Actividad 2

Albar Ugalde

15/10/2021

1)Comandos básicos en R

1.1)comentarios en R

Usamos el símbolo de # dentro de R para que no corra la instrucción y se vea como un comentario:

#Esto es un comentario.

1.2)Correr instrucciones

Para correr la instrucción dentro de R debemos presionar las teclas “Ctrl + enter” al mismo tiempo para que se corra lo que queremos. Cabe aclarar que este documento se esta realizando dentro de un “R Markdown” en html, por lo que ingresamos los “Chunks” para que R funcione como tal.

2+2 #Toda la línea = situado en la línea
## [1] 4
5-3
## [1] 2
3-9 #Color azul en consola = Todo bien
## [1] -6
3*8 # * es multiplicación "escalar"
## [1] 24

1.3)Asignación de nombres a variables, tablas, etc.

El signo mayor que y un guion nos ayudan a nombrar cualquier objeto: <- Operador de asignación <-

xyy<-5
yyz<-12
www<-xyy+yyz
sin(0.5)
## [1] 0.4794255
log(xyy)
## [1] 1.609438

1.4)Encontrar ayuda de funciones

Para encontrar ayuda aplicamos un signo de interrogación (?) antes de la función y el software nos abrirá la información necesaria.

#?rnorm
#?apropos("sequ")
secu<-seq(0.5,7.5,0.5)

1.5)Unir elementos

La función “c”, sirve para unir elementos en uno solo:

#vector_med<-rnorm(100,mean=5,sd=3)
# [] Posiciones
# () Arg de función, u operaciones
vect1<-15
vect2<-18
vect1^vect2
## [1] 1.477892e+21
vect3<-c(vect1,vect2,20,24) #c es de concatenar = unir/juntar en un elemento
vect4<-seq(from=10,to=40,by=10) #longitud 4

1.6) Repetición

La función “rep” repite elementos de vectores y listas, en los paréntesis debo poner qué quiero repetir y las veces.

vect5<-rep(5,6) #rep =repetir
vect6<-rep(vect4,4)
vect7<-rep(vect4,each=4)
length(vect7)
## [1] 16
dim_vec<-length(vect4)

1.7) Nomenclaturas y significado de colores en R

las #sentencias = azul los errores o warnings = rojo Al final se ven los resultados

2)operaciones vectoriales y matriciales

2.1)Indagar posiciones y extraer elementos de vectores

x<-10
x
## [1] 10
x[1]
## [1] 10
y<-"arturo"
y[1]
## [1] "arturo"
list<-seq(11,33)
list
##  [1] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
sample(list,1)
## [1] 16
x1<-seq(12,27)
x1
##  [1] 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
z<-5*x1
z
##  [1]  60  65  70  75  80  85  90  95 100 105 110 115 120 125 130 135
50+(60*7**2+5)
## [1] 2995
50+(60*7**(2+5))
## [1] 49412630
t<-seq(0,15)
t
##  [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
t>10
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [13]  TRUE  TRUE  TRUE  TRUE
estatura<-rnorm(10,165,5)
example("min")
## 
## min> require(stats); require(graphics)
## 
## min>  min(5:1, pi) #-> one number
## [1] 1
## 
## min> pmin(5:1, pi) #->  5  numbers
## [1] 3.141593 3.141593 3.000000 2.000000 1.000000
## 
## min> x <- sort(rnorm(100));  cH <- 1.35
## 
## min> pmin(cH, quantile(x)) # no names
## [1] -2.4753102 -0.8454696 -0.1701317  0.6346208  1.3500000
## 
## min> pmin(quantile(x), cH) # has names
##         0%        25%        50%        75%       100% 
## -2.4753102 -0.8454696 -0.1701317  0.6346208  1.3500000 
## 
## min> plot(x, pmin(cH, pmax(-cH, x)), type = "b", main =  "Huber's function")

## 
## min> cut01 <- function(x) pmax(pmin(x, 1), 0)
## 
## min> curve(      x^2 - 1/4, -1.4, 1.5, col = 2)

## 
## min> curve(cut01(x^2 - 1/4), col = "blue", add = TRUE, n = 500)
## 
## min> ## pmax(), pmin() preserve attributes of *first* argument
## min> D <- diag(x = (3:1)/4) ; n0 <- numeric()
## 
## min> stopifnot(identical(D,  cut01(D) ),
## min+           identical(n0, cut01(n0)),
## min+           identical(n0, cut01(NULL)),
## min+           identical(n0, pmax(3:1, n0, 2)),
## min+           identical(n0, pmax(n0, 4)))
summary(estatura)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   159.8   164.7   168.3   167.0   169.7   171.9
estatura<-rnorm(10,175,5)
summary(estatura)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   167.9   170.6   174.0   174.9   179.0   185.1
#a<-catetoadyacente
#b<-catetoopuesto
#c<-hipotenusa
#a^2+b^2=c

CO<-3
CA<-5


sqrt(CO^2+CA^2)
## [1] 5.830952
sqrt
## function (x)  .Primitive("sqrt")
hip_tr <- function(a,
                   b
){
  c<-  sqrt(a^2 + b^2)
  print(c)
}

hip_tr(3,
       4)
## [1] 5

2.2)clase: 23-08-2021: Operaciones “punto” por vector

Multiplico un escalar por cada uno de los elementos de un vector.

