16 30 31 12 25 12 21 18 18 30 16 22  2 15  1  6 22 14  1 12 15
##  [7105] 12  4 10 10 30 13 19  6  8  9 29 11 22 27 26 27  4 29  9  6 22 27  4 16
##  [7129] 16 10 15 15  1 19  7 18  7 22  4 20 25  3  9 16 24  7 27 16 14 28  6 19
##  [7153] 26 15 29 27 28 27 13  4 20 26  2 27  1 23 30 30 25 12 12 18 24 22 29 10
##  [7177] 10 18 18  6 17 18 26 28 22  3  4 18 22  1  1  1  8 25 26 24 20 13 15 15
##  [7201] 24 21 24  3 16 30  9 20  3 26  8 18 18 25 15  3 15 25 18 28 26 22  3 30
##  [7225]  5 20 30 17  1  4 29  1 22 19 22 16 15 11 29  8  1 12  2 26 11 15 16  3
##  [7249]  2 24 27 29  2 23 31 25 13 24  1  2 10  9 27 30 13  7 30 21  5 23 18  8
##  [7273] 30 30 18 11 20 18 13 21  4  5 15  1 30  4 25  2  8 25 21 30 25 26 12  1
##  [7297] 15  2  8  7  1 18 31 19 12  3 11 11 21  5 21 23 30 16 17 24 23 16 17  3
##  [7321] 16  2  3  3 28 20 21 15 30  2 13  5  3 21  4 30 16 17  1 28 27 20 21 21
##  [7345] 30 27  5  8 26 16 11 13  7  7 17  5  7  4  6 23  1 22 24 24 21  2 14  1
##  [7369]  9  9 28  9 12  5 11 26 15  6  1 26 11  6 13 25 26  5 28 22 30 21 30 30
##  [7393]  1  6  7 30  2 13 25 10 14  4 16 11  5 22  1 27  4 17 17 16  5 16 25 29
##  [7417] 29 16 20 20 23 23 30  1  9  9 14 24 24  2  1 15 15 26 26 30 30 15  5  7
##  [7441] 20 26 26 28 22 22 17  6  2 31 25 10 16 26 12 29  6  1  1  6  4 30  2  8
##  [7465]  9 24 13 14 15 15 24 30 18 10  1 23 30  6 16 17 26 13 26  3  9  6  8 30
##  [7489] 21 19  1  1 22  7 25 25 20 21 18  1 24 23  3 24  5 18 25 22 15 23 15 28
##  [7513] 29 16 16 25 27 28 14 30  2  9 27 20 12  4  5 10  9 19 26  1 23 31 16 21
##  [7537]  5  1 11  2  2  2 11 10  9 28 29 19  1 10  1 29 23 10 18 12  6 16  3  2
##  [7561] 28 17 25  6 25 27 14 26  5  6 20 29  1 26  7  2 18 28 20  3 17 21 25 12
##  [7585]  1 18 13 12 24  2 15 26  6 26 15 15 29 11 27 19  4 20 31 24 23 21 11 16
##  [7609] 25 11 27 21 18 20  4 22 22  7 18  6 16 16 13 11  2 18  6 17 23  1 10  4
##  [7633]  2 24 23  1 17 24  3 29 29 23 31 15 16  4 19 17  6  7  3  8 19 12 11  4
##  [7657] 23 24 16  2  8 13  4 25 20 17 29 28 21 23 28  8 30 25 24  9 13  1 23  1
##  [7681]  2  6 12 26  3 11 27 20 20 28 22 20 18  2 25 11 13 13  7 24 24  4 15 30
##  [7705] 22  8  4 24  9 24 22 21  1  2 15 25 19 16  9  3 27 26 16 21 15 13  2 15
##  [7729] 28 25 26 29 16 18  1  3 19  8  4  6 21  5  1  8  2 16 16 29 13  8  3 30
##  [7753] 31 31 19  5 22 11 23 22 24  7 15 29 22 10 22 11  3 25 27 25 25 17 27  2
##  [7777] 25 19 19 26 29  2 11 18 22 19 20 19  4 19 20 20  1  4 18 20 22  9 24  1
##  [7801]  1  6  4 10  8 26  9 25 27  4  2 26  6 20 10 23 11 12 12  8 24 18 15 27
##  [7825] 14 18 11  7  6  1  1  5 13 11 25 22 16 17  1 17 19  3  3  3  4  4 25 30
##  [7849] 30 10 10 13  6 27  1  7 23 26  2  2 13 27 10 24 15 23  9  3 22 24 29 25
##  [7873]  7 14 16 11 15  2 19 25  3  4 28  8 26 22  5  5 17 17  1 10 16 28 23 12
##  [7897] 18  2 13 18 29  3 20  5 30 30 11 22 22 18 30 31  2 13 13  9 24 24  8  1
##  [7921]  1  3  5 18 26  8 28 12 26 16 24 25  9 24 13  3 27  1 26 18 20 11  4 28
##  [7945]  5 29 22 23 10 27  3 11 22  9 21  6 20 25 18 22 22  6  2  1 24 13 13 30
##  [7969] 29 16 17 29 30  7  1  8 18 11 13  9  1 24  9 13  2 14 23 30 15  3 16 23
##  [7993]  4 30  4 29 22 30 30 11  1  8 10  6 10 25  3  8 27 28 15  1  6 15 10 20
##  [8017] 21 14 24  1 21 20 29 10  3  1 18 15  2 29 24 26  8 23 12 13  2 19 24 12
##  [8041] 19 25 25 27 15 15 27 29 11 30  6 22 17  3 22 22 23  8  8  4  5 20 10  2
##  [8065]  4  2 10 25 13 17 15 29 28 17 30 22  2 26 16 20  5 20 21 18 25 27  6  1
##  [8089]  4 25 23 12 29 25 26  5  2  9  9 28  8 11 28  8  1 22 10 28 24 26 28 11
##  [8113] 29 18 25 15 20 19  4 21 22 28  1 22 23  4 21 21 17 11  4  9 10  6  2 30
##  [8137] 29 30 16 30 31 23 24 12  1  1 25 14 22 31 10  1  2 28 17 15 16 17 12  4
##  [8161] 16 23  4  5  9 19 11  5 20 21 27  2 16  2  2 17 23  8 19 15 20 27 18 30
##  [8185] 26 25 28  4  2  3 26  4 20 20  4 11 20 22 28  1 15 17  5 23 23  7 21 22
##  [8209] 12 24 26 18 25 29 29 20 16  6 19 28  4 29  4  3 30 12  7 25 30 17  9 18
##  [8233] 15 26 26 16 16 14 13  4 17  1 25  8  8 27 12  3  3 28 10 28  4 21 30 29
##  [8257] 30 13  1  8  3 20 18 25 26 27 31 17 13 13  1 18 19  8 27 20  5 30 29  1
##  [8281]  2 23  2 26 18 18 15 22 26 30 15 26 29  6  6  1  7 17 14  9  9 26 27 29
##  [8305]  3  3  2 20  9  3 25  9 17 24 24 11 22 30 28 15 29  2  6 16 10 26 27 30
##  [8329] 18 30 14  2 30 15 11  1 30 22 16 30 30 29  5  7 25 11 23 13  3 13 17 30
##  [8353]  9 23 24  9 18  9  7  7 11 26  2 26  1 10 17 25 18 10 29 12 12  9 25  3
##  [8377] 11 28 20 12 12 12 11 25  3  4 29 18 20 20  7  5 19 19 20  3 22  5  3  2
##  [8401] 21 27 18 22  3  3 22 23 20 23 13 14  5  1  4 16 15  6 25 25 12  8 25 10
##  [8425] 27 18 20 12 29  6 19 19  6 28  8 29 12 11 21  8  3 25 23 21 17 11 29 25
##  [8449] 20 15 29 18  5 17 13 26 21 25  1 26 13  7 26 18 18 10  3 13 27  9 30 14
##  [8473] 15 17 12 27  5 19 12 13  8 23  9 20 28 14 15 19 24 19 19 24 16 16 28 14
##  [8497] 11 11 19 29  2  9 28 20  2 13  2 16 25 29 19  2  2 29  4 30 26 25 16 28
##  [8521] 20 16 17 17 30 20 10  2  4  5 21 18  6  6 17 23 22 13 13 16 29 20  7 22
##  [8545] 17 17 20 21 23  7 26 19 22  8 21 21  1 26  1  8 10 13 19  4 12 25  5 10
##  [8569] 25  2  2  4 13 12 12  2 28 26 13 19 13 27 11 29 17  4 18 12 10 24 30  4
##  [8593] 17 10 20  4 18  2  2  1 19  2 27 18  6  6 11  3  1 19 27 31  7 18 15 21
##  [8617] 19  4 11  7 10 29  3 20 12 25 25 25 12 18 30 26 29 19 18 28 13 13 23 18
##  [8641]  8 26 22 17 12 15 17 17 29 29  4 29 30 22 20 27 26 30 10 22 15  2  5 29
##  [8665] 22 28  5 27 25 25 25 22  5 25 29 27 19 29  1  1 19 29  7 17  5 19  6  6
##  [8689] 18 16 16  4 27  3  3 21 25 10 30 30 22 19  8  2 11  9 18 28 30 19 30 21
##  [8713] 24 19  1  7  7 29  6 12 14 10 10 24  6 27  8 29 15 25 15  2 12 17  7 30
##  [8737] 18 18 19 13 16  4  2 27 25 17 16 31 23 17 26 11 12 10 25 25  9 10  2 12
##  [8761] 25 10  3 19 19 11 11  2 18  5 18 18 19  4 18 18 17 10 20  3 19 16  6  2
##  [8785] 30 20 30 18 18 30 27 28 23 24  6  7  1  2 12 14 19 21  6  8 10 22 18  2
##  [8809]  5 22  5 15 20  2  7 15 24 21 25 22 14 18 23  9 24 29  8 26 15 10  9  9
##  [8833]  6 26 18  9 28  2 18 29 24 10 25 27 12  5 12 29 29  5 27 19 18  8 16 16
##  [8857] 26  4  1  4  2 30 22 12  7 11 16 15 12 23 30  8 24 26 25  8 23 25 10 25
##  [8881] 23  3 16 25  9 29  3 12  8  2  7  2 19 23  6 15 19 30 10 28 18 25 16 18
##  [8905] 10  2 26 22  9  7 16 24 23  3  8 27 28 18  1  8  4  1 13 14  5  2 16 22
##  [8929]  5 24  1 19  9 30  3 27 15 15 13 24 11 31  5 18 29 19 20 13 28 28 22 29
##  [8953]  2 21 25 29 25 20 30 11 13 28 18 24 11  4 17 16 15 18 24 16  2  3 19 27
##  [8977] 18  1 17  8  9 14  5 30 18 27  6 28  6  1 19 25 29 19 19  5 28 15 10 24
##  [9001]  5 21  5 25  8  2 31 20  2  9  3 22  6  6  6 28  8 12 15  7 17 21 10  6
##  [9025] 18 26 17 23 25 12  1  7 12 23 18 28 26 29 26  5 18 11 26  9  1 27 15 11
##  [9049]  6 22  2 20 15 16 29 17 29 25  2  5 16  1  2 23  7 29 14 16  2  4  2 30
##  [9073]  4 13 22 24 15 10  8  4 30 18 26 26  1 18 11 26  1 24  1 12 20 28 18 29
##  [9097] 19  6  1  9  3 13 30  8 26 25 13 31  2 19 20 29 22  4 10  6 27 10 29  4
##  [9121] 12  5 13 28  3 13 15 14 26  8  9 14 12 29 17 12 24 14 24 17 24 30 30 16
##  [9145] 26 18 20 29 13 28 13 15  1 25 10 20 21 25 18 25 29  2 12 18  1 19  2  5
##  [9169]  2 19  6  3  5 28 25 19  1 12 17  5 22 22  3  3  3 12 30  9  5  5 29 18
##  [9193] 26  6  8 21  2  7  8  8 24  5  1 18  9  1  1 16 30 20  7 14 24 25 25 29
##  [9217] 16 31 28 28 12  6 17 15 16 25 18 19 15 28 27 15 17  9 30  5 18 11  8  2
##  [9241] 11 28  8 16 25 18 15 17  1  2 25 20 22 19 29 11 18 24  8  1 18 25  2 23
##  [9265]  3 31  8 16 18 18 21 12 13 16 16  6 22 25  9 17 10 30 12 27 19 20  3 10
##  [9289] 15 12 28 30 22 22 22 11 12  2 19  3  1 13  3  3 25 29  4 19 10  1  2 22
##  [9313] 22 27 18 21 16  7 22 17 20 18  1 24 24 25 11 16 19  5  6 20 11 19 17 13
##  [9337] 20  8 21 16  4 29 18  5 30 13 25  1  4 19 19  2 17 29 24 17  6  7 19 22
##  [9361] 23  3 25 24 25 13 23 25  2 12 27 26  5 18  4 17 13 18 11 12  8 28 11 30
##  [9385]  2 12 12 20 20  4  2 20  6  1  7 19 10  3  5  2 29 21  7 11 15  7  4 18
##  [9409] 21  2 25 25 24 20  8 19  1  7 12 15 19 21 25  3  7 10 12 20 11  5  2  5
##  [9433] 18  8 16 27  9 10 15 13  6 25  6 24  8 17 22 18 27 18 15  2  6 16  3 19
##  [9457]  5  2 29 13 19  4 29 16  9 17  2 10 26 21 18 22 30 24 25 22 22  1 18  4
##  [9481] 10  5 26 17  2 20 18 27 10 30 30 27 15 25 13 11 11  7 17 22  7  5 26 25
##  [9505] 21 25 12 13 18 11  7  1 26  7  2 12  2 21  3  7  4 27 10  2 25  3  2 19
##  [9529] 13 22 28 15  1  3 17 27 18  8  5 17 27  9 25 15 26  6 22 27 24 23 25 11
##  [9553] 16 29 29 29 17 19 19  6 29 25 20 25 25 24 25 10  9  4 29 17 11 16 10 18
##  [9577]  3 17 15 19 26 21 29 19 19 13 10 18 16 17 11 18 18 13  9 14 28 10 18 26
##  [9601] 18 18 14 30 18  3 30 29 21 29  3 14 20 27 29 15  9  8 21 19 25 29  3 13
##  [9625] 18 12 18  8 22 18 23 19 13 19 21 19 16 19 18 20 19 12  3 14 30 30 19 17
##  [9649] 17 20  9 27 17 17 21 14 26  5 27  6 16  1 16 22 22 29 29 10  5 24 22  6
##  [9673]  3  5  6 12 19  1 24 15 19 25  8  8  2 25 26 13 11 13 13  5  4  8 10 12
##  [9697] 11  7 30  9 10 29 22 18 28 15 24 28  9 14  5 19 29 20 25  5 25 21  5 29
##  [9721] 13 11 11 25 12  8 11 24 16 30  9 24 25  8  9  6 24 26 16  7 15 10 27 24
##  [9745] 18  1 23 17  2  7  6 27  1  5 17 25 19 18  4 19 10 26 23 31  3 20 21  5
##  [9769] 10 19  2 15 10  4 12  7 17 20 30  9  3  3  9 25 27 26  1 18 26 10 10 10
##  [9793]  5 17 24  1 19 18 26  3  8 18 19 19 19 18 19 19 29  2 20  1  4 18  6 21
##  [9817] 30 29 18 16 16  8 28 27 20 28 15 13  3  5 30 24 27  6 29 21  5  7 22 24
##  [9841] 30  9 19 19 17  7 19 17 29 18 17  2 17  7  3  9 19 24 19 30  9  8  2 11
##  [9865]  7  2 28  4 28  6  3  6  8  7  9 25 12 18 21 17 13 30 12 28  9  8 29  1
##  [9889] 15 11  3  9 25  8  1 13  7  7 13  8 30  1 14 13 19 19 18  2  3 20 19 19
##  [9913]  2 19 29 30 12 29 16  2 19 20  1  9 16 18 16 11  4 10  6  5 18 14 14  1
##  [9937] 18 30 17  7 11 22  8 29 29 28 29 25 19 18 20 19 21 29 30  4 16 31 25 15
##  [9961] 29 17  7  2 11 19 18  5 16 24  1  6 15  5 12  1 18 26  5 16 15 16 17 31
##  [9985] 25 17 22 19 17 11 21 30 23 23 14  4  4  3 20 12  2 27 25 12  1 16  9 30
## [10009] 30  3  3  2  5  9  8 20  8 24  7  4 25 11 30 27 28 19 15 18 20 14 18 17
## [10033] 29 27  2 10 30 26 13 16  8 11 14  5 10 28  3  8  9 24 14 12 27 30 14 30
## [10057] 20 28 28 28 20 21 29  5 17 15 12 25 29 16  2 22  1 11 29 16 24 24 22  9
## [10081] 25  8  8 17 30 12 17 26 23  1 16  4 23 28 23 15 10  4  4 13  3 18 29  9
## [10105] 17  4 11 22 30 28 18 28 28 29  8 29  6 20  2 30  6 29 15 25 20 14  6 29
## [10129] 29 28 25 29 16 29 19 25 20 16 17 25 15 19  5 23  1  3  9 30 30  7 18  3
## [10153] 14  9 18  4 19 26 19 19 11 30 29  3 22  4  8  6  8  8 29 11  6  7  9 31
## [10177] 16  1  9 19 10  7  2 26 12 13 13 16 25 13 11  9  2 16  4  4 13  7 26 27
## [10201]  9 16  9 14 24 28 12  3 25  1 18 11  9 15 12 24 29 12 27  7 30 14  5 22
## [10225]  1 30 28 13 23  7  3 25 28 28 28 19 18 13  3 29 20 18  4 16  8 10  1 19
## [10249]  4 12  2  9  1 16  1 10 11 29 11 16 28  4 30 15  8 19 28 17 29  2 18 29
## [10273]  1  3 26 20 16  9  3 30 25 22 17 17 11 11 26 18 21 10 29 20 23 18 19 19
## [10297] 20 19 17 19 29  3 15 21 12 20 12  2 13 15 10 20 24 18 19 14 10 18 28  2
## [10321]  5  5 16 18 28 27  6  5 30 30 26 19  5 30 30 19  3 22 24  6 21  7 12  9
## [10345] 15 21 28  2  9 15 24  2 13  5 25 20 24 16 25 27 13 30  8 24 23 28 20 26
## [10369] 29 18 27 23 12 25 13 18  5  4 25 18 13 19 18  2 10 10  2 16 19 11 17 11
## [10393] 29 18  9 18  4  4  2 10  1 18 29 30 16 19  5 30 27 11  3 16 23 22  1 19
## [10417] 18 22 16  8 25 12  3  3 11 24 12 19 26 20  4  7 26 23  3 13 16 25 23 24
## [10441] 24  9 18 27 10  2  9  2 26  2 11  9 20  9 20 25 24 12 24 21  4  3 15 28
## [10465]  4 20 17  7 22  4 30 25 11 30 10 22 17 18 26 26  4  5  6  1 12 21 22  4
## [10489]  1  1 19  9 25  1  9 26 16 23 13 21 15 15 29  1 22 14  8 15 18 25  4  5
## [10513] 30 13  5 15  5  4 16  2 18 28 27 15 25 23  6 30  7 19 14 27  1  9 10 22
## [10537] 30 27 16 13 12 29  6  7 25  2  9 19 30  1 10 19  8  5 30 17  2 17 12 25
## [10561] 29 28 28 25 27 16 20 22 16 13 10 11  2 23 26 13 27 28 19  5 11  5 16 19
## [10585] 10 14 17 27 29 18 21 22  1 18 29 19  1 23  1  3 19 14 25  4 15 19 10 24
## [10609] 13 28 28 11 19 13  3 20 13  5 17 20 20  9 29 30  9 12 24 26  3 31  2  6
## [10633] 12 14  1  4 30 18 22 30 30 30 11 12  2 18 18 10 30 21 21 16  4  5 28  6
## [10657] 18 18 26 18  4 29 21 30 19  2  5 23 19 23  1  6 12 20  2 20 26 26 17  7
## [10681]  1 23  9  1 28  1  8 12  2 12 11 25 25  2 22 28 14 14  6  9 11 11 16 16
## [10705] 26  3 25 23 29  9 29 12 25 26 26 13 15 17  8 25 28 25 12 17  5 29 11 12
## [10729] 29  4 16 28  2  6 18 19  3  3  9  9 21  1 10 12 21 31 16 12 27  1  2 19
## [10753] 27  1 13 20 22 11 18 13 25 18 10 29  3 21 21 20  4 11 28  2  4 18  1  1
## [10777]  3  2 28  8  9  3 30 20 17  2 22  1  7 19 19  3 12  4 25 23 10 18 22  4
## [10801] 30  6 21 21  4 16 25 25 25 25  2 22 18 15  8 16  1 10 30  3 27 13  9  2
## [10825]  3  4 13  4 20 11 15 15 30 25  4 20  3 18 13  6 22  9 17 17 28  2  1 12