5*vect3
## [1]  75  90 100 120
vect1*vect3
## [1] 225 270 300 360

*2.3) Función Matrix

Matrix

Para hacer un matriz utilizamos la función “matrix”. Entre paréntesis van mis valores, el número de columnas y si el arreglo es o no por filas.

practi<-c(5,7,3,9,7,12,6,7)
practi_mat<-matrix(practi,ncol = 4, byrow=TRUE) #Matrix
practi_mat2<-matrix(practi,nrow=4,byrow = TRUE)
practi_mat
##      [,1] [,2] [,3] [,4]
## [1,]    5    7    3    9
## [2,]    7   12    6    7
dim(practi_mat)
## [1] 2 4
dim(practi_mat2)
## [1] 4 2
practi_mat3<-matrix(c(11,13,2,5,8,4,7,12,21,21,6,8),ncol = 4, byrow=TRUE) #Matrix
practi_mat3<-matrix(c(11,13,2,5,8,4,7,12,21,21,6,8),
                    ncol=3,byrow=TRUE)  #Matrix
3*practi_mat3
##      [,1] [,2] [,3]
## [1,]   33   39    6
## [2,]   15   24   12
## [3,]   21   36   63
## [4,]   63   18   24

2.4) indicadores de posición (matriz y vector) []

# dim(practi_mat3)
# practi_mat3[1,4] #Escalar
# practi_mat3[,3] #Todos los renglones
# practi_mat3[2,] #todos las columnas
# practi_mat3[1:2,] #Fila 1 y 2, todas las columnas
# matri2<-practi_mat3[-1,-1] #Fila 1 y 2, todas las columnas

2.5) Álgebra de matrices

# t(practi_mat3)
# inv_practi_mat4<-solve(practi_mat4) #MAtriz cuadrada n x n, inversa
# practi_mat4<-practi_mat3[-4,]

#%*% #cuando hablamos de matrices
  
# practi_mat3%*%matri2

2.6) Matriz por su inversa = identidad

# Sistemas de ecuaciones
# solve()

#5x-3y+2z=1
#-2x+2y-z=5
#4x+2y-4z=-3

# coeficientes<-matrix(c(5,-3,2,-2,2,-1,4,2,-4),byrow = TRUE,ncol = 3)
# respuestas<-c(1,5,-3)
#?solve()
#solve(coeficientes,respuestas) #resuelve la matriz
#ainv<-solve(coeficientes) #inversa de dicha matriz
#solucion<-solve(coeficientes,respuestas) #asignamos el nombre solucion
#length(solucion)
###
#intentemos x=b*a^(-1)
#    1x3  3x3
#respuestas%*%ainv
#ainv%*%respuestas

#suma, resta
# 

#(coeficientes + practi_mat4)%*%solve(coeficientes + practi_mat4)

#t(coeficientes)
#diag(coeficientes)
#det(coeficientes)
#
#cbind(coeficientes,coeficientes[,1:2]) #pegar por columnas
#rbind(coeficientes,coeficientes[1:2,]) #r = row = renglón = fila

#vari1<-c("M","H")
#vari2<-c("M","H","M","H","H","M","M","M","M","H","H","H","M")
#length(vari2)
#table(vari2) #Frecuencias
#vari3<-c("1","0","1","0","0","1","1","1","1","0","0","0","1")
#table(vari3) #tabla de frecuencias
#table(vari2,vari3)
#factor(vari3) #Funcion "factor" = factores

#sum(as.numeric(vari3))
#vari3[5]<-"cero"
#vari3[7]<-"uno"
#as.numeric(vari3)
#is.na(as.numeric(vari3))

3) Base de datos

Para importar una base de datos tenemos dos opciones: ir a las opciones de R y darle apretar en “importar base de datos” ó primero instalar la librería readxl y luego llarmarla:

#install.packages("readxl") #comprar el foco e instalar el foco
#(readxl) # Encender

#install.packages("kernlab")#comprar el foco e instalar el foco
#library(kernlab) #Encender

#library(readxl)   # Importar datos
#datos10 <- read_excel("C:/Users/ARRA/Desktop/METPOL 1er SEMESTRE/Programación/datos_ags_estado_2020.xlsx")
#View(datos_ags_estado_2020)
#View(datos_ags_estado_2020)

3.1)Características

Las funciones “is.matrix”, “is.list”, “is.data.frame” nos pueden ser útiles para saber qué tipo