## [10849] 21  6  8 17 22 25  2  4  6  6  8 30  6 21  6  2 12  8 25 28  1 10 11  9
## [10873]  4 14 24  2 14  7  1  2 29 26 26  9 11 13  2  1 13 13 14  3 19 19  1  9
## [10897] 28 11 20 16 29 19 19 19 18 17 17 29  8 15 12 11 17 29 21 27  1 30 29 29
## [10921] 16  1 25 18 21 21 20 10 19 18 19 24 19  4 15 28  7  7  7 21 18  3  9 15
## [10945]  2  5 15 18 28  4  9  9  2 16 11 11  4  3 24 24 15  7 11  6 30 22  1  6
## [10969]  3 23 18 19  7  7  2 10 22 27 29 13 11  2  2  7 24  8 13  1 25 29  3  4
## [10993] 17 29 29 17  6 10 26 23 16  2  7  2 27  6 27 26 20 19 28 25 20 16 30 19
## [11017]  7  6 13 14 24  2 24  5 18 12 13  3 19  9 24 23 15 27 16  4 29 20 27 13
## [11041]  2  2 22 16 18 18  5 12  1 15  4 15 28  2 18 14 29 13  8  2 21 14 11 12
## [11065] 18 18 18 16 16  2 27  9  2 11  5 17 27 23 10 12  3 28 17 29 18 19 27 11
## [11089] 27  3 10 29 19 18 28  2 21  4 19 11  2 12 12 25  7 15 28 18 29 20 29 23
## [11113] 16 16  2  2 20 28 27 17  4  4 17  1 30  6 21 30 16  2  1  8 25 30  2 11
## [11137] 26 23  2  2 27  9 10 24 19 18 29 10 30 29 29 29 17  9  5  9 30 17 25 17
## [11161]  2 17  1 11 29  7  3  9 21  6 19 29 30 26  3  1  8  5  1 30 22 23 30  4
## [11185] 27  7 15  6  6  2  2  8 26  2 26  8  2  9  9 14 29 18 14 29  3 27  3  3
## [11209] 14 30 15 16 16 19 17 28 18  1 25  2 18 19 21 29 15 30  4  3 14  7 30 18
## [11233] 25  4 10  8  3  6 11  3  2 15 29  7 24 22 29 17 25 15  9 26 18  4 16 29
## [11257] 19  5 25  6 29 18  4  4 29 19 29 21 21  3 29 25 29 30  1 21  5 29 16 14
## [11281] 19 16  5 21  8 30  9 25 11 22 22 22 23 15 25 29 23 27 25 11 27 12 15  6
## [11305]  6 12  1 20 13 18 27 23 12 25 18 29 18 25 27 27  3 18 18 27 19 19  6 28
## [11329]  4 29 19 16 29  6  3  8 18  5 18  4  1 11 22 22 21 17 15  4  3 23  1 21
## [11353] 22  2  2 22 19  1 19  8 21 21 21 16 20  4 19  2  6 18  8 25 25 12  6  9
## [11377] 14 12 16 13 18  4 11 19 20  6 10  6 16 17 17 16  2  9 25 25 29 11 16 21
## [11401] 11 26 10 29 28 30 13 14 26 19 20 20  2 29 19 16 29  2  1  6 11  1 20  9
## [11425] 15 24 26  2 19  1  4  7 21  1 24 18  2 12 11 17 18 30  1  3  6 20 17 24
## [11449] 14 17 20 30  3  2  9  1 18 28  8 16 30 30 27 21  2  6 22  7 26 18 10 25
## [11473]  8 18 28 17  1 24 24 28 12 12  2 27 20 15 17 21  3  8 12 18  3 19 16 16
## [11497]  2 12 22  7  8 24 28 29 19 17 26  3 20  2 16 15 16 16 24 23  2 13 15  5
## [11521] 25  6 16 17 24  2 18 29 17 22  6 13 23 25 25 29 29  1 26 18 28 19 27  2
## [11545] 28 29 29  3  5  5  8 10 31 30 25  2  1 18 11  2 15  7  4 16 23 30  7  6
## [11569]  7 26  7 28 18 21 17 29 23 24 25  4 22 13 25  8  9  9 29 26 17 17 14  3
## [11593] 30  5 30 11 13 23 25 29 25 25 19 14  6 21 26 13  9 30 24  2 29 13 17 17
## [11617] 25  6 26  3 20  4 30  7 25  8 25 16 18 29  4  5  7  7 27 16 26  3 20 23
## [11641]  5 28 22  5 12 13 28 18  2 19 16 13 10  2 18  2  2 29 29 30  6  2  4  4
## [11665]  2 30 25 12 25  3  1 19  2 19  4 26  4  3 23 25 25  8 30 24 10 25  4 27
## [11689] 29  1 17 17 19  5 22 11  1 26  9  9 29 23  1 18 27 21  2 12  9 20 16 29
## [11713]  6 21 21 25 12 28 28 10  3 17 22 11  7  3  9 16 29 16  1 11  2  2 15 22
## [11737]  1  7 21 12 26 18 13 19 13  6  4 29 23  3 16 29 30 18 13 22 15 20 24 22
## [11761] 29 26 21 29 22  2 20 21  1  6 10 24 20 13 10  9 20  9 28 13 18  1 11 22
## [11785] 22 10 15 10 25 28 19  7  8 14 26 22 13 19 21 28  2 31 30 25  6 30 14 22
## [11809] 14  4 25 30  6 21  9  2 21 27 17 15 26 22  5 15 11  8 30 17 17 28 13 25
## [11833]  8 22 22 14 23 10 24 13 15 30 15 25 19  7 27 25 30  2  1  9  8 25 27 29
## [11857]  3  9 12 23 28 16  4 22 24 24 25  1  4  6 10 20  3  6  7 20 30 15  7 26
## [11881] 20 12 16  5 11 17 31 22 19 27 19 10  1 26 27 29  5 22 14 19 11 19  6 22
## [11905] 29 30 13 11 31  1 15 25  6 30 22  9 29 30 10  9 28  6  1 21  9 29 15 14
## [11929] 24 22 30 22 24 22 19 23 21 18 27 14 12  3  7 15 17 10 21 30  3 15  6 23
## [11953]  8 30 23 21 23  4 26 22 17  1 28 26  8 30 24 19  4 29 14 19 17  4  8 14
## [11977] 14  8 16 17  1  5  3  5 24 25 13 29 17 18 14 15 24  7 27  7 25 30  3 22
## [12001] 17 18  8 19 20 27 27 13 26  2 13  1  5 18 27 22 19 26  7 28 22 22 20 13
## [12025] 30 22  3 19 23 29 21 22  6 24 22 30 13 25 25 16  8  5 25 19 28 27 10 20
## [12049] 12 19 17  4 10  3 30 30 10 21 30 23 26 12 26 21 18 26 17 28 28 23 15  9
## [12073] 29 28 31 21 28  2  6 10 29 12  4  6 30  2 30  4 26  6 12  9 16 20  1 11
## [12097]  8 19 22 16 27  3  4 25 11  8 12 10 29 28 27 16 17 27  6 14 22 13 24 12
## [12121] 28 27 29 20 11 20 24 26 23 27 29 24  2 17 25  5 17 31 16 18 21 30  4 27
## [12145] 21 26 11 27 17 23 22 17 21 26 15 28 23 27 30 28  6 20  5  4 22 15  9 23
## [12169] 16 22 27  6 22 20 19  8 16 15 18 12 16 24 16 28  2 14  8 29 15 30 25 16
## [12193] 11 14 19 17  5 15 25 23 13  1 18 26 13  5 22 10 16 15 24  8 27 10 29 18
## [12217] 20 30  2 21  2 20 28 20 16 10  1 14  4 22 30 16 24 23  5 27 30 30 18 19
## [12241]  2 28 12 18  1 13  8 11 27 16 21 10 30  1 23 24 14 29  8 14  5 25  8 30
## [12265] 21  2  1 29 30 22  5 23  4 28 23 17 12  2 24 27 25 13  5 22 13  7 26 22
## [12289] 22 12 29  2 23  6 16 15 14 20 27 21 20 28  4  6 18 27 29 23 24 21  5 23
## [12313]  8 26 30 22 30 19  2 22 23 15 20  3  2 25  4 25 23  6 21 12 14 23 24 22
## [12337] 21  7  7 14  9 19 22 27 19  1  3  4  3 16 30 29 25 28 20 14 14 29 24 19
## [12361] 23 12 26 18 16  8 19 20  4  6 25 10 10  2 17 19 27 27 26 19 24 20 28 29
## [12385] 18 14 23 12  4  5 14 12 12 10  7  2 22  4 26 31 19 10 27 26  4 23  8  4
## [12409] 21 13 23 18 28  1 28 22 15  5 29 22 23 25 13 22 19 29 15 27 19 22  3 22
## [12433] 12 22 13  1 21 25 27 10 21 30 29 21 23 23 16 23 29  6 22  8  8 14 12 20
## [12457] 14 14 30 26 30 17  7  4 22 11  9 11  2 29  4 16 18  8 16 16 27 10 24 22
## [12481] 23 28 27 21 28 13 24 14 23 25 12 23 29 20 20  4 22 14 20 22  2  3 20 22
## [12505] 22  5 22 27  1 21 22 23  8 23 31 23 19  1 23  8 18 12 10  6 17  8 24  9
## [12529]  4 28 29 11 13 15  4 30 30 16 29 21 10  5  4 11  9 27 30 30 17 17 20 30
## [12553] 21 30 15  8 21 17 23  6 21  5 22 22 10 21 16 26 29 25 12 14 27 17 20  1
## [12577] 27  5 20  3 23  7 13 12 14  9 11  7  8 29  1 21  1 18 21  2 25  3 22 28
## [12601] 30 13  6 17 22 30  7  4  4 16 27 26 16 30  8 27  6 17 19  7 14 14 23 30
## [12625] 17 19 24 16  2 25  7 24  5 19 24 27 17 16 27 25  8 12  4 22 28 29 12  1
## [12649] 15  3 29 16 15 30 30 15 30 14 29 29  2 22  6  4 13  4 30  4 22 17 10 20
## [12673]  3 15 27 14 23 28 28  7  8 22 11  7 20 30 28  9 17  1 12 27 26  5 26  4
## [12697] 25  8 13 22 17 30  5  3 22 27 20 14  2 22 30 22 21 14 30 23 26 23 30 17
## [12721] 21  3 24  6  2 10 30  8  1 22 30 27 13 27 29  9 20 24 19 23 23 27 15 18
## [12745]  4 21 20 15 29 29  2  8 28 28  8  7  7 10  4 30 26  6 29 14 29 29 28 24
## [12769] 18 27 20 29  5 18 19 20 17  9  3 27  6 24 25 28 22 22 22 27 14 24 17  1
## [12793] 22  3 30 23 30 10 11 22 26 22 27  5 13 16  2  5 17 15 17 29 22 11 22 15
## [12817]  6 28 13 23  3  4 16 17 19 15 30 16 30 30 28 22 11 25 30 27 24 12 22 25
## [12841] 22 20 21 28 12 21 19 14 18 29 15 15 21 16 28 30 29 29 16 18 18 31 27 27
## [12865]  6 18 30 12 12 17 17  5 18 28 12 19 18 10  1  8 22 14 14 25 24 25  2 11
## [12889]  1 19  8 26 24 21 12 18 15 17 16 15 24 23 16 10  5  4 20 29 21  6 28 21
## [12913] 11 26  5 28 27 25  6 18 20 20 16 30 11  9 15 18 23 12 16  6 29  2 31 29
## [12937] 25 29  8 29 20 18  7 25 15 17 16 24 14 14 24 10 11 28  8 18  3 28 18  6
## [12961]  9 12  6 11  2  5 23 15  4 16  1 12 23 23 22  2 29 22  9  8 28 30 30 30
## [12985] 21  7  7  4 27 30 29 15  1 30  2  6  7  6  7 25 22  3  1  3 12  7 17 14
## [13009]  1 22 21 10  5  4 28 17 27 18 24  6 19 25 17 21 10 28 17 20  7 28 31 25
## [13033] 15  1  1 13 26 13  7 23  8 21 21 29 21  9  4  6  7  6 18 14 22 16 16  1
## [13057] 15 29 26 20  8 20  8 30 15 22 14 27 12  5  2  5  5 17 21 14 13 10  8 28
## [13081]  3 21 17 10 16 22 10  5 11  6 15 25 25 23 25  8 21  1  1 18 19 21 17 19
## [13105] 12 10 26 29  1 14 12 12  2 12 17 26 29  6  3  4 12 27 28  5  4 25 10 25
## [13129] 25 12 19 28 28 27  2  4 31 19 18  3 19 30  3  6 25 21 24 13 24 12 25 26
## [13153] 23 18 10 29  6 22  6  5 21  3  3  3 17 10 30  8  4 17  4 18 25 19 20 31
## [13177]  2  5 21 23 18 13  9 10 25  7 20 18 23 14 20  8  8 10 16 21 10 17 10 10
## [13201]  7  7 13 10 30  4  5 24 14 15  7  7 30 22 12 11 20 10 28  7 22 22 22 14
## [13225] 24  7 15 15 23 14 15  9 21  8 14 24 16 10 16  7 24 18 29 13 12  1 25 16
## [13249] 22  7 10 19  9 20 23 13  7 15 18 15 27  8  2  6 15  7 12 21  3  1  7 20
## [13273] 26 16  8 19 16 28  3 13 17 21 14  5  1 13 26 18 31 21  6 20 29 24 22 29
## [13297] 18 27 29  3 12 28 13  4  7 30 26 31 24 16  6 12 17  8 30  2 15  5  6 21
## [13321]  2 28 18 13  5  3 31 15 22 15 12 14 15 18 15  2 30 23 24 12 21 16 13 13
## [13345]  1 15 14  9 20 12 21 26 26 30 15 10 24 21  8  2 24 21  8 18 16 14 22 11
## [13369] 14 14 29 27 14 28 28 30 24  3  4 23 15  1 15  6 27 18 17 30 24 23 30  4
## [13393] 20 31 16 17 24 25 14  9 29 10 10 14  9 25 17 30 25 26 25 24 28  8  4 10
## [13417]  3 14  8 11 15  9  9 15 31 10 28 22  5 12 25  1  4 11  5  7 24  6  5  4
## [13441] 24 18 25  9  5 24  3 21 29  2  6  5 24 30 29 25 15  3  3 28 18 23 28  5
## [13465]  6 31 30 16 24 16 17 17 22  3 22 22  5  8 13  3  7  4 16 18 10 11 17  4
## [13489] 15  8 16  3 19  6 20 28  4 29 27  8 19 22  4 22  5 28  6 15 16  9  7 21
## [13513] 15 13 10 27 17 11  1 21  8 17 21  8 25  7 23 11  8 27 17  5  4  7 20  9
## [13537]  1 17  1 26 10 28 30 22  7  5 19  6 12  6  4  8  3 23 30 11 21 14 15 29
## [13561] 29 25 23 16  9 13  4  9  7 30  7 26  4 25 29 12 16  3 30 22 22  7 29 27
## [13585] 22 17 23 26 23 10 31  1 29  4  9 20  2  3 28  6 14 11  2  4 26 31  3 26
## [13609] 20  1 16 21 16 24 21 20 21  9  5  9 14  6 25 29 18 18 10 10 26 28  8 17
## [13633] 27 29  1 17 23 17  3  1 28  7 15 15 25 24 19 14 31 30 15 15 26 18 30 12
## [13657]  5 21 10 31 28 23 10 26 19 19 31 18 30 18 16 12 14  1 23 11  7 25 15  3
## [13681] 21 15 19  7  7 13 10 14 29 11 17 19 15 17 12  7 28 24 13 15  3 10  6 24
## [13705] 26 13 17 22  1  7  2  9 12 29  3 14  2 21  1 12 30 22 27 18 15 23 23  9
## [13729] 12 17 12 23 29 18 13  3  9 16 13 20 16 29 12  1  9 13  4 12 14  3 17 11
## [13753] 25 21  7  9 29 22 27 18  4 20  1 15  3  6 18 21 21  8 15 16 20 13 29 27
## [13777] 19 10  5 22 21 22 27 10 21 31 30 18 13  2 22 12 20 29 31 16 25 25 19 15
## [13801]  1 31 31  4 17 30 12 24  7 24 18 21 28  7 21 17 22  1 10 22 10 19 22 31
## [13825] 10 28 10 16  8 12 30 17 10 14  6 27 30 23 17 22 16  8 23 23 20  2  9  3
## [13849] 19  9 11 28 11  3 20 25 17 31 19 18 16 17 28 10 19 15 22 24 23 15 18 27
## [13873] 12  1 11  8 13 16 17 15 13 20  7  8  4  6  8 19 27  7  6 21  6 10 17 18
## [13897]  3 10  4  6  6  6 16 11 13 17 28 29 10 17  7 15  8 15 28 29 30 19 20 25
## [13921] 21 10  6  7  7 26  2 15 21 27  8 30 18 30 31 20 13  8 12 13  3 18 13  2
## [13945] 28 22 31 24 17  2 13  9  9  9 10 18 14 31 12 22 19  3  3 25  8 21  6  2
## [13969] 25 25  1 18 19 28 21  6 30 13 25 26 16  1 12 13 10 28 25 28 24 26 31  5
## [13993] 10 28 28 15 15 25 21 10  7 27  1 21 26 14  9 11 15 16 15 14 30 18 29 11
## [14017] 11  9 28 29 10 13 31  8  8 15  5  3  7  4 15  8  9  7 29 11  3 19 17 11
## [14041] 22 15  3 28  9  6 31 22  1 23 17 29 29 10 25  7  5  4 22 19  9 31  5  7
## [14065] 17 30 18 27 22 18  3  2 16  7 17 19 24  4 29 15  4 24 26 14  3  9 12 23
## [14089] 16  9 24 20 30 23 20 23 25 17 12 12  2  7 17 12  5 23 18 13 15  9 21 10
## [14113] 20 28 30 10 24  6 10 10  3 17 19 22  5  7 10  3 17 24  7  7  1 21 11 27
## [14137] 23 22  5 28  3  6 24 31 25 26 29  4 22 31 10  5 13 22  9 10 13 24  6  7
## [14161] 30  9 10 29 10 14 22 22  5 15 28 28 28 13 25  1  7 21 30 29 12  8 28  4
## [14185] 17 24 31  9 21 21 26 27 26 28 24 26  3 25 11 20  7 24  1 24  3  2 18  7
## [14209]  9 17 11 10 12 17 20 11  8 23 13 12  7 14 24  3 19 17 24  4 16  4 20 13
## [14233] 14  2 29 27 22 21  4 16  8 26 29 23 31  8 21 15 27 21  6 22  5 29 18  6
## [14257] 21 11 12  5 18 18  8  4  6  7  3 17 13 26  2 24 14 19 18 12 29 13 13 28
## [14281] 14  7 11 25 18  4  4 13 10 10 18  8 30 22 24 11 15  1  3  9  4  3 22 23
## [14305]  3 21 21 17 15 28  1  2 14 24 22 23 12  4 11 29 14 15 29 15  1 22 10  2
## [14329] 15  9 21  7 18 24 20 26 22 29 26 26 23 28 29 28 24  7 27 14 28 24 21 19
## [14353] 12  7 12 23 18 18 21 30 15 14  8  8 27 23 29 19 12 29 11 17  5 24 24  7
## [14377]  3 22 30 10 10  1 27 28 30 29 23  8 29 28  9  2 19 20  2 11  1 19  3 20
## [14401]  9 27 20 23 18 24 29 10 11 20  7 17 12 31 15  8 21 25 28  2 10 28 25  9
## [14425] 11 21 30 14 10 24 16 16 17 17  5  8  9 10  1  4 21 21  7 24 14 12  1 12
## [14449] 31 31 24 28  2 24 16  1 17  6 28 10 10 10 21 21 15 20 11 24 23 17  8  8
## [14473] 15 18 17  4 25 11  8 26 22 27 27  4 12  6 10 27  7  7  5 28 11 25  8 13
## [14497] 19 20 25  2 25 25 13 31  5  7 13 25 27  3 16 27 10 15  7  6 10 18 12 22
## [14521] 27 14 27 22 22 28  4 14 28 14 16 31  4 26 21 14 25  6  1 11 10  7 27 31
## [14545]  7  9 29 26  7  1 23 18 14 23  1  3 28 21 24 14 24 15 18 18 26 17  6 16
## [14569] 12 26 14 14 10  7 18 18 19 17 17 15  9 30  3 23 19 26 21  3 14  9 24 17
## [14593] 17  8 14 28  8  8 30 12 10 10 27  4 10 21  2 17  1 13 18  6 11 11 17  4
## [14617] 29 21 24 25 20 26 30 16 23  4 13  5  7 23 15 15 29 16 15 14 29 27 12  3
## [14641]  5  7 25 29 18 20 21 28 15 29  5  5 28 29 10 15  1 14  6  2 15  1 27 17
## [14665] 15 21 30 17 29 24  6  6 22 30 26  3  9 25 21 16 17 17 17 26 22 17 21 17
## [14689] 14 18 17  1 18 28  8  7 25 23 14 15 14 30  8 30 14 10 26 29 17 24  8 22
## [14713] 16 29  3 17 29 22 13 19  4 22 24 12  7 10 19  9 17 13  8 18 22  6  4 18
## [14737]  1  2  7  5 22 31 15 16  9 21  3  4 30 18 22 24 29 21  6 28  8 17  3 18
## [14761]  3  6 10  4  4  1 10 14 25 30 25  3 12 24 25 14 27 10 19 13 11 13 16 16
## [14785] 27 23 20 17 22 19 31  7 13 11 13  8 14 17 22 22 23 23 29  6 31  2 17 23
## [14809] 17 18  6  3 11  9 31 14 30  3 19 13 23 22 14 25 28  9 22  4  4 19 25 17
## [14833] 19 17 23 31 10 14 29 30  4 25 12 27  7 28 28  3 11 27 12  8 23 24  5 29
## [14857] 15 15 28 21  6  4 12 30 26 10 13 14 28 29  3 15 17 25 29 14 15 15 29  8
## [14881]  1  5 23 25  8 19 19  1  2 16 14  3 23 17  8 10 19  6  6 11 10 29  4  8
## [14905]  6 18  4 22 11 24  9 12 21 11  6 17 15 23 18  3 30  9 14 12 24 13 12 21
## [14929] 21 19  9 23  8 11 22 17 22  1 28 17 28 28  1 13 23  7  5 31 26 18 17 16
## [14953] 22 30  1 14 18  6 26 17 21 27  9  3 14  1  1 16  2 25 28 16  3 21 19 16
## [14977] 22 21  6  4 18  7  9 24 24  1 10 22 26  4 28 21  6  8 16 20 17 30 10 23
## [15001]  3 14 30 27 21 15 13 16 21 21 15  2  3 15  7 21 27 14 23  8 31 22 11 27
## [15025] 27 16 13  5  7 25 18  4 20  6  4 17 12 10  3  3 21  7 20 10 14 27 12 28
## [15049] 21  9 11 27 15 29 20  7 20 26  3 11 10 14 24  3 29 25 15 31 31 13 18 14
## [15073] 17  6 21 26 31  1  5 17 28 20 13  5  8 21 29 30 27 29  9 31 22  4  3  8
## [15097]  2 12 30 17 29 29  1 25 12 21  1 19  8  4 10  2 27  9 27 15 17 14 23  4
## [15121]  9 12 16 31 31 30 28  9 17  8 13 14 25 30 11 10 25 21 31 11 27 11 28 25
## [15145] 14 30 14 22 24 22 27 21 15 21 27  8 21  1 31 13 17  2 19 24 30  2 10 26
## [15169] 23 28 18 22 30 16  9 18 25  9 14 16 12  6  1  4  7 13  6  4 16  6  2  3
## [15193]  9 27 22 22 16 14 14 21 25 31 13 20 11  8 18 10 19 14 11 18 19 14 15  3
## [15217] 17 25 21 13 30 30 30 11 14 25  7 24 21 16 13 13 22 25 10  6 10  6  8 30
## [15241] 16 20 18 30 28  4  5 18 10  7 21  6  4 21  1 15 19 14 27  5 24 24  4 25
## [15265] 14 27 29  5  8  8 27 17 18 26 16  8  8  8 20 27 15 11 29 28  5 27 21  9
## [15289]  3  7  6 16 28 15 30 25 27 18 28 29 28 24  9 15  9  4 25 21 14  5 22 29
## [15313]  9 16 15 22 27 18  3  9  9 13 14  6 12 17 17 23  4  1 23 11  2 24 24 15
## [15337] 13 26 17  4  2 12  9  3  4  4 10 10  1 24 17 22 20 19  9 28 26 11 13 24
## [15361]  9  6 24 22 22 26 18  7 19  6 26  7 24 16 24 25 30 23 23 13  4 21 20 27
## [15385] 30 21 26 20 24 15 21  6  4 29  3 19 29 27 26  1 15 17  8 20 20 22 27 21
## [15409] 19 23  8 31 31 30 21 31  3 28  6 14 30 26 19  5 29 29  7 19 17 20 18 25
## [15433]  5 11 13 29  1 28  7 16  6  4  3 11 19  7  2  2  3 31  3 21 28  7  4 11
## [15457]  1 27 24 27 31 16 28 31 21 27 29  5  1  2 22 11 16 24 21 21 31 17  3 31
## [15481]  1 20 26 28 31  5 14 28  1  6 21  5 29 21 21 17 20 24 18 24 21 27  9  4
## [15505] 21 16 10  9  3  7  7  3  8 25 31  8  3  7 30 14 23 23 26  6  8  5 20  7
## [15529] 13 28 11 10 20 22 14  4 23  3  4 24  8 21  9 20 21 27 31  9 11  1 21 16
## [15553]  1  9 13  7  2 23 24 24 25  9  4 18 24  6 15 23  4  7 30  4 27 26 27 22
## [15577] 17 31  4 29  2  6  8 20 23  4  3 29 18 30 25 18  1  3  3 28 11 22 16 12
## [15601]  7  9 28 20 20 14 15 27 31  6 17 14 17 22  8 23  4  4 26 29 17 24 27 29
## [15625] 15 28  4 14  3 30 18  6 17  6  1  2 10 25  1  9 14 20 22 20  7 11  4 20
## [15649] 27 18 26 10 22 27 19 31 10 18  2  5 16 10 11 17  4  2 28 28  7  3 10 16
## [15673] 25 21 15  8  3 26 21 18  4  4 28 23 21 21 13  5  1 29 16  4  3  5 22 31
## [15697] 21  5  5  7 22 16  2 16  1 23 12 23  1  7 21 12 21 22 12 30  5 22  9 12
## [15721] 22  8  7 30  4 15 11 22 27 31 31 12 17 24  3 23  8 27  4 13 12 29  9 17
## [15745] 18 23  1 22 20  5  8  1  1  3 27 24 22  5  2  2  5  8  7 14 19 21 17 13
## [15769] 16  5 10 24 28 11 20 23 27  4  4  1  9 13  8  5 28 20  9 31 22 27 16  8
## [15793] 21 20 11  8 25  7 26 29 22  5 20 14 29  4  2 27  8  8  5 10 14  7  6  4
## [15817] 19  5 25 29 24 19 10  4  6 15 24  6  1 20 26  8 30  4 21 25  5 29 26 29
## [15841] 30 28  1 30 27 27 28 20  7 12  9 21 22  9 12 10 31 12 24 20  8  2  2  6
## [15865] 19 11 15  8  9 26  8 17 27 10 11  6 10 22  5  6  8 12  7 16  6  7  9  6
## [15889] 18 24 15 14  2 12 23 15 10  6 13 29  7 13 21  3 12 28 11 14 11 12 25 23
## [15913] 11 16 16 17  5  4 29 19  9  9 23 27  5 29 31 30 15 28 11 20  6 27 21  6
## [15937]  8 22  6 29 12 27 22  9 24 28 25  5  3  5  1 14  9  4  7 16 21  8 20  8
## [15961] 27 12 24 17 29 17 30 16  2 12 19 13 30 24 29 19 15 13  6 23 19 10  1 26
## [15985] 26 14 23 16  2  3 27 31 10 10  9 31 24 29 31  5 26 10  1 18 24 15  6  2
## [16009]  7 31 22 14  4 24 24  8 28 13 22  1 28 29  1 23 30 16 10 10 13 12  6  5
## [16033]  5  5  6  6 21 26 23 18 15 19  7 24 13  1  7  4 11 21  2 18  6  4  5 29
## [16057] 21 23 16  5 25 14  4 31  3  3 17 29 16 17 19 17 11 29  8 10  1 13 21  3
## [16081] 12 17  5 26 29  1 13 15  7 13  8 10 14 21 17  8 22 25 29 28  5  7 27 28
## [16105] 16 26  8 12 31 29  9 12 14 10  3 14 12  8 21 31 31 28 16 12  7  6  8 28
## [16129]  6  8 14 19 13 16 25 22 17  9 13 13 28  4 29  6  9 30 25 20  5 14 17 10
## [16153]  7 23  4  8 20 13 21  9 10 10 19 12  4  5 22  1 14 18  9 27 23 15  8 31
## [16177] 30 29 21 15 13  9 26 29  8 15 30 28 25 19 26 22 23 28 24  4  1  3  8 30
## [16201]  4 28 28 28 21 10  6  9 30 23 19 12 12 28 16 10 17 11 20 10 28  5 12 16
## [16225] 21 13 29 26 16 14  4 14 11 12 14 23  9  8  4 27 19 21 10  1 24 11 17 10
## [16249] 25 11 29 30  2 31  3 24  9  7 31  2 15 30 25  9 14 21 24 19 15 10 24 17
## [16273] 14 17  3  8 28  4  4  1  4 21  4 17 29 29 29  1 21  4 29 17 29  4 30 28
## [16297] 19  7  3 15  8 17  7 16  2 25 19 17 24  8 19  3 31 17 30 27 16 29  4 29
## [16321]  8 23 12 29  9 22 22 29 13 10 18 13 17 24 22 22 21 26 11 22 19 15  3 17
## [16345]  6 10  9  8 12 31 18 10 21 13 18 18 23  3  8 27 23 29 23 15 15 10 24 14
## [16369] 14 15 15 30 14 28 15 28  8 21  5 24 10 11 29 13 11 23 21 15  8 28 10 27
## [16393] 17 14 29 16  9  2  2 27 14 24 25 29  9 17 19  2  3 10  6 31 16 10 17 20
## [16417] 25 30 30 30  4  6 25 12 14 30 14 25 29  6 11 27 27 26  9 24 13 22 22 10
## [16441] 16 21  4 28 31 17 16  7  4 26 27 17 23 29 26 26 15 14  7 21 20 21 22  1
## [16465] 21 29 12  7  8 26 22 21 17  7 17 27  7 22 14 10  3  7  3 17 27 27  3  8
## [16489] 29 29 12 12 17  9 22  3  1 17 29 18  9 14 12 18 22  7  7  1  9  8  9 18
## [16513] 12 23 12  7 14 18 28 21 13  9 14 14 17 13 22  2 24 24 22 10  8 18 21 13
## [16537] 15 28 18 31  3 15  8 15 23 26 28 29 25 27 31 30 14 31 24 12 15  1 10  3
## [16561]  5  7 16 13 14 20 25 25 26 23 10 17  7 29 13 18 22 28 30 14 21  3  6 21
## [16585] 28 16 10 15 24 14 16 30  8 15 14 13 25 18 25  7  8  1 20  3 15 11 10 30
## [16609] 30 24 17 17 25 30  5 16 24  4  6  6  7 31 30 30 22 17 19 23 22  8 29 27
## [16633] 12 22 11 17 17 28 27  6 22 22  8  7 10 11  6 22 11 28  7 24 28 24 27  4
## [16657] 22  6 14 17 26 11 12 21 19 14 13 28  5  7  5  7  1 19 25  6 29 23 29 31
## [16681]  9 22 21  1 23 22 14 19 14 21 16 28 18  2  3 21 28 23 29 29 31  6  5  7
## [16705]  7 26 25  4 26  8  6 20 28 26 31  8  3 23 27 23 22  3 13 15 18 17  3 15
## [16729] 29  1 17 30 19 14 24  8  9 16  1  1 27 29 11 30 10 23 26 17  7 12 31 15
## [16753]  4  7 17 12  5 12 24  6  6 28 24 18  6 29 12  1  5  4  6 19 21 20 21 29
## [16777] 14  3 12 12 11  6 17  5 22 20  1 21 13 10 19  8  6 13  1 15 18  6  9 12
## [16801]  9 25 10 25 20  4 14 16 18 13 20 20  8  4  1  5 19  7 18 30  4  4 10  4
## [16825]  4  4 17  1  1 22 16  1 12  3  3  7  7 28 20 26 29 21 14 15  8 24 30 25
## [16849] 10  7 21 21 22  3 15 10 28 14 21  8 24 11 17 30 25  3 10 31 26 30  9 30
## [16873] 14  9 17 17 27 17  7  5 14 24 23 31 27 24  4 16 19 12  7 15  2 25 14  7
## [16897] 14 14  1 28 16 15  4 10 12  7 21 16 24  5 23  9  1  4 29 16 17 30  6 22
## [16921] 27 13 24  8 30  7 16 17 17 30 28 21 10 24 21  3 10 21 28 21  7 28 15 29
## [16945] 24 16 24 29 19  3 16 23  4 20  6 20 20 17 23  1 10 10 22 17 21 31 30 24
## [16969] 31 26 18  2 15 31 31 28 29 18 13 29 30 29 25 16 18  4  3 28 30 23 13 22
## [16993] 31  7 22 21 20  4 22 17  3  3  7  5 28  9 27  8 29 23  7 11  9  9 29 29
## [17017] 22 17  9 17 25 11 25  8  9 16  6 21 21 18  7 13 17 27 24 27 21  8 11 20
## [17041] 20 17 20 29 19  1  8 13  6  8  6 10 13 20 20 21 14 22 10  6  5  4  5 14
## [17065]  3 26 21 17 31 26  8 21  8 14  8  5  6  4 15 30  7 24  5  4 14 10  1 22
## [17089] 28 27  8 28 14 14 14  6 11 13 21  3 14 14  2 28 28 22 18 10 14  7 24 17
## [17113] 20 17 24 24 10 14 13 27 29  5 23 31  6  4  8 22 17  1 21 29 11 23 15 11
## [17137] 21  2  1  8  8  2  2 21 18 14  4  4 10  4 31 29 23 27 15 18 29  1 25 28
## [17161] 16 28  8 23  7 16  5 30 15 30 14 14 16 12 21  5 27 28  8 17 17 17 18  8
## [17185] 27 10 26 17 25 28 25 19  3 23 21  9 21 19 26 30  6  7 22 25 17 16 13 12
## [17209]  1  6 13  6 19 10 29  1  6 13 15  5 13 24  5  5 31 31  6  9 22  4  5 22
## [17233] 28 19 20 11 22 22  4  4  9 25 20 23  7 24  4 11 27 12 17 25 31  2 24  3
## [17257] 29 18 17  6 30 11 14  8 24 21 27 24 25 11  8 23  1 21 30 16 23 23 28 21
## [17281] 26 24 21 28  1 15 25  2 28 17 25 23 13  3 29 12 13 25 10 22 30 20 10  6
## [17305] 29 29 19  2 14  6 14 26 17  3 15 29  1 13 14 17  4  8 18 13 14  2 21 23
## [17329]  2 21 28  8 22 28 22 13  4  1  8 29 24 16  9 21 12  2  1 29 17 14 22 24
## [17353]  7  7 26  1  1 31 21  3 29 25 14 10 21  7 22 19 28  6 13 17  8  5  7 25
## [17377] 25 21 24 21 11 28  2 28 17 15 13 17 27 12 16 16  7 23 22 23 14  8 23  8
## [17401]  7  8 21  1 29 28 28 16 16  3 31  9  6 30 17  2 15 25 26  2 31 21 20 11
## [17425]  4 20 13 25 24 29 13  3 14  7 15  3 13 10  8 20 26  7  1  6 24 20  7 11
## [17449] 14 17 17  9 23 21 17  1 27  7  8 26 14 13 24 10 10 21 22 29  4 21  4  8
## [17473] 12 14 30 25 24  9 29 22  2 11 26  1 21 21  9  9 20  8  7 29 10 20 11  1
## [17497] 20 27 27  4 21 23 25 31  7  5 13 29 10 19 14 28 14 28 24  8  1 19  7 31
## [17521]  6 14 15  7  5 19 12 31 26 28 15 21  6 28  9  9 16 16 16 25 20 17 16 28
## [17545] 15  3 13 11  6 25  4 16 22 15  6 27  6  8 17 15 22 12 21 23  7 16 10 17
## [17569] 30  3  5  7 24 16 21 28  7 25  1 22  4 10 25 28 24 18  9  5 10 12  3 23
## [17593] 24 17 18  2 12 30 20 31 15 27 18 27 29 23  3 29 24  6  4 23 29 18  1  8
## [17617] 10  7  6 22 28 12 25 29 30 29  2 29 15 24  3 31 17 24 25 10 26 27 23 10
## [17641] 29 17 26 26 17 26  6 21 16 24  9 20 22 10 11  1 17 29  1 23 12 13  5 29
## [17665]  3  7  6  6 28 29 16  8 16 28 21 19 31 27  1 14 11 22 22 27 12  9 23 11
## [17689] 16 28 10  1 19 22 15 18 19 11 17 15  9 28 10  9  1 13 27 28 15  9  7 31
## [17713] 12 24 23 10 12 13 28  3  8 25 24 29 30  7 11 20 26 30  7 10 25 29 26  6
## [17737]  8  4  4 16  5 20  5 15 23 30 17  3 13 21 24 30 20 24 29 18 24 21 23 13
## [17761] 29 18 25 17 15 25 22 24 31 14  8 11 21 15  7 15 24 25 10 27 22  7 13 13
## [17785]  8 27 27  8 27 22 31  4 19 13 15 11  4  8  4 27  3 17  6 10 12  7  8  2
## [17809] 10  1 17 11 24 18 22 20 13 13 20 11  4 19 23 10 23 20  5 12 12 30 24 25
## [17833] 19 20 27  6  7  1 10 23 31 27  5  8 12 13  8 30 12 24 28 20 18 10 24  5
## [17857]  1 14 10 14  7  7  5 22 16  3 29 12 26 29 11 17 24  4 17 16 29 27 29  9
## [17881] 18 11 21 29  8  3 20 22  4 29 20 14 24 25 20  6 13  8 31 18 18 18 23 19
## [17905] 16 22  3  6 18  6  8 14  5 18 20  7 22 18 12 25 31 17  2  5 26 23  8 15
## [17929] 17 15 22 22 16 16  6 14 29  1  6  8 28 17 10 10 14 28 13 16  8 29 23  7
## [17953]  9 15 16 22  1  3 29 18  2 15 15 16  1  9 24  7 14  4 16  9 17  3 12 13
## [17977]  9 28 28  2  1  5  6 12 17 16  8 28 26  5 11 12 17 25 24  8 24 17 14 26
## [18001] 29 30  3  4 25  2  3  7 21 20  9 20 10 14 17 29 20 10  8 19 18  6 21 19
## [18025] 11 19 15  8 16 22 16 15 14  8 25  1 25 24 12 17 19 23 29 14 15 23 22 21
## [18049]  6 20 19 19  3  6 20  9 12  5 29 13 24  9 28  6  4  1 24 26 19 10  8  8
## [18073] 16 14  1 22 15  1 25 14 22 10 14  8 14 18 17 15 15 25 29  7 29 20  8 16
## [18097] 10  2 13 31 22 19  2 21 16 11 11 15  2 13 31  1  1  1 29 19 18  4  9 19
## [18121] 10 21 13  1  2 14  3 23 25 29 16 18  9  4 31 14 17 14 21 14 26 14 28 22
## [18145]  8  9 12 12 11 20  8  3 28 14 15 20 22 24 25 17  2 11  9 25  2  3 14 13
## [18169] 20  7  5 17  2 15 11  9  9 23 31 18 16 21 23 10 22 27  6 19  5  8 16  2
## [18193] 28 24  9  2 14 15 16 15  9 16 15 22 23 27 13 18  3  4 29  7 31 15  7 26
## [18217] 26 25  9  9 16 17  9  9 29 15 10 28 17 22  3 27 18 17 28 18 22  9  8 14
## [18241] 10 10 12 23 27  6 27  8 29  5 17  4  9 18  2 10  7 21 28 22 10 15 12 13
## [18265]  6 13 14 14 22 14 24 18 13 20 24 20  2 18 10  4 25 18 23 23  9  7  7 13
## [18289]  7  8 11  4  8 22  7 10 21 18 16 27  8  8 16  7  9  3 21  7 11 27  3 23
## [18313]  7 21  5  6 24  7 21  8  7 20 19 31  1 30 19 15 29 29 27 10  4  7 24 15
## [18337]  2  8  8  4  4 11 14 11  9 13 12  3 29 10 26 23 17 12 26  1 15 28 19  2
## [18361] 24 27 10  8  4  5  4 10  9 22 16 15 24  8 12  3 24 19  5 21 22 28 19 26
## [18385] 18 29 21  5  5 26 25 22 24 14 10  9  7 13  1 26 17 28  5  1 19 22 24 10
## [18409] 10 19 19 10 20  6 21 21 19 22 10  9 19  4 31 22 27 24 28 17 24 10 21 28
## [18433] 25 24 19 11 10 17 10 23 11  6  4 28  7 29  2  9 22  4  7 17 21 22 25  6
## [18457]  6  7 23 15 29 21 18 28 24 27 23 23  9 13  5 22 25 27  3  1  1  8 21  1
## [18481] 21 18  3 24  3 21 22 18 10  2  9 17 28 28 20  3  3 20 21 21 15 11 30  9
## [18505] 30 17 18  3  3 20 30 13 20  1 11  7  5  7 29 25 20 20 30 12  6  7 27  6
## [18529] 10  8 26 27 27  4 19 10 27 17 29 24 16  5 30 28  1  9  3 30 28 24 31  8
## [18553] 25 17 10 10  8  9 30  6  9 22 26 17  3 12 13 29 23 17 30 17 16  8 17 13
## [18577]  6 15 16 17 18  7  7 16 25 20 11 29 21 31 14 14 14 10  6  6 25 28 21 28
## [18601] 16  3  4 19 29  1 26 29 22 29 19 16 22 29 24 30  8  5 25 25  6 19 19 21
## [18625] 27 29 21  3 29 19  6 31  7  7 30  3 18 11 25 16 10 11  4 28  8 26 14 26
## [18649] 17  3 24 11 22  5 31  2 30  6 26 17 24  8 23 12 25 10  2 18 15  8 27  8
## [18673] 15  1  1 17 21  9 27 28  8 26 12 18 22  7 24 18  1  5 15  3  4 10 14  8
## [18697]  1 17 11 27 25  6 18 15 22  9 15  9 14 18 17 21 24 19 11  6  1 24  4 23
## [18721]  2 28 10 14 14 11  2  7  3 24 28 27 12 22  6 13  9 17  7 24 31 28 12 29
## [18745] 23 14  7 23  2 11 24 21 14  1  2 16 15  7 20 24  3 22  5  3 29 22 24  1
## [18769] 14 16 16 10  1 16 31  8  1 11 29 21 28  8  3 29 14 15 22 29  7 20 20  6
## [18793] 11 30 20 17 28 28 29 14 20 29 15  3 23 25 19 18 17 12 15 15  8 17 29 14
## [18817]  6  3  3  2  3 16 24  6 14 15  3 13  8 21 20  5 27 16 22 29  1 19 29 15
## [18841] 24 14 13 29 31 17  8  7 19 11  1  8 23 28 23  5 20 14 25 26  1 18 27 21
## [18865] 18 23 29 24 17 19 31 21  8 15  7 22 22 17 10  4 26  1 27 20 30 30 22 13
## [18889] 18  8  7 21  7 10 16  8 28 26 26 13  9 17 20 18  9  9  7 14 14 18 27 28
## [18913] 27 23 20 21 23 20 21 10 21  8 11 11  1 20  3 11 23 17  2 12  8  8 30 24
## [18937]  7 31  2 11 23 25  7 18 14 27 28 11 30  9 15  5 28 29 31 24 11  7  1  6
## [18961] 31  7 31 25  2 21 18 15 16  9 18 10 18  2 27  3 14  7 13  4 27 19 19 17
## [18985] 17 14 29  3 29  6 28 24 14  4 24 16 25 22 26 20  6 21 10 16  1  3 18 18
## [19009] 13  5 28 17 23  9 15 12 14 13 25  1  2 19 17 22  3 28  8  8 16 10 10 31
## [19033] 19 14 28  4 16  9 15 27 13  5 13  9 18 12 15  3 13  7 10  9  7 28 17  9
## [19057]  9 15 14 22  3  7 25  3  9 23 16 26  9  6 29  6  8 15 24  8 16 29  7  9
## [19081] 29 18 18 22 24 20  1 25 24  3 25  7 19 14 17 30 16 28 22 31 10 10 14 12
## [19105] 16 28 25 19 21  2 29 18  4 24  2 22 17 24 10 19 27 14 19 24 15 12  3  6
## [19129] 27 13 13 22  6  6  9 16 28 14 26 13 27  5 11  9 28 14 11 10 23  8 14 20
## [19153]  8 15  7 22 27  5  7  7 10 20  7 14  6 28 24 20 19  7 20  8  8 24 28 29
## [19177] 24 14 28 24  8  5 21 31  8 11 27 25 14 29 24 10 27 25  6 11 27 17 20  2
## [19201]  1 28 27  6  7 21 22 28 31 30 31 29  1  6 27  6 20 28 21 29 31  2 21 21
## [19225] 14 16 28 14 28 22 28 25  5 21 29 17 15 17 30 12 21  8  5 12 16 25 18  7
## [19249] 23 29 14  5  6 12 15 15 20 24 26 17  4  8 22 20 28 18 11 18 23  7 14  7
## [19273] 21 14 15  6  2 22  6 22 22 16 18  6 27 15 13 24 21 12 13 10  8  3 23 10
## [19297] 18  8  7  3 12  2 10 23  7 25  6 21 19 18  7  4  8 14 19 18 15 15  6 19
## [19321]  8 21 11 20 14  9  6 16 14  5 18 30 13 24  9  2 23  6 25  8  1 22 14 19
## [19345] 16 15 31 21 26 16 15 31 16 26 17 17  1 30 14  7 23 18 24 10 31 29 11 13
## [19369]  2 21 31 27 13 29 13  5 11 25  4  8 11  9 22  5 14  9 20 25 29  9  7  1
## [19393]  9 31 20  3  4 20  5 25  4 30  4  4  4 29 15 10 24 11  2 15  2 17  7 21
## [19417] 12 31 16 12 15 21 17 24  3  1  4  8  8 25  3 16  8 18  9 10 18 11 10 21
## [19441] 24 10  6  9 21 19  9 24 19 23 13 25  8  2  2 24 30 23  4 14 29 28 24  5
## [19465] 10  7  7  8  5 14  8  3 10 20 15 28  1 14 31 20 20 11  6  7  8 14 22  7
## [19489]  6 27 23 25  8 19  7  3 21 17 12 12  1  1  1 11  1 21 21  6  5  3  3 14
## [19513] 31 13 20 12 28 13 26  4 21 26  2 14  4 11 26  4  3 19 25 20 28 29  4  4
## [19537] 16 20 10 26  5 26 17 22 16 22  9 23 30 23 23 13 17 23 19 25 23 23 20 14
## [19561] 28 27 20  4 23 15 15 19 17 25 24  1 24  5 21 28 27 24  5 25 21  9 24 20
## [19585] 21  4 23 30  3 19 22 17 28 17 11 17  1 14 24 24  4  3  6  6 17 28  8 19
## [19609] 18 27 26 21  7 15 21 31 30 28  9 17  7 29 10 24  7 24 29 15 22 22 19 28
## [19633]  7  4 29 21 16 23 10  7 12  1 17 15 28 15 24  5  3 29 12 24 28 17 16  7
## [19657] 11 13 11 29 30  7  3 10  9  2 21 21 21 22  2  2 26 31 18 23 26  9 22 27
## [19681]  6  9 16 18 30  6 11 28 20 24 24 16 21 21  7 14 22 26 16 17 29 18 31 14
## [19705] 18  7 24  8 19 23 15 15 25 28 14 20 27 16 27 17 17  8  7 25 16 21 14 27
## [19729]  8 10 23 17 14 24 10 31 23 14 27 22  8  9  8 17  8 23 29  3 15 10 10  6
## [19753] 25 17 18  8  7 13  8 20  4  6 12 23 18 19 13 24  6 27 27 30  9 30  1  4
## [19777]  6 26  6 25 25 20  7  3  6 16 13 29 18 19  9  4  7 12 30 19 21 24 25 18
## [19801]  1  6 22 25 22 26 21  3  2  8 27 21 20 15  3 20  8  1 11 18  8  7 30 10
## [19825]  4 25  5  1 11  1 27 15 17 24 12  8 26 30 24  6 18 25  8 22 22  6  4 22
## [19849]  9  8  9 22  3 20  9  9 25  5 21 29 16 22 17 19  9 25 30 26  1 18 19 19
## [19873] 19 23  9 18 31 11 13  9  3 12 21  8 11 27 28 16 12 22 22 15  7  3 12  7
## [19897]  8 19  9 24 26 11 21 31  2 23  9  2 17  9 27  7 15 30 10  7  7 10  1 14
## [19921] 27 22 22 16 28 31 22  4 15 15 14 28 13 21 31 28  3 16 30 29  9 20  1 21
## [19945] 30  9 17 29 11 12 10 28  4 31  7  4  5 13 29 12  6  6 29 24  7  4 22 13
## [19969] 21 28 19 28  5  3 15 17 20 20 23 21  2  9 17 20 25 20 10 24  6 13 21 29
## [19993] 24 21 14 15  4 10 14  4 17 14  8 31 10 16 21 11 13 24 20 17 13  4  1 29
## [20017] 15  8 29  5  1  5  4 26 28 20  4 11 11 16  8 14 29  4 29 23  1 27 29  8
## [20041]  9  2 10 16 25 30 26 28 25  8 28  8 18 21 31 28 26 13 25  2 17 31 20  4
## [20065]  4 12 23  3  7  6 20  5  3  9  4 17 25 15  5 12 12  9 21  4 28 28 26 10
## [20089] 12 26 28 12 15  4 11 24 15 19  5  1  3 25 14 27  9  2  5 12 21 12 30 14
## [20113] 29 14 12 30  7 10 24 29 23  2  2  9 29 18 13 13 20 24 25 10 30  5  3 17
## [20137]  3 22 11  1 13 17 12 31 16  6  8  9 26 15  1 12  1 12 25  8 12 22 10  9
## [20161] 28 25  2  6  6 23 28 10 31  6  9 12 20 18 23  3 27 16 22  2 22 21 16 17
## [20185] 19 19 17 11 24 18 14  8  7 31 17 13 10 31  4 14 11 11  5 14 19 11  9 17
## [20209] 17  8 26  3 28 13 15  7 12 17  1  8 12 31  6 21 21  2 27 28 17  2  4 30
## [20233]  5 23 10  6  6 29 30  8  3 13 22 29 26  6 17 26 20 27 28  5 25 24 19 31
## [20257] 21 28 14 19 12 24  4  1 21  6 14 26 22  4 31 11 14  7  5 27 24 10 27  6
## [20281] 14 11 14 12 12  8 26 31 24  3 29  6 22 13 22 22  3 11 28  1  1 21 15 14
## [20305] 11 15 27  4 27 13 21 16 21  4 15 21 21 16  1 16 10 15  3 24 12 22 11 19
## [20329] 23 22 11 20  8 10 15 14  7 30 22  1 18 16 22 15  7 10 24 22  5  6  7 20
## [20353]  8 14 16  2  1 15 21 26 20 13  6 15 21 27 27 21 14  3 26 20 17 15 23 13
## [20377]  3 24  3 25 27  5  6  2  5 22 18 13 17 17  9  7 23 20 20 28  7 15  1  1
## [20401] 13 10 20  3 21 19 16 10 22 31  6  8 27 16 25 29  8 11 21 17 18 11 11 22
## [20425] 13 11 19  4 30  8 10  3 17 25 27 22 23 25 19  6 24 20 12  4 25  8 12  8
## [20449]  8 27  6 11 23 15  5 21 15 15 24 14 26 29  3 24 25  9 23 25 25 14 14  7
## [20473]  7  7 27 20  5 24 23 24 23 12 14  6  4  6 14 29 15 17 20 25 14 30 14 20
## [20497] 21 10 14  4 23 25 26 28 11 13  8  7 29 10  1 21 28 29 16 13 21  3 24 26
## [20521]  9 20 25 28 25 16  3 14 26 24 18 18 19 10 17 27 27 27  5  6 23 23 25  9
## [20545] 17 12  7  4  2  3 21 16 20 18  4 16  6 31 12 29 10 14 14 30 17  2 11 31
## [20569] 27 17 22 25 10  9  1 24  5 10 29  4  9 17  2  6  6  6  6 21 10 12  9 26
## [20593] 29 17 22 30 17 28  7 22 13 14 19 18 15 17 21  5 12 18 18 13 16 15 20 16
## [20617]  7  4 23 17  3 21 22 28 12 29  7  7 26  9 23  1 11 26 23  3  3 14 21  9
## [20641] 30  8 30 17 11 17  4 31  5  1  5  5  5 24 31 12  1  7 13  3 13  6  9  8
## [20665]  1 17 24 23  3 15  9 27  4  3 19 20 30 29 20  3 30 14 22 31 31 23 18  9
## [20689]  9 18 15 28 19  7  4 28  6  8 23 24 10 21 20  8 16 19 26 29 14  4  6 29
## [20713] 18  7 29  8 27  1 19 14  6 15  5 28 28 10 14 12  9 19 31  7  8 18 23 28
## [20737] 29 25 25 26 29  8 11 10 14 10 18 10 15  5  3 21 23 12 12  9  9 15 26 28
## [20761] 24  8 15  9 27 27 30 10  9  2 24 22 18 21  2 16 12 13 28 27 20 18 27 14
## [20785] 25 28 25 15 17 10  2 24 26 16  8 20  3 20 15 10 25 21 20 28 11 26 23 21
## [20809] 28  8 10 14 16  7 21 26  9  6 22 27 21 21 10 15  7  8  9 23 24 21  9 29
## [20833] 16 13 27 14 14 22  7 12 22 16 29 27 24  7  8 13 21 22  1 31 11  3 16 17
## [20857] 19 13 22 10  8 12 18 21 25  5  6  5  6 24 30 13  8 10 14  7 24 20 24 21
## [20881] 16  7 10 14 13 12 16  7  8 16 17  8 16 20 22 14 22 22 30 13 18  7 21  6
## [20905]  8 10 10 14  8  7 10 31 27  7 21  7 14 21 13  1 22  7 11 27  7 14 15  9
## [20929] 12 29 28 26 13  7 15 10 16 10  4 25 20 13 10 10  4  7  2 28 14 24  6 29
## [20953]  5  6  7 18 18 26  6 27 28 25 10 24 17  8 11 14 23  4 18 17 17 26 20 14
## [20977] 21 22  6 11 27 13 22 20  8 14 21 26 25  1 31 14 12 24 12  4  7 27 17 28
## [21001]  6  8 18  6 21  7  1 24  1 27 19 28 17 15 22 27 12 26 24 15 27 14 23 27
## [21025] 29  4 20 10 28 24  4 15 18 10 24 14 13  4 14 27 24  5 25 27 10 17 10 28
## [21049] 19  7 12 12 24 26  8 25 20  6 26  1  8 20  7 22  6 10  3 12 10 21  4 14
## [21073] 19  9 19 25  1 14 31 24 26  3 10  3  7 11  3 20 26 27 30 25 24 10  3 18
## [21097] 25  3 26 26 22 17  9 24 29  6  5 29  9  8 26 12 29 16 31 16 18 30  6 22
## [21121] 10  1 19 19 12  2 21 18 29  4  4  9 12 24 24 28  3  4  9  4 14 30 20  1
## [21145]  7 27 18 24 18  1 31 25 26 19 12  2  9 16 25  7 24  5 18 28  8  4  4 24
## [21169] 23 30  1  1 16 15  1  3 19  3 28 10 11  8 24 17 12 23 22 30 13 21 31 23
## [21193] 17 28  4 28 26  5 14  1  3 15  9 30 24 24 20  7 19 27  3  3 18 28 18 13
## [21217]  2 21 28 29 28 24 20 10 18 21 26  7  5 16  1  7 18 22  9  9 23  9 13 23
## [21241] 24 16 12  9 17  1  1 11 15 16 29 21  5 12 24 19 24 31 18  8 19 28  8 27
## [21265]  2  2 28  3  3 16 16 10 16 21 31 12 27 24  5 27 27 11 26 23 23 15  9 31
## [21289] 13 28 28  1 14 28  3 18 17 19 28 11 18 14 12 12 20  7 24 19 26 21 10 10
## [21313] 14 24 12 31 14  5 12 11 14 28  3 21 21  9  7 27 10 26  7 13 22 15 28 27
## [21337] 14 14  4 20 14 21 10 11 22  7 12  7 10 22 13 28  9 24  8 14 18 17  8 21
## [21361]  7 27 17 17 10 21 13 15  4  3 25 17 16 25 15 26 23  4  9 30 17  4  8 12
## [21385] 11 24 23 24 15 15 29 31  7  6 10 28 12 15 18  8  9 12 24 15 22  6 11 25
## [21409] 30 13 11  8 22 24 29 26 12 22  8  4 18 17 14 16 10  5 22  7 14  9 27 17
## [21433] 20 30  1  7 30 22 11  7 29  8 13 18 20  7 10 11  6 17  1 11  8 23 10 25
## [21457] 25 11 10  2  6  4  7 27  8 31 11 19 20  3  1 29 20 21  8 13 28 20 30  6
## [21481] 21  4 15 18 25 18 27 21 10 20 26  8 12  5 12  4 26  9 20 19 27 19 28 14
## [21505]  4  4 18 18 17  8  7 29  4  7 15 20 25 19 10  6  1 22  5 27  9  3 24  9
## [21529]  9  8  7 12 14 19  6 24  6 21 20  1  2  2 21  2 14 13 29 14 24 16 29 30
## [21553] 28 30 14 29 18 10 23 18 12  4 13 17 10 21  7 15 11 14 24 15 24 20 19 19
## [21577] 13  8 29  2 22  1  7 30  1 24 14  2  9 10 27 22 31 30 22  7 10  7 27 25
## [21601] 20 16  3  3 23 10  7 24 11 14 31 12 23 23 15 17  8  8 23 12 14 10 12 12
## [21625] 28 11 10 12 26 26 12 22 22 10 11 10  4  1 17 17 21 16 22 11 11 13 15  1
## [21649] 10 17 13 13 15 26  3 20  6  7 10  6 20  6 26  9 26 12  7 26 20  5  7  7
## [21673]  3  9  5 30 15 11  7 17 15 14 28  2 31  5 22 13 11  4 16  4 15 25 25 18
## [21697] 25  8 26 10 20 23 28 23  9  7 21 13 11 12 24 15 14 15  4 25 21 22  8  9
## [21721] 11 14 16 10 28 30 14 19  3 21 15  4 29 22  6 12 16  9 30 13  2 14 25 13
## [21745] 13  8 12 18 31  5 25 18 23 14  5  3 13 26  5  6 16 30  1 15  2  1  2 23
## [21769] 14 15 17  6 16  1 29 19 29 19 30 31 17 25 25 23 26 18 22 22 19 24 12 19
## [21793] 12 10 14 24 13 12  9  7 28 13 26  9 21 16 19 16 13 28  7 13  7 23 13 25
## [21817] 25 21 21  2 21  6 14  8 23 29 21 25 21 14 30 16 23 28 22  2 12 29 30 17
## [21841]  6 16  7 25 26 10 19 27  3  6 30  2 22 24 20 28 24 29 17  4 15 16 21 24
## [21865] 10 22 16 22  8  5  6 17 29  2 17 27  5  3 22 31  4  6 22  5  3 15 19  3
## [21889]  8 22 25  9 29 24 24 28 28 24 14 15 20 24 13 22 19 30 21  9 22 13 28 16
## [21913] 17 16 26  8 27 15 17 22 10 29 29 18 16  2  7 20 19 24 13  6 13  4 11 23
## [21937]  9 22  5 26  7 27 15  3 25  9 28 23 18 21 28  1 15 26 15 26 24 19  4 14
## [21961] 23 25 26 20 28 20  2 10 18 11 20 18 30  8  8 12  6  8 23  1  8  2  9 12
## [21985] 13 22 15 29  9  4 15 29  6 29 21 26  7 24  3  4 21 18 12 15 10 27 18 24
## [22009]  8 28 11 12 28 14 15 14  2 27  4  6  7 13  8  7  7 26 15 24 19 24 24 14
## [22033]  2 29  8 25 14 14  8  7 29 20 28 24 11 10 17 20 10 14  4  4  5 29  6 26
## [22057]  8 11 14 18 10  3 31 28  3  3 21 27 15 27  3  7 23 17 13 23 20 21  7  6
## [22081] 21 13  3 27  9  8 27  3 30 11 22 10 11 22 11 18 21  6  7 23 10 22  5  4
## [22105] 12  2 15  6 22 12 10  8 17 24  8 28 25 24 13  3 29  5 27  8 31  5 11  8
## [22129]  1 22 23  3  3 31 15 11  7  8 11  9 11 14 15 28 10 14 27 14  9 11 12 19
## [22153]  7 27 10 13 22 31 21 12 15  3 12 31  9 14 30 18  7 15 29 21  7 23 23 14
## [22177] 17 22  5 17 21 10 24 27 24 31  7 30 13  7 21  1  6 15 15  7 23 23 23 16
## [22201] 11 16 23 29 11 11  4 30  6 14  9  4 12  9  5 11 31  7  6  4  1  2 28  6
## [22225] 25 10  7 29 20 25 11 18 22 23  9  9 24 24  3  2  5 26 13 30 28 27 28  1
## [22249] 21 26 13 29 14 10 10  8 14 28 29 31 15  3 24 24 25 15 23  2 17 17 23 23
## [22273]  2 12 23 23 30 17  9  2 23 27 14 14 16  6 20  2 22  6 16 26 23 28 13 18
## [22297] 10 27 23  8  9  4 11 10 10 20 11 27 10 22 14 15  8 14  3 19 22 17 23  9
## [22321] 12 21 12 28 17  1 13 14 21 28 26 26 28 28 21 18 16 26  1  1  1  1 16 19
## [22345]  4 15 26 10 15 20  9 25 31  3  3 15 17 10 18 17 31 17 17 14 20 23 29  4
## [22369] 10 30 12  5  4  4 22 28 15 15  7 24 23 30 21 30  8  1 21 20 14 20 22 13
## [22393]  8 30  8  1  8  8 15 10  9  4 24  9 11 26  6 10 12  6 11 22 15 17 29 12
## [22417] 13 20 21 14 19  4 13 18  6  6 12  2 10  6  6  4  5  8  3  3  3  8 31 12
## [22441] 12 26 16 20 15  5 14 23 17 21 17 12 29  1 12 17 12 16 27 28 24 28 16 27
## [22465] 22  6 23 14 15  7 27  2 14  7  2 24 10 16 20 28  7 13 21 16 27 29 12  4
## [22489] 22 21  8 11  7 13 12  6 10 25 10  6  3 21 19 16 18 31  6  9 17 31  6  7
## [22513] 28 29 27 13  6 23 18 23 11  2 14 14 14 28  1 26 14 19  5 29  4 29 16  7
## [22537]  7 15 16  9 12 11  8  1 10 23 23 30 26  1 30 13 18 21 11 11 14 15  8 27
## [22561]  5  5 11 13 10 10 23 19 22  1 22 14  1  9  1 24 20 30 10 19  2 18  4 29
## [22585] 30 13  5 14 21 30 20  2 15  4  4 12 16  2 23 28 15 14 22 15  8  8 10 30
## [22609] 20 13 18 25 10 14 11 14  9  9 25 19 19  6 31 17 21  3 18  2 13  3 20 28
## [22633] 15  2 28  1 15 16 16  1 28 16  3  5  4  4 17 10  9 22  7 16 23 12 23 28
## [22657] 30 14 27 29 18  8 20  6 14  7 10 12 24 20 23 30  5  1  1 14 30 25  7  8
## [22681] 25  8 30 24  4 10  6  4 19 16 15  1 29 13 23  5  5 11 28 30 27 26 15 22
## [22705] 15 21 22 24 14 27 24 10  4  3 13 19  6 19  3  2 24 19 23  1 31 16  8 24
## [22729] 22 28 11 17 15  4 31  3 29  8 19 17 22 22 21 30 29  4  2 18 28 29 31  3
## [22753]  7 27 22 12 27 13 25 21  3 21 27  8  7  1  7 12 19 19 19  8 18 27 20 25
## [22777]  2  9 14 29 28 16 29 15 27 26 31 22 18 11 27 13 25 13  7  5  5  7  5  4
## [22801] 27 20 25  4 31 14 31  4 14 19 19 14 24 25  3  2 29 27  7  8  3 15 18 30
## [22825] 30 29 30  8  8 23 18 11 12 24  1  8 16 15 20 22 16 23 10  3 21 14 27 16
## [22849] 15 18 27 25 12  4  2 13 27 11 22 29 10  8 20 17 20  1 21 18 13 10 18 11
## [22873] 13 31 22 25 17 25 13 18  3 12  7 16 16 12 20  4 14 27  4  9  9  6 19 29
## [22897] 29 26  4  4 24  1 21  6 29  4 10  1 22 29 21  7  8  5 26  3 28  3 14 14
## [22921] 24 29  8  4 28 20 20 13 13 14 22 10 24 19 26 20  4  1 15  2 25  7 29 15
## [22945] 17  1  1 17 22 23 11 19  8 19 28 15 20  6 24 24 28 25  8 21 15 15  9 24
## [22969]  8 29 29 11 29 29  4 13 29 20 22 19 19 22  5 27 28  9 23 24 25  7 15 15
## [22993] 22 20  6 27 27 10 27  4  4 25 20 27  3  6  3  5  1 30 20  2 28  7 27 15
## [23017] 10 18 11 19 17 15  1 12 10 12 21 28 12 15  9  6 28 12 29 17 13  7 20  6
## [23041] 11  3  5  9 24  2  1  1  3  2  2 21  5 16 30 12 17  7  2 12 12 28  2 27
## [23065] 15 20 17 19 25 30 14  8  5  6  5 26  4 22  1 19 30 16 28 30  2 29 29 22
## [23089] 19 28 15 26 17 29 25 28 14 21  7 10 14 14 21 22 17 30 12 17 13  6 31  7
## [23113]  7  1 31 20 30  9 17 21 22 26 15 15  2 21 11 12 14 25  9 10 28 17 18 22
## [23137]  7  7  6  6 21  4 30 19  6 13 28 15 16  1 10 30 29 28 28  1 17 30  4  5
## [23161] 22 17  3 14 15  1 10  4 12 11 12 24 19 20  7 19 20 16  6 24 27 14 13 10
## [23185] 19 10  6 26 31 11 22 19  9 25 19 17  2 24 24  2  2  1 14 22 22  9 26  2
## [23209] 20 15 24 18 27 29 24 15 27 28 11 10  8 31 17  1 21 13 10  8  4 14 14 15
## [23233] 16 10 11 29  5 29 25 25 29 30 30 28 29 12 25 21 17 17 10 23 23 23 23 12
## [23257] 24 22  7 13 13 23  7 17 17 28 13 10 10 10  4 14 24 10 20 13 31 26 21 24
## [23281] 19  1 12  3 31 15 10  1  4 18 18  9 12 31 16  7 24 11 10 20 10 10 12 17
## [23305] 13 27 10 10 13 21  8 21 15  9 24 22 23 28  9  3  9 11  5 28 24 31 18  8
## [23329] 29 27 23 14 14 17  2 18 21 18 15 28 24 19  7 10  5  6 10 23  9 31  8 10
## [23353] 15  6 13  7 22  7 16 29  1  6  4 17  7 28 18  7 25 23 13 23  7 21 24 29
## [23377] 11 14 31 18  3 22  2  9 22 18  3 21 24 14 15 23 11 19 22  2 20  8 20 30
## [23401] 11 13  6 24 29 24 30 13 20 22 14 14 30 19 18 12 17 17 15 23 19  6 28 17
## [23425] 25 19 18 30 17 24  3 22 18 19 18  8 17 27 10 15  4 19  5 25  7 20 15 21
## [23449] 28 11 20 21  7  3  2 11 15 11  4  2 24 14 10  3 14 14 12 11 15  3 14  8
## [23473] 19 17 17 26  7 23  3 26 15 14 23  5 17 29 28 28  9 24 19  9 13 14 22  9
## [23497] 17 21 21 23 18  6  4 18  7 13 23 11 29 19  1 17 26 21  8 13 27 16 24 13
## [23521] 14 17 22  4 14  4 17 30 21 17  2 25 20 25  6  2 23  1 29 30 29  2 16 28
## [23545] 16 19  2 19  9 21 31 27 18 30 11 11 19 27 21 29  5 16 11  5 23 17  3  7
## [23569]  6 17 29 22  9 10 24 21 22  8 19 20 30 21  8  3 29  4  1 11 23 18 30 15
## [23593]  9 26 31 28  4 30 30 17 10 14 27 22  4 21 16 22 29  5 17 25 13 11 15 30
## [23617] 30 14 29 13 20 23 22 28  1 31 24 16  1 21  7  9  9  3  9 22 21  9 27 22
## [23641] 30  3 11  5  4 18 11  9 15 31  2  3  8  6 17 10 18 27  1 19  6 21 17  8
## [23665] 24 17 14 23 27 15 20  8 22  9  3 29 24 27 25  2 10  4 14 27 20 13 13 15
## [23689] 22 20 17 15 22  9 24  1 14  4 28 19 11 27 22  8 17 30 22 20 25 10 11 29
## [23713]  2 18 19 13  8 24 19  2  5  7  7 19 15 17 18 24 24 12 22 18 23 13 23  8
## [23737]  4 18 16 21 25 16  1 11  8  1 15 20  3  4 31  8  2 20  9 21 10  7  8 18
## [23761]  4  7 28  7  7  7  9  7 22 30 10 24  5  8 26 11 30 31 12 28  7  7 30  6
## [23785] 17 10  2 11  9 30 18  3 31  7  6 17 28 14 14 19 22  4 24 19 17  1 11 10
## [23809] 23 19 29 13 22 23 29 29 24 24  6 17 28  3 21 30  5 28 25 30 12 25 31 20
## [23833] 20 16  9 17  3 27 13 12 18  5 26 28 10 25  6 20 21 18 22 22  3  7 18  6
## [23857] 24 12  3 27 19 24  2 27 27 29 23 18 24 26  8 18 24 17 12 27 14 24 18  4
## [23881]  7 23 30 25 25 10 18  6  6 20  4 12  6 29  7 19 14 24 21 10  8 17 20 14
## [23905] 13 13  8 21 14 31 20  7 24  4 27  8 16 14 24 17 14  4 15  7  7 23 21  4
## [23929] 24 29 31 20 22  8 29 17  4  2  3 19 22 27 29 15  2 12  8 22 28  6 15 17
## [23953] 12 19 10 20  7 29  2 11 17 26 17 30 16 23 13 21 16 26  4 23 11  2  7  3
## [23977] 18 16 17  7 10 13 15 21 28 10 12  3 31 15  2 17 11 21  7  9  7  3  3 11
## [24001] 18 11 17 18 12 24 29  6  7  1 19 11  1  7  4  5 16 25 24 17 20 14 31  9
## [24025] 24  7 29  3  8 13 27 20 19  4 23 18  3 17 25  3  5  7 29 16 26 17 14 28
## [24049] 31  5 15 25 15 30  6 29 20 30 27 19 30  3 30 22 28 21  7 28  1 22 27 17
## [24073]  7 24 28 26 19 19 28 24 29 11 23 21 10  7  6  2  3 30 11  8  6  7  2 24
## [24097] 14 22  4  3 28  2 11  9  6 31 31  4 25  6 17  4 26 18 30  7 13 31  6 27
## [24121] 14 13 21 11  8  3 24  2 15 10 11 11  2 28 22 17  5 21 13 28 15  8 31 26
## [24145]  6 12 26  1 10  1 23  7 28  4 31 17 23  1  6 20  7  5 13 18 10 27  3 12
## [24169] 18 19  3 29 14 10 27  4  1  7  6 21 21 15 26  2  8 18  7 27 13  3 28 28
## [24193] 17  7  3 25 22 13  2 27 29 23 20 21 10 14  3 17 20 28  9  4 24 20 10 30
## [24217] 22 16 23 11  4 13  7 15  4 25  3 13 24  3 21  5 30 13 24 13 19 19  5  4
## [24241]  3 23 10 10 28 19  8  7 17 27 17  3 26 24 14 14 25  3 11  6 21 21 23  6
## [24265]  6  8 29 13 13 22 23 30 18 15  9 19 20 30 15 24  5 28 20 25 29 19 31 25
## [24289] 21 26 27 17 24 19 11 12  9 31 23 18  1 28 13 28 17 25 31  9  1 18  5 29
## [24313] 12 13  9 21 29 18 20 20 10  1 24 13 31  6  8 29 18 11  6 16 12  2 14  2
## [24337]  7  4 14 10  9  3 23 26  7  8 25  3 15 27  4 10 17 15 23 28 24 22 23 31
## [24361]  3 18 20 10 11 11 12  4  4 21 24 10 14 26  3 15  6 14 14 18 12  4 23  5
## [24385]  7  7 15 22 22 18 23 29 27  3 13 12 24 31 19 13 23 11 12 25 11  7 14  2
## [24409] 16 15  3 22 14 31 10 19  5  7  5  5 13 12 11 28 22  3 31 13 15 11 14 12
## [24433] 14 21 22 15 20 28 28 26 16  9 26 27  1  7 18  4 22 29  5  8 17 17 15 21
## [24457] 25  5 16  4  9 31 21  7 15  4  6 12 21 21 26  1 20  9 27 11 17 21 14  3
## [24481] 18  1 29 22 28 11  7 13 14 13 12 24 26 25  1 10 15 16 20 25 21  9 26 23
## [24505] 15 21 12 11  5 28  4 21 30 10 27 12 24 11 29 29 13 23 28 10 18  5 16 20
## [24529]  9 20 10  7 31 24 13  8  3 19 31 29  6 14 25 25 24 16  3  6 15 17 19 27
## [24553] 25 29 29 11 10  6  6 29  7 10 28 28 11 15 30 26 22 26  3 12  3  3 12 25
## [24577]  1  9 23 10 26 11 31 30 23 28 28  7  9 13 15 18  7 12 30 10 19  7 22  9
## [24601]  9  8 14 21 24 14 29 14  3 21 22 14 17 16 10 12 25  8 18 27 30 11 14 21
## [24625] 24 16 10 11 28 31  8 24 12 26  7 18  3 28 13  7  7  7 15 25 14 26 13 26
## [24649]  9 27 20 21 20 21 18  1 13 10 10 18 22  4  3  3 14  7  3 23 17 30 10  7
## [24673] 21  6  9 27 10  6 22 10 27  2 30 15 29 10 31 15  6  2  6  8 15 31 30  8
## [24697]  2  7 24 21  8 24  9 30 10 19 12 15 27  4 21 18 17 29  9 14 18 20 22 23
## [24721] 13 18 30 16 20 21 24 23 30 23  1 29 26 13  3  4 12  1  7 24  5 16 10  2
## [24745] 28 16 14 13  8 28 10  9  6  3  1  1 20 25 15 26  6 19 28 28 24 21 15 26
## [24769] 27 10  2 10 22 23 28  7 26 16  9  7  4  8 11 22 29 19 24  8 26 27 12  8
## [24793] 30 31 10 16 21 21  8 25 14  4 25  1 14 18  1  9  7  6 19  7  3 11 13 22
## [24817]  2 22 27 27  7 20 24 24 18 31 20 23 24  4 27 22 11 15 15 31 14 31 12 14
## [24841] 21 19 30 16 10 31 28 25 15 16 19  3 24 13  6 12  9  7  7 31 17 30 18 30
## [24865] 14  3  7  2 20 21  2 27  2 31 11 10 20 10 27 20  5 17 28 20 19  3 28 26
## [24889] 22 19  7 20  7 24 27  2 29  7 16 24 29 26 24 23  1 27 14  3 13 27 25 26
## [24913] 14  1 14  8 18  1  3 23 14 20 21 18 18  1 10 30 14  1  1 21  1 28 17 18
## [24937] 28 28 27  7 10  2  9  7 27 11 14 28 25 25 11 11 11  6 21 20 20 27  1 17
## [24961] 18 11 14  1  7 10  3 28  2 11 14 18 16  2 24 11  4  4 21 24  4 23 31 23
## [24985] 15 15  3 29 24  7 28 24 12 22 24  5  9 13 21 25 28 16  8  3 17 14 25 17
## [25009] 21  1 26 22 10 14 18 28 31 21 28 24  3 17 27 11 16 24 10 28 17 29 31  2
## [25033] 29 15  7 17 18 14 15 21 14 24 24 10 19  8 30  8 15 17 19 18 18 11 18 21
## [25057] 14 16  8 11 23 18  5  9  4 22  4  1 31 16 17  6 19 10  7  7  4 21 24  7
## [25081]  8  4 29 17 18 31 26  7  7 27  3  1  1 22 16 18 30 16 10  4 28 23 19 25
## [25105] 21 27 12  4  6 21  5 29 23 21 23 29 11 17 28 18 20  2 12 10 30 25 21 25
## [25129] 15 31  3 30 24 15  2 21  9 11 19 18 21 17  3 18  3 30 11 14 28 19 28  6
## [25153] 17 28 21  8 25 12  7 18 27  3 16  6  1 17 25 22 13 27 13  8 13  7 12 17
## [25177] 17 31  2  4  4 25 25 15 10 31 10 15  7 24 23 23  8 21  9  3 21 20 13  1
## [25201] 27 20 27 16 22 28  7 11 20 14 20 15 11  7 21  9 24 20 21 11 11  4  6 18
## [25225] 17 28 27 26  7  2 27 21 18 31 25 18 25 18 30 14 15 29 24 20 28 18 20 24
## [25249] 21 28  1 13  1 11  5 22  4 20 13  3  7 20 25  9 14 21 14 19 12  6 29 17
## [25273] 24 21 28 29  5 29 20 12 28 17 18  2 14 22  4 19 12 29 28 31  4  1 27  3
## [25297] 10 28 13 28  4  2 21 28  8 25 23 13 23 22 24 28  6 19  4  1  2 22 11 21
## [25321] 12 12 21  2 16 17  7 27  6 30  7 20  6 24 13  7 14 11 29 26 15 30 28 29
## [25345] 14 16 13 21 16 12 17  1  9 28 19 25 26 15 12 28 26 16 17 27 11 25 28  6
## [25369] 29 22  3 21  2 28 18 10 22  2 24 29  2 15 16 16 17 22 29 24 12  9 28 17
## [25393] 31 14  3 13 22  3  7 28 18  2 13 12 15 10 11 30  4 10 11  5 17 25 31 21
## [25417] 13  4 31 16 15 10 21  2 19 10 15  2  3 20  5 21 30 14 16 22  7 28  9  8
## [25441] 17 20 14 29 12 15 20  4  4 24 15  6 25 23  7 28 15 22 10 17 17 28 11 31
## [25465] 13  9 31 13 24 25 25 24  9 16  7 28  6 19 27 11 25 24 23  1 28 12 30 24
## [25489] 29 12 11 26 22 11 31 26 28  3 28 19 12 17  1 25 21  1  7 10 26 24 13 13
## [25513] 21  3 22 22 23 13 21  8 21  1 10  3 29  9 17  7  5  7  7 18 21  7 15 22
## [25537] 29 22 11  8  4 14 21  1 14 12  4 15 26 25 18 28 21 14 27 11 19 23  6 17
## [25561] 22 15 27  7 22 11 10 29 18  8 28 28 27 24 24 26 21 25  4  7 13  8  6 21
## [25585]  6 31 29 28 15  4  4 28  9 16 27 22 24 15 25 22  1  1  8 11 16  5  9 27
## [25609] 20 11 24  2 14 27 19 23 21 24 18 17 12 10  8 10 24  9 15 22  1 24  1 12
## [25633] 29  3 10 20 12 18  7 14 31 11 13 17 20  1 13 12 31 29 25 11 11 14 14 15
## [25657] 26 15 20 30 17 12 17 14 17 21 27  7 27 28 10  9 30 11  8 27 11  4  7 11
## [25681] 11 25 24 17  4 21 12 13 15  3 15  2  1  1  5 11 16 29 23 25 23 13 23 12
## [25705]  6 12 18 12 18  6  7 15  4 30 31 29 14  9 25 13 10 31  7 25  7 25  5  3
## [25729] 10  3 10 25 23  1  4  5  9  3 19 28 16  3 21  9 29  6  6  7 15 31 11  5
## [25753]  3 29  3  3  3 17 20 17 15  3 22 28 16 13 13  2 21 29 14 14 13 14 13  2
## [25777] 29 15 14 26  3 22  5  5 11 21 27 30 30 13  7 29 16 29 14 11 17 14  7 22
## [25801]  8 22  9 25 19 14 19 26 11 25 23 13 18 26  2 19  4  3 27 15 17  9 26 28
## [25825]  9  1  7 18 27 15 31  1 31  6  2 30 20  5 20  6  6 27 14 24 28 20 11  9
## [25849] 11 12 13 28 30 17 28  7  1 26 11 28 24  9  6 19 31 27  1 21 24  4  8 31
## [25873]  8  3 22 30 28  6  7  3  8 17 22 17  7  4  1 22 20 17 11 16 11  8 24 13
## [25897]  8 28 14 30 14 24 31  2 25 26 20 30 13 25 14  7 21  8 11  6 16  1  2 30
## [25921] 24  4 25  9 20 18 14  6 24 15 11 28  6 28 26  7  8 11 15  8  1 21 10 11
## [25945] 17 19  9 21 13 27  4  4 21 13 20  7 31  6  7  6  7  7  1 27 10  9 24 15
## [25969] 29 30 28 30 28  6 24  5  7 15 17 10 10 18 14 21 18 26 19 20 22  9  2 17
## [25993] 20 23 23  9 14  3 10  8 28 18 13 31 19 30 28 28 23 12 17 16 21  3 19 14
## [26017] 10  5 22  3 19 19 24 20  9 24 20  2 13 20 21 28 21 27  6 25 23  8 14 12
## [26041] 24 11  8 22 21 17 12  1 12 29  3  4 22 24 18 12 22 27  7 26 26 27 11 14
## [26065]  7  5 12  2 10 18  8 27 11 22  8 14  3 17 15 13  5 29 17 28 23 20  1 18
## [26089] 18  6  6 15  7  7 25  4 18  1  3 28  3 29  6 20 27 29  3  5  4 21 14 13
## [26113] 13 21 23 18 11 28 30  8 21 10 20 23 20 12 13  6 11  8 31 14 23  6 10 25
## [26137] 12 12 30  9  1 15  7  6 18 14 25 25  6  7 22 31 15  5 17 29 18 23  2 17
## [26161] 29 24 18  7  9 25 26 28 24 23 21  3  3 25 29  2 10 10 16 22  4 20 30  3
## [26185]  3 18 18 27 20 30  5 11 23 12  2  9 28 29  8 18 29 29  5 19 13 10  2 27
## [26209] 18  1 21 20 11 24  9 22 13 14 11  3 21  4 27 22  9 11 10  1  1 15 18 28
## [26233] 28  8  4 10  6  6 21  1 20 26 17  7 17 12 10 19  7  9  3  1 20 23 27  7
## [26257] 11 28  3 27 20 15  8  8  7 15 19 23 19 25  4 16 16 21 10 21 12  3  8  4
## [26281] 23 25  5 20 24 19 26  7 19 22 21 11 24 21  1 24 10  7 24  5 29 18 13 18
## [26305] 30 24 10 21  5  1 15 15 18  4 20 28 24 22 18  4  2 13 26  8 11 21  8 23
## [26329] 29 23 11  1 30 21 14  6  2  7  6 16  3  1  5 24 22  9 24 29 17 19 16 12
## [26353] 11 21 25 30 30 19  9 31 24 19  6 15  4  4  8  4  1 11  5 11  3 20  8 22
## [26377]  1 27 13  6 25 25 21  4  7 17 13 31 20 13  9  8  4 29 31 16 23 17 16  1
## [26401]  3  5 30 25 30 10  6 21 22  2  9 29 23 30 28 13 18 10  1 25  3 10 25 19
## [26425]  2 11 24 24 21  3 18 14 26 11 22 26 22  5 13 20  6 25  6  7  5  7 12 10
## [26449] 19  8 10 11 29 30  8 23 26  7 25 18  5 26 28  9 25 15 17 22 18 18  8 28
## [26473]  9  1 22 22  1 26  1 19 17 21 14 15 15 29  3 17 22 18 25 29 14  8 23 28
## [26497] 29  6 15 31 21 22 10 30 29 10 15 29 26 14 31 26 31 29 14 29 18 28 24 21
## [26521] 27 16  4  7 10 16  4  2 28 10 12 10  6 10 28  9 31 12  5 21 20 29 17 17
## [26545]  4 15 31 13 21 19 11  9 17  1 24 17 21 27 15 10 24  4 23  3 13 31 31 17
## [26569] 29  5  3 24  3 28 28 12 17 11 14  2 14 29  7 17 27  1  1 23  3  7  6 27
## [26593]  1 14 14 22 29 16 12  8 12 30 21 18 24 17  3 17 14 18 31  6  1  7 17 21
## [26617] 31 15  6 14  7 22 14 31 18  1 27  8 11 22 31 27  2 12 16 21 15  8 23 13
## [26641]  8 18 15  7  7  7 23 11 20 10 19 16 30 20  1 26 10 21  1 22 12  8  8 30
## [26665]  5 22  2 29 13 25  7  5 31  8  4 10 29  2 10 24 22 18 14 13 15  8  1 18
## [26689]  9 27 12 18 21 28 26  6 29 15 13 13 19 24  3 26  9 10 17  7  1  5 22  7
## [26713]  3 28 21  2  4 14 23 24 28 18 26  4 28 12  9 17 24 21 22 28 24  2 11  9
## [26737]  8 27  7 16 16 27 15 19  9 23 16  8 21  9 24 13 23  3 14  3  7 29 24 17
## [26761]  8 23 29  9  2 22 13 13  6 15 22 15 28 17 15 11 31  1 10 10 25 18 16  5
## [26785]  8  3 18  4 17 17 10 20  6 21  2 19 28 28 23 15  1  1 26 31  3 20 20 18
## [26809] 25 24  1 12 21 15 10 13 21  7 11  6  6  5 14  4 23  6 20 21 11  4 27 20
## [26833] 21  1 15 30 27 15 17  3 18 23 20 30  3  1 11  1  2  3  4 30 15 29 14 17
## [26857] 31 16 22 25  7 31 15 27 28 28 18 14  4  7 28 10 25  7  7 30 30 25 26 14
## [26881] 31 15 19 27 21 21  1 29 23 28 23 24  4 24 22 18  9 27 21  1  3 10  3 11
## [26905] 22 18 18 25  8  9 14 11 13 12 23 28  1 28 20 12 28 21 27  7 29 12 31 22
## [26929] 16 23 28 26 17 24 28 18  7 19  2 13  8 14 18  2 31  1 23  1 10  2 25 11
## [26953] 21 21 21 17 17 16 18 21  9  3 19 10 16 31 17  4 22 23 20  3 12 10 24  3
## [26977]  4 11 21 13 11 20 29  9  8 30 25 25 31 14 21  6 15 24 10 24 14  8 27  9
## [27001] 25 17 24 30 19 14  2 31  7 12 11 16  8  1 21  7 27 30  5 17  5 16 23 17
## [27025] 16 19 19  8 19  6 17 27 11 27 30 17 31 24  1  3 15 11 19  7 10  6 27 16
## [27049]  7 10 12 15 10 19 21  2 17  2  2 16 23 19 13 18  9  3 17 21 21  8  1 29
## [27073] 20 29  6  1 29  1 20 20 20 21 31 19 20 28 29 12 13 14 18 20 24 11  8  1
## [27097] 29  6 24 24 17 17 24 11  6 30 20 19 23 25 17 25 15 28 28 10 23 22 24 12
## [27121]  2 18  8 28  3 29 30 28  5 15 19 25 10  3 28 24  9  6 21 22  3 12  6  6
## [27145]  3 27  7 12 13 26 30  7 15 10 29  7 22  7 31 18  3 16 18 25 19 21  9 31
## [27169] 31 19 13 18 14 20 10 28 17 21 21 23  3 26 15 23 26  8  8 18  2 21 21  9
## [27193] 23 15 29  2 25 14  8 17 28  1  7 17 24 29 25 25 10 23  9 22 11  8  4  3
## [27217]  6 29 28  4 13 27  3 21 12  3  1 24  7  6 31 19 31 16 31 18 13  2  4 23
## [27241] 18 27 31 31  5 13 10 11 20 13 31  8 29 15 15 15  4 15 16 18 19  9 26 28
## [27265] 12 15 28  5 28 21 19  6  3 15 21 20  6  6 13 19  1  1  7  8  9 21 20  7
## [27289] 10 29 10  3 25 25 13 31  7 13 12  9  3 17  2 15 14 13 12  6 10 13 30  4
## [27313] 22 30 10 11 11  8  2 27 25  4 30  8 18 25  3 19 31 17 25 25 13 30  4  9
## [27337]  4  1 13  5  5 19 12  6 19  1  7 29 17 11 27 12 19 11 14 13  7 17  8 20
## [27361] 26  2 27  7 25  7 23  5 21 20  4 26 29 20 12 15 17 23 17 27 15 17 18  3
## [27385]  5 23 29 18 23  3 29 14 21 22  9 12 31  9 16 14 21 17 14  2 18  3  4  9
## [27409] 18 11 28  9 25 10  3 28 17 12 21 14 21 10  9 22  9  3  6 15 10 24  8 16
## [27433] 15 28 23  4  9 22 11 15 15 12 20 16 19 20  3 20  9  4 10 14 27  4 15  2
## [27457]  3  4 18 17  3 15 23 20 21 29 21  7 27  7 14 20 29 10  4 19  1 27 26 18
## [27481] 25 20  3 17 21 30  3 21 28 28 10 18 21 31  8  7 20 11 30  3 14 22 12 30
## [27505] 15 11  1 17  1 29  3  4  9 13 13 14 17 16 24 17  8 18 11  1  9 13 28 14
## [27529] 21 14 18 21 30  9 12  2  6 31 20 27 21  3 11  7  7 21 15  8 11 19  9  7
## [27553] 10 24  3 20 31  4 16 29 31  8 13 31 30 24 26 14 29 22 18 28 19  2  9 23
## [27577] 27  6 18 30 29 23  8 19  1 14 26 24 22 22 18 22 14  4 22 14 27 18 19 22
## [27601] 19 19 21 28  3 15  7 21 21 11 19 13 31 21  2 12 12 19 19 17 23 20  4 11
## [27625] 24 31 19 17  3 20 11 16 20  3 18  4  4  5 21  2 29 10 14  6  9  5  8 29
## [27649] 10 12  4  3 31 12 17 26 29 31 12 16 18 17 22 24 22 21 22 10 20 30 21 14
## [27673]  3 17 22 26  9 31  9  8  8 24 13 24 31 10 23 12 11  6  3  7 21  1  6  4
## [27697] 23 29  2  7 26 21 25 16 15 24 24  9 17 26 30 12 14 14  8 17 13 21 21 19
## [27721] 21 25  5 14 13 28 11 28 10 14  9 11 10 15 18 25 27 11 13 27 16  2 14 11
## [27745] 26  1 17 27  4  6 14 20  7 13 23 12 30 12 19 31 15 10  6 29  5 18  2 23
## [27769] 22 24 24  2  8  8  3  3  7  8 10  4 12  3 10  7 17 28  7  3 26  2 27 23
## [27793]  2 19  3 12 31 27 16  4  9 18 17  2 23 10 17 17 10 12 16 20 28 29 25  9
## [27817]  4  8 30 26 21 27 12  4 14  1  6 11  3 19  7 27  6 28 29  7 23 14 27 19
## [27841]  7 24 19 19 27 12  3 21 27 27 12  2 19 10 27  9  6  7 24 30 15 25 23 11
## [27865] 16  7  6  6  9 19 27 27 27 29 21  8  1  3 19  3 13  8 20 20 12 10  7  8
## [27889] 28 11  5 27 21  9 27 15  4 24 18 25 15 27  4 13 17  4 20  3  3  3  4 25
## [27913] 12 28  1 27 28  2 31 13 13 10  1  7 17  5 25 11 28 28 21 26 28 28 29  4
## [27937]  4 12 24 17  6  2 13  2 20 31 29  8 15  4  3 22  9 17 23  8 23 21  2  4
## [27961] 12 28 28 25  5  3 17 31  8  1 16  4  7 26  5 20 21 16 10 25  4  1 28 19
## [27985] 16 21  1 13  5 26 10 16  9  3  9 17 26 26 11 20 16 12 13 13  6 10  6 10
## [28009]  7 31 25 27  8  4 24  2 13 18 25 26 19  5  7 29 21 11 11 30  4 15 20 28
## [28033] 11 19  7 17 18 21  3  9 27 23 17 29 21  4 25 23 17 23 24 13 10 17 24  7
## [28057] 17 14 28 18 16 21 15 15  2  4  3  2 27 24  6 13  6  6 18 27 26 22 23 15
## [28081]  1 27 21  7 22 14  3  8 30 14  3 17  6  7 23 24  5  5  9 30 21 13 10 22
## [28105] 12 25 14 17 15  3  1 20  4 24  8 15 11 27 24  9 14 26 22 26 26 19 19 26
## [28129] 11 20 17 14 17 11 25 27  2 28 29 14 14  4  1 21 11 21 28 18 27 27 29 28
## [28153]  8 20 22  8 26 30  5 17 28 18 21 10 26 27 24 17 14 15 11 25 15 24 12  2
## [28177] 14 20  5 25 16 28 17 13  1 17 17 19  2 17 17 22 28  8 25 15 23  3  1  7
## [28201] 10 31 15 28  7 11 28 11 20  3 18 17 31  3 12 17  9 21 22 22  9 26  6 16
## [28225] 29  4 10  6  3  1 12 31  9  5  4 22  4  8  4 23  8 10 24 26 10 23  6 10
## [28249] 28  9 12 31 20 11 24 31 19 23 18 24 24 20 20  5 28 11  7 17  7 18 15 26
## [28273] 11 10 28 19 18 14 24 11 16 16  6  6 14 17 12 30 14 25 24 14  7 28 18 23
## [28297] 15 29 23 25 27 17 21  1  1  7 27 26 16 12  6 27  3  1  8  8 12 22 29 15
## [28321] 16  5  3  3 10 26  7  2 28 10 14  3  4  2 30 25  8 20 23 12  8 14 17 31
## [28345]  2 19 23 23 17 14 17 27 13 28  9 23  6 31 20 18 28 30  7  7  1 24 26  2
## [28369] 24  3 31 12 15 27 22 21 17  4 31 22 20  2  9 18 28 29 10 28 29  6  3 26
## [28393] 20 24 30 14 22  7  8 12  7  4 29 21 10 11 10  3 21 12 13  3 29 14 10 19
## [28417] 24  7 22 17  1 30 28 24 18  7 30 20 15 31 16 17 25  7 31 25 17 23 30 24
## [28441] 29 10 19 25 21 16 17 22 18 17 10 22 28 29 27 16 11  6  4 14  8 26  7 14
## [28465]  7 22 18 20 23 24 15 13 27  5 15 13  6 20 30  5  8 14 27 24 18 17 23 23
## [28489] 26 20 20 11 20  1  5 20 15 30 12 13  2  6 22  1 23 16  4  6 22 22 17  9
## [28513] 31  7 18 24 16 22 30 21 20 29  3 27  3 12 15 13 29 29 28  7 16 30 22  3
## [28537]  4 17 25 20 12  1 30 15 26 25 26  3  3  7  7  6 16  5  1 14 16 25 21  4
## [28561] 16  4 14 25 12 22 11  4  8  8 24 29 14 31 14 28 17 13 28 25 28 17 27 16
## [28585] 25 18 13  6 18 17 11 12 12  5 24  3 20 24 20 12 23 27 10  7  7  3  9 13
## [28609] 24  3  4 17 14 13 15 20  7 28 21  1 20 18 20 11 12  5  3 22 26 27 20  2
## [28633] 30 22 31 28  2 21  6 23 26  6  4  1 27 26 27 25  1 27 22  8 12 26 20 23
## [28657] 10 26 23 19 10 21  9 22  5  6  6  7 26 19 20 19  7 26 20  9 21  2  9 12
## [28681]  7 23 23 24 10 11 21 20 21 17  7 29 25 14 21 28 24 10 26  8 30 27 27  8
## [28705] 12  7 10 25 26  1  5  8  8  3  1 31 11  7 10 15 30  9  2  4  3 17 13 25
## [28729] 30 25  9 14 30  1 11  6 13 14 12 13 24 30 12 30 17  5  5 25  4 11  5 28
## [28753]  8  6 12  8  1 15  3 22 30 12  4 16  3 22 10 10  9  2 27 21 14 27 24  1
## [28777] 12 27 27 13 20 10 23 23 24  7 11 15  8 30 29 13 21 24 24 26 17 18 30 17
## [28801]  5 13 12  8 10 10  7 15 15 11 26 19  9  1 13  2  4  2 10 17 31 25 26 19
## [28825] 20 10 29 20 15 25 25 21 14 11  4 10  7 21 15  9  1 28  6 31 10 28 31 24
## [28849] 14  3 17  3 11 15  1  8 10 20 19 10  1  6 31 16 28 12  9 31 21 12  4  7
## [28873]  2 10 11 10 15 27  9 18 12 16 17  7 10 18 18 28  1  7 11 17 25 17 29 27
## [28897] 14 28  3 18 30 18  9 18 17 26 28 14  8 28 28 18 19  7 24  5 28  2  7  7
## [28921]  7 13 19  5 11 15  8 16 18 16  3 29 13 24 27 23 17  9 20 31 17 17 10 26
## [28945] 21 18  6 23 31 12  1 29 22  9 25  7  6 14 13  6 10 28 28 15 18 25  1 19
## [28969] 28 15  4 21  5 27 11 24 20 24  3 11 25 17 18 29 10 10 29 26 16  6  6 15
## [28993]  7 21 23  3  7 27  5 23 10 19  3  9 18 24  7  6 12 21 28  7  6 20 23  6
## [29017]  9  2  2  4 13  7 29 10 10 19  2  7  7 18 24 21 17  4 14 13 22 17 30 26
## [29041] 26 26 26 31 12 28  9 19  3 10 12 12 20  4 16 18  8 26  6 18 25 19 28 12
## [29065] 15 11 29  3 10 14  6  9 16 13 17 18 17  4 15 12 19 15 27 15  3 22  7  4
## [29089] 13  6 12 11  6 17 19  6 14 13 19 20  5 30 22 31  3  9 31 13  7  6 26 28
## [29113]  7 22 24 10 20 21 10  5  4  7 31 16  7 15  5 10  2 14  4 14  5 29 15 23
## [29137]  3 27  7  3 29  4 29 20 21 20 15  9 16 17  2  9 15  1 18 12 15 13 26  2
## [29161] 16 25 16 25 11  6  3 24  8  5 21 24  4  8 19  2 17  8  4 24 26 24  3 14
## [29185] 17 14  1  9 20 16 28 14 15 15 11 20 29 27 25 28 30 21 18 11 27 21 17 12
## [29209]  4 21 28  9 22 18  5 21 19 18  5 31 12 14 18  7  9 28 29 12 16 16 20 16
## [29233] 30  2 21 14 30 15 21  5 14 23  3 10 19 12 24  8  9  7 14 19 19  6 15 13
## [29257]  2 21 18  6 14 13 19 21  7 22  7  3 24  9 11 14 13  8  6 12  6 16 16 16
## [29281] 19  9 22  5 16 14 15 19 17  4 19 22 22  9 12 10  6 20 23 12  8  7  6 11
## [29305] 15 14 19 17  7 13 13  5  1  5  5 17 16 19 13 13 11 11  5 13  9  9 12  9
## [29329]  8 20 14  3  3 12  7 10  9 16  6  6 22 22  5 12  9  9  8  9 10 21 21 13
## [29353] 14 14  9 14 12 12 10 16  4 22 11  7 15 18 16  5 15 22 25 19  8 20 20 12
## [29377]  3 21 20 14 20 23  5 20 10  7  3 12 21 23  4  8 20 16 19 13 10 16 14 19
## [29401] 12  7  8 16 10  8 13 12 22  5 13 20  8 12  9  3 16 16 16 19  3 10  5  4
## [29425] 10 10 18 27  6  6 16 23 19 21 24 20  4 17 20 10  3 21  7  9 12  4  2  5
## [29449] 27 18 13 13 21 19 23  5  7  7  5  4 21 10 15 20  9 13 14  7  2 20  7 13
## [29473]  9 19 19 23 20  3 13 13 14 12 13  7  6  3 13  6  8  8 18 25  5  7 10 15
## [29497]  2 10 10  8 21  6 15 10 10 12 15 10  4  6  3 20  3  8  6 21  3  4 21 21
## [29521]  9 19 26  6  4  6 15  3 21 22 21 22  7  5 11 17 14  5  6  5  3  5  5 15
## [29545] 12 10 12 10 16 14 17  3  2 10  6  7 16  8 10 20 17  6  6  2 14  5  7  7
## [29569]  9  7  7  8  5  3 17  3 20  4 15 12 17 22 12 24 17  9 11 10 13  9  5  7
## [29593]  3 15 12 21 14 10 19  5  5 14 21 12 10 16 20 13 19 16 17 10  6 19  5 20
## [29617]  5  7 25 15 22 23 14 12 13  7  6  7  3 10 12 30  8  7 17  4  5 10  8  9
## [29641]  9  7 15 20  7 15  9 26 14 16 12 15 19 15 17 19 23  6  7  5 20  9  5  2
## [29665] 10 18 10 23 26 10 14 18 11 10 17 14 11 11 14 15 15  6 11 11 20  4  5  6
## [29689] 18 12  8  9 20  7 10  7 20  7  6  6  7  7 19  9  8 23 22  7  3  6 13 13
## [29713] 19 21  3  6 16 19 19 19  4 20 16 18 16 22 26 21 17  8 21 10 21 23  2 19
## [29737]  7 20  9 12 12  3  7 25 10 13  6  3 21  6 13 14  7  7 12 12 26 17 21 13
## [29761]  6 21  7  7  6  9 14 11 10  7 15  2  5 16 16  8 13 18 21 12 13 15  9 14
## [29785]  6 13 13 21 26  7  6  6  5  9 13 16 15 10 26 17 19 13 15 18  5  7 12  8
## [29809] 19  6  8 15 10 10 13  9  9 22 19 13  9  7 20 12 16  6 24 23  7  3 21 20
## [29833] 20  2 22 13 13 19 12  7 19 19 15 20 21  9  8 16  8  6 14 18 13 14 15 21
## [29857]  4 21  7 13  4 14  8 17 17 19  8  7  1  5  3 23  2 21 10  8 15 15 20 12
## [29881] 20  6  9  6  6 22  6 15 20 17 16  1 13 20  8 11  3 12 15 19 14 13 13 10
## [29905] 10 20  4 17  7 14 17 23 19 12  4 21 20 22 20 19 16 10  3 18 20 16 21 11
## [29929] 20 16  7 16 22  5 18 16 19 22 20  3 27  6  9  9 10  4 21 10 14  5 20  5
## [29953] 17 15 12 13 19 18 14 21 23  3  6  7  7  5  9  4  6 14 13 14 15 22  6 19
## [29977]  5 13  4 26 12  5  4 10 21 16 23  6  9 20  9 19  3  9 18 19 20 19 12 21
## [30001]  9 14  3  6  5 23 11  4 23 15  7 15 10 10 21 15  7 12 23  7 24  3 16 24
## [30025]  4  7  8  8 15 14 20  7 16 15 17  5  3 23 13 19 15  5 12 25 26 11 19  6
## [30049]  6  4  8  9  9 21 21 19 10  1 21 12 19 14 16  4  7 14  5  9 20 13  8 21
## [30073]  7 17 24 19 15  9 14 10 16 11 25  6  6 10 10 16  9  8 10 21  5  8  3 14
## [30097] 14  9 21  3 20 21 21 24  4  3 16 13  8 16 22  6  7  7 13  7 18 16  6 17
## [30121] 10 13 20 10 16 16 12 19  5 13 15  7 12  5 12 12  5  9 23 21 11  5  5 21
## [30145]  6 24  5 16  7 12 13  5 17 15 16 10 13 26 13 14 14  7  7  9  9  2  3  3
## [30169]  6 22 11 10  3 22 20  7 23 15 17 21 14 19 14  8  5  5  9 16 20 17 14 21
## [30193] 23 14 22 11 14 15  3 13 15  3 15 10 22  9  5 21  6 14 19  5  5 12 12  1
## [30217]  6 13 15  9 14  3  6  8  2 19 22 13 14 15 12 13 23 12 19 10 10 15 16 19
## [30241] 19 10  2 12 12 14 19 16 22 21  6 10 10  3  3 12 21  5 23  4 18 15 16  4
## [30265]  6 11 21 17 20 12  9  4 21  9 19  7  4 21 15 20 16  4 22 19  8  6 13 13
## [30289]  4  8  6 21 17  8  9 17 18 10 14 11 12  6 13  6  4 17 16 22 12  5  6 12
## [30313]  6  9 13  6 12  9 22 12 13 16 21 15  7  8 17 13  9  8  6  9 11  5 14 10
## [30337]  8  5 22 20  5 24 12 16 13 10 11 21 13 14  3 15 16  6 10 23 10  7  6  7
## [30361] 10 12  5 17 13 20 19 19 20  6  6 14 19  3 21 16 20 12  9 20 22 15 14 15
## [30385]  5  6 21  5 10  4  6  7 15 11 11  6 18 15 16 16 16 16  7  9  7 23  6 10
## [30409]  9 20 19 13  6  6 16 18 22 16 11 16  2 20 13  3 21 16 14 19 23 24  9 20
## [30433]  7 17  8  9  5  6 20  7  3  5 22 19 22 22 22 20 15 23 10 19  9  4  7  7
## [30457] 19  5 14 12 16 15  5  9 15  8 19 21  6 21 10 12 10 20 18 14 21  8  3  5
## [30481] 13 12 20 16  8  5 12 13  5  8  6 22 22  8  8 15 22 22  6  9 22 20 19  5
## [30505]  5  7 20 13  5 21  7 10 17 12  3  5 22 15 19 19 12 16  9 12  9  1 10  6
## [30529] 14 15 21 21  2 14 16 19 12 14 15  5 10 13 13 15  5 21 14 14 17  8  6 13
## [30553] 21 15 13 15 10 11 19  5 11  5 15  7 10 16 10 21  6  6  6 10 16 11  9 26
## [30577] 13 13  6 14  4 18 20 19 13  3 23  5 16  3 14 21 10 14 19  3 23  7  4  8
## [30601] 11 20  8 10  5 12  6 14  1 12  3  6 22  7 15 21 14 22 19 17 21 20 21 20
## [30625] 10 26 13 10  2  3  1 10 21 13  7 14 14 10  2 17 15 10 11 10 12 10 10 11
## [30649] 13 12 13 12 15  5 18 18  7  8  6 15 11 19 24 12 24 15 21 25 12 14 14  7
## [30673] 13 15  7 16 12 25 10  8  7  9  5 21 21  7 13  5 12  8  9  8 13  9  7  7
## [30697] 16 13 17  8 10 15 15  9  3 25 15  7 10 12  3  6  8 10  8 10  9 22 20 12
## [30721] 19 19 19 25 12 16  6  9 16  5 13  2 14  4 10 19 14 21 21 17 17 26 17  5
## [30745]  8 16 16 19  4 16 17 13  4  4  3 17 19 19  3 22 20 21 14  7  8 13 20  8
## [30769] 24  9  6 16 11 23 17  5  9  3 26 15  7 11 16  6 19 20 13 14 11  3  5 16
## [30793] 15 19 23 18  2  8 17  5  8 23  5 21  4 15 23  4  9 19 21  7  6  9  9 20
## [30817]  1 16 15  6  8  3 16 11 16 14  8 13 13  8 19  9 25  7  6  8  7 16  5 12
## [30841] 16  8  8 10 23 20 13 20  8  8 15 11  6 16 12  6  2  8  7 24 14 16 14  6
## [30865]  8 18 21 19  5 13 15 14 12 11 21 16  9 11  6  7 13 19 21 13 14 12  6 26
## [30889]  7 17  9 10 17 13  4 21 21 20 14 15 12  9  6 21  6 14 14  5 14 20 15 11
## [30913] 11 22  9 17 12  8 22 24  5  4 16  9  7  8  9 16 20 19 19  6 12 14  6  8
## [30937] 13 16  7  8 13 20 10 13  8 24 24  8 10  3  7  5  8 12  5  9  6  9  8  5
## [30961]  6 14 15 16  9 12 23  9  5  2  6 21 20 10 13 12  9 12 20 19 16 21  6 16
## [30985] 14  6 23 12 23 15 24 15  9 13 22 19 14 19 13 19 16 10  3 13  5  9 19 19
## [31009] 14 17 21  7 14 11 15 12 10  5 23 18 19 13  9 24 20 15 19 14 13 23 20 20
## [31033] 19 21 21  8 15 14 12 22 15  7  5 16  7 13 23 22 26  8 10 10 13 12 11  3
## [31057]  8 14  5 12 18 11 10 13 21 10 10  5 20  6  2  7  7  5 20 22 12  8  6 13
## [31081]  9  8  9 14 14 20  4  3 20  7  6  9  9 24  9 16  6  6 12 16 16 14  8  7
## [31105]  8 13  7 14  7  7  2 22  5 19 20  7 14  8 20 21  7  7 21 17 30 15  3 22
## [31129] 21 22 14 26 17  8  9 12 15 21 15 23 16  8 16 20  3 17 12 17 10 17  6 19
## [31153] 17 16  7 19  7 13 13  8  3 10  9 12 12 25 14 12  7 17 11 22 11  9  5  7
## [31177]  6  6 12  6  7  6 20  7 19 10 10 18  6 20 24  9 12  5 13 21  8 25 14  7
## [31201] 13 14 26 15  5 10 13  6 14 16 13  3  9 18  7  1 14  3 12 14  2 20  9 15
## [31225] 23  3  7 23  5 13 15  7  6 13  9  6 15  2  9 16 11  7 19 11 16 20 20 17
## [31249] 19 19  5 13 20 24 19 20 14  7  8 20 13  7  7 10 15  9  8 13  8  6 11  6
## [31273] 21 12 13 14  5 21 14 14 19 19 24  6 15 12 22  6 10  6 18  3 15 10  2 13
## [31297] 19 15  5  7 20 21 16  6  2 17  4  5 21  5  9  9 10 10 17 24  8 10 14 22
## [31321]  4 27  8  9  3 15  5  7 17  8 13 17 10 10  3  4 13 14  7  9 14 15  6 14
## [31345]  6 20  7 22 15  6 10 27 12  8 13 13 16 16  9  7  2  8 19  9  5  4 10  8
## [31369] 22 10 16 23 14  6 11 15  7 14 24 25 15  8 21 19 13  5 13 22 17  7  6 20
## [31393] 17  9  7 10 21 17 17 19 19  9  6  7  8 16 24  7  9 17 16 10  4  3 14 14
## [31417] 21 22 17 25  8 14  5 21  9 16 13  6  6  8  3  8  9 10 13 10 20 22  3 17
## [31441] 20 15 27  6  9  9 17 22  6 10 18 10 12 24  9 14 14 13 12  1  3  8  2 21
## [31465] 21  3  8  7 23 14 23 16 24 16  9 14 16 21 21 11 25  9 13 13 16  7  7  5
## [31489] 16 14 14 19  7 13 14 14  6  2 13 17 14  5 15 23 27 16  8  5 18 10 12 10
## [31513]  5  6 10 21 17  5 12 15  4 19  9 14  5  7  5 12 13 21 10  5  7 20 20 22
## [31537]  5 16 12  7 13 19  9  9  5 16  6  8 19 16  6  7 21 15  7 19  3 16 12  7
## [31561] 20  2  8  2  2 19 21 12 15 16 13  7  8 21 16 19  2  9  9  5 13 16 19 14
## [31585] 18  7 18 14 15  2 14 21 22 16 20  9 21  6 12  8  9  9 18 14  7 21 24 22
## [31609]  7  3  8 13 21  8  8 19 22 12  8 10 19  6 18 12 15  7 11 22 17  8  2  6
## [31633] 21 25 22  7 10 20 21 26 13 20  4 23  8 20 19  6  8 12 12 12  8 14  9  9
## [31657] 12  8 24 16 14 18 13 16 12  8 12  7  9 17 21 13 20 22  3 13 21 13 13 21
## [31681] 22  6 13 13 22 16 12  5  6 15 16  5  7  9 14 12 19 16 19 25 19 22 14 16
## [31705] 12  5 20  1  2  7 21 21 19 21 19 11 24  3  8  8 24 12  8  8 19 18 13  8
## [31729]  9  4 19 19 10 13 23  9  9 18 12 14  8  7  9  6 14  8 19  9 13 19 12 15
## [31753]  1  8 16  8  5  7 24 16  2 13 16 23 22 14 14 21 19 16  4 21  8 19 12 12
## [31777] 13 14  7  2 16 20 15 20  2 10 15  7 17 13 15  2  2 13  5  8 15 19 19  7
## [31801] 19 10 22 21 22 21 19 22  9  5  5 13  3 10  6  5  8 20 12  7 13  2  5  4
## [31825] 15 12  1  5  8 14 12 15 19  5 12 24  7  6 14  9  9  8 15 26 12 16 12  9
## [31849] 12 19 21 12  6  5 11  9  2  5  7 14 15  5 12 12  2  9 14 15 20  8 15 12
## [31873] 15 12  9 12  6  5  1  1  7 21 14  8 24  1 13 13 21 14 22 20  3  9 12 12
## [31897] 16  4 22 17 13  6  2  3 14  6  7  8 22 19  5 19  7  5  9 21  4 20 25 30
## [31921]  6  7 21  6 14 17 20  8 12  8  2 13 21 15 14 11 19 12 19 14 13  8 21  7
## [31945]  5 16 21  7  5  6 11 22 19 18  8  7 14  9 12 16  1  5 16 21  6 14 12 15
## [31969] 19  9  6 16 16  2 22 18 23  6 12  7 22 22 19 19  2 12 12 26 20 13  4 22
## [31993] 12 20  9 25  3 24  2 13  4 13  8 14  1  6  8 12 19 14 15 22 18 20  7  9
## [32017]  9 11  8  7  6 13 17 20  7 17 19 14 12  9 20  7 11 12  7 14 12  8 10  5
## [32041] 11 16  7 11 20  9  5 19 19 18  7 13  8 21  9 18  8  7  8 20 20  1  8 21
## [32065] 17 21  5 12 26 13  8 12  6  7  9  8  3  3 20 13  9 12 19 20  9 14 11  8
## [32089]  7 13  9  8 13 12  9 17 18  9  1  7 10  5  5  5  6 23 18 19  9  9  5 19
## [32113] 14 12 12 12 16 20 23 16 20 19 25 11  9 26 17 20 20  5 12 14 13 13  8 10
## [32137]  5 19 17  7 17 20 22 24 14 10 20 11 13  6 19 12 15  9  7  6 24 22 20 22
## [32161]  8 22  5 20 25 13 12  6 20 14 16 19  6 10 30 17 13  1 19  2 12 21  3 20
## [32185] 20 15  5  8  5 22 16 10 11  5 24 18 13 15 19 20 15  7  6 11 12  9  6 16
## [32209] 14 12  7 24 19 22  6  2 19  8  5 11 12 21  5  8  6 16  1 20 13 14  8 12
## [32233]  8 14  5 10 22 15 14 12 20  8 19  8 22 12 13 22  2  3  3 22 15  4 15 11
## [32257] 16 22 23 14 19 17 15 18 15  6 16  7  6 18 18 14 19 18 17  5 16 18 12  7
## [32281] 21 21 21  6 18 19 21 19 13  8  8 21 24  2 26 10  9 24 14  2 22 21 20 15
## [32305] 10  5 16 20 12 12  5 14 20 20 21  2 25 15 18 24 21 22 14 12  1  8 12 16
## [32329]  7 10 21 16 25  9 14 13 20 19  2 26 19  5 16 16  5  1  9  2 10  8 14 21
## [32353] 19  9 12 22 13  9 13 16 17  9 19  3 15 21 20 21 14 20 12 19 24  8 13  9
## [32377]  2 21  8 17 21  7  9 12 23 16 12 14 10 20 15 23  4 19  9 23 16  6  9  6
## [32401] 19 23 20  5  8 16 23  7 24  7 20  6 13 20  9 20 16  5 16  5 18  7  5 25
## [32425]  1  5  7 20  8  5  7 22  9  6  6 20 21  6 10 18  7 12  6 18  7  2  8 19
## [32449] 19 22 24 12  8 15  7 13 20  5 22 13  2 13 13  8 20  8 13  5 20  2 11 17
## [32473] 15 15 22 20 11 19  9  5 10 16 19 14  9  5 23  7  6 21 24  5  7 12 22 15
## [32497] 18 30  1 12  8 13  5 23 21 17  1 20 12  5 22 20  1 24 18 18 18 14  5 14
## [32521] 22 20  7 13  9 25 12  7 12  7  8  5 14 21 20 22 13 13 12 26 12 16  6  6
## [32545] 20  9  5 19 20 20 13  7 12 17 18 22  7 16  8 13 26 11  8 24 14  5 23 22
## [32569]  2  4  5  9  8 20  9 13 30 19 19 15  8 12 16  6 22 18  1  4 16 23  6  6
## [32593] 11 15 20 10  6 17 19 11 13  7 14 14 17 20 11  7  9 14  9  5 17 22 12  9
## [32617]  8 13 25  4  2 15 21  6 13 20 21 19 19 15 22  6  8  9  4  6 16 15 10 19
## [32641]  5  9 14  8 22 18 18 19  6 21 21 14 22 11 12 12  7 21 12 12  7  7 12 19
## [32665]  7  8 21 14 14 13  2  9 19 21  9 22 21 26 26 21 21 22 26 26 26 24 17 24
## [32689] 27 21 22 23 27 20  8 19 28 23  7 19 21 27 26 22 22 25 11 25 26  5  6 22
## [32713] 22 15 23 15 20 24 27  5 27  3  9  8 27 25 21 25 26 25 27 24 26  7 27 21
## [32737] 27 27  7 19 11 27 22 27 21  3 21 21 17 27 22 17 10 27 24 13  5  3 25 26
## [32761] 16 26  8  2 21 27 27 23 23  7 26 10 22 21 26 14 15  5 20 27 15 27 16 26
## [32785] 24 23 15  8  5 22 26  9 27 10 23 27 25 23 27 24 24 19 27 27 23  2  7 27
## [32809] 23  8 24 23 20 12  9 13 23 27 22 23 27 22 27 19 14 12 11 24 27 23 27 25
## [32833] 27 27 21 27 17  6 26 26 10 22 26 27 19  7 14 27 19  1 13 13 21 27  6  9
## [32857] 22 23 19 22 21 26 27 13 26  7  9 21 21 27 27 25  6 27 27  8 23  7 26 22
## [32881] 27 22 22 23 11 21 12 19 25 23 26 26 26  5 26 26 12 24 23 13 27 27 25 27
## [32905] 27 27 27 27 27  8  9 27 20 19 21 12 20 25 21 26 26 22 22 27 27 26  7 18
## [32929] 16 26 26 25  8 13  6 16  8 10 15 27 22 25 23 27 10 13  3 26 23 27 24 14
## [32953] 16  6 25 10 27 24 12  9 26 27  3 27 12 19 27 26 10 19 14 22 21 24 15  8
## [32977] 16 13 26 25 27 16 23  3 26 26 26 23 26 27 27 11 27 26 13 27 27 21 26  2
## [33001] 23 11 13 26 26  8  1 27 27 26  5 15  8 27  3 21  8 25 27 27 27 15 16 14
## [33025] 25  8 26 27  6 26 26 26 27 15 27 25 23  7 21 13 27 13 23 26 27 21 25 27
## [33049] 11  9 21 26 27 27 27 21 25 20 16 11 25 26 23 21 26 26 25 26  6 21 27  9
## [33073] 26 26  9 21  6 23  8  5 26 23 26  9 23 21  9 23 14 21 26  1 27 24 27 26
## [33097] 12 23 21 22 14 27 22 27 26 25 26 21 15 27 27  9 13 16 26 26 26 26 22 22
## [33121]  6 13 26  2 25 20 23 22 21 26 22 25 27 19  4 27 26 26 15  9 26 26 27 27
## [33145] 23 23 27 27 25 27 25 21 15  7  7 23  8 27 26 26 21 27 27 26 27 26 18 25
## [33169] 27 16 27 20 26  4 27 26 18 23 27 13 26 18 23 27 13 13  9 27 27 20 13 27
## [33193] 27 15 26 18 27 28  2  8 13 23 27 11 16 23 27 21 21  8 11 27 25 27 27 26
## [33217] 22 26 27 27 26 26 24 26 27 27  5 27 21 26 13 12 10 10 18  3 22 26 27 15
## [33241] 27 27 20 27 22 27 23 22 23 28 27 21 25 26 26 19 14 23 13 26  1 27 27 13
## [33265] 17 17 21 23 27 21  5 20  8 26  7 26 27 11 27 26 27 27 21 27  7  9 19  1
## [33289] 23 24 22 26 12 25 16 26 21 26 27 17  4 26 27 27 27 22 12 16 26 25 19 27
## [33313] 20 26 17 24 13 27 22 15 21 26  6 26 27  7 26 20 15  7 18 13 26 22 27 26
## [33337] 25 27  7 21 21 23 26 21 12 16 10 23 22 27 11 25 27 25 26 17 16 22 26 23
## [33361] 27 27 23 26 26  7 12
table(month(funcionas2))
## 
##    1    2    3    4    5    6    7    8    9   10 
##  162  149  384  912 3358 6812 7155 4721 5233 4481
hist(as.numeric(funcionas2-funcionas3))

knitr::opts_chunk$set(echo = TRUE)

CLASE 28 DE SEPTIEMBRE 2021

En esta clase trabajamos con el paquete lubridate que es muy útil para el manejo de fechas y horas.

###CLASE 28 DE SEPTIEMBRE 2021

bosque<-read.csv("C:/Users/mez1/Documents/CIDE/METPOL/1 SEMESTRE/BASES DE DATOS/CLASE/Harvard.csv")
bosque$datetime[1]
## [1] "2005-01-01T00:15"
library(lubridate)

fechax<-substr(bosque$datetime[1],1,10)
horax<-substr(bosque$datetime[1],12,16)



hora_fechx<-paste0(fechax," ",horax)

##VAMOS A GENERAR UNA FUNCIÓN QUE CONVIERTA TODA LA BASE A FORMATO FECHA

trans_fecha<-function(dia_fecha){
  fechax<-substr(dia_fecha,1,10)
  horax<-substr(dia_fecha,12,16)
  hora_fechx<-paste0(fechax," ",horax)
  return(hora_fechx)
}

#lapply(bosque$datetime,FUN = trans_fecha)
#sapply(bosque$datetime,FUN = trans_fecha)
#La desactivé por ineficiente

#trans_fecha(bosque$datetime)
#unlist(lapply(bosque$datetime,FUN = trans_fecha)) #A elementos, no de tablas
#sapply(bosque$datetime,FUN = trans_fecha) #A elementos, no de tablas

#trans_fecha<-function(dia_fecha){
#  fechax<-substr(dia_fecha,1,10)
#  horax<-substr(dia_fecha,12,16)
#  hora_fechx<-paste0(fechax," ",horax)
#  return(hora_fechx)
#}
#trans_fecha(bosque$datetime[2])

#apply por filas? Por columnas? Pero aquí queremos
#por cada elemento de un vector!!

#trans_fecha2<-function(trans_fecha){
  #vecto_lar<-unlist(strsplit(as.character(trans_fecha),"T"))
 # return(paste0(vecto_lar[1]," ",vecto_lar[2])) }

#datetime2<-trans_fecha(bosque$datetime)
#bosque$datetime22<-datetime2

#datetime2<-trans_fecha(bosque$datetime)
#bosque$datetime22<-datetime2
#bosque$datetime22



#¿cuándo es menor la temperatura promedio, entre 3am y 6am, o 10pm y 11:59pm?


#¿cuándo es menor la temperatura promedio, entre 3am y 5:59am, o 10pm y 11:59pm?

grupo1<-which(hour(bosque$datetime22)>=3 & hour(bosque$datetime22)<6)
## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
grupo2<-which(hour(bosque$datetime22)>=22 & hour(bosque$datetime22)<=23)
## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
mean(bosque[grupo1,3],na.rm = TRUE)
## [1] NaN
mean(bosque[grupo2,3],na.rm = TRUE)
## [1] NaN
#La temperatura entre 3 y 5:59 es más baja

#Otra manera
grupo11<-c(which(hour(bosque$datetime22)==3),
which(hour(bosque$datetime22)==4),
which(hour(bosque$datetime22)==5) )
## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
grupo22<-c(which(hour(bosque$datetime22)==22),
  which(hour(bosque$datetime22)==23) )
## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
mean(bosque[grupo11,3],na.rm=TRUE)
## [1] NaN
mean(bosque[grupo22,3],na.rm=TRUE)
## [1] NaN
grupo1<-which(hour(bosque$datetime22)>=3 & hour(bosque$datetime22)<6)
## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
grupo2<-which(hour(bosque$datetime22)>=22 & hour(bosque$datetime22)<=23)
## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
mean(bosque[grupo1,3],na.rm = TRUE)
## [1] NaN
mean(bosque[grupo2,3],na.rm = TRUE)
## [1] NaN
#La temperatura entre 3 y 5:59 es más baja

#Otra manera
grupo11<-c(which(hour(bosque$datetime22)==3),
which(hour(bosque$datetime22)==4),
which(hour(bosque$datetime22)==5) )
## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
grupo22<-c(which(hour(bosque$datetime22)==22),
  which(hour(bosque$datetime22)==23) )
## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.

## Warning: tz(): Don't know how to compute timezone for object of class NULL;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
mean(bosque[grupo11,3],na.rm=TRUE)
## [1] NaN
mean(bosque[grupo22,3],na.rm=TRUE)
## [1] NaN
knitr::opts_chunk$set(echo = TRUE)

CLASE 05 DE OCTUBRE 2021

Esta clase estuvo dedicada a los emparejamientos anidados.

### CLASE 05 OCTUBRE 2021


###COVID

library(readxl)
datos_covid20 <- read.csv("C:/Users/mez1/Documents/CIDE/METPOL/1 SEMESTRE/BASES DE DATOS/CLASE/COVID2020.csv")


#DIMENSIÓN DE LAS TABLAS

dim(datos_covid20) 
## [1] 149564     39
catalo_sexo <- read_excel("C:/Users/mez1/Documents/CIDE/METPOL/1 SEMESTRE/BASES DE DATOS/CLASE/catalogo.xlsx", sheet = "Catálogo SEXO")
empate_estadoUM2<-merge(x=datos_covid20,y=catalo_sexo,by.x="SEXO",by.y="CLAVE",sort=FALSE)

dim(empate_estadoUM2)
## [1] 149564     40
POBTOT <- (149564)
POB_FEM <- (76777)
prop_fem<-((POB_FEM/POBTOT)*100 )         
prop_fem<- round((prop_fem), 0)





#all.x=TRUE agrega valores con NA si no existe con que emparejar
#all.x= FALSE no agrega valores con NA cuando no existe con que emparejar 
#sort acomoda 


knitr::opts_chunk$set(echo = TRUE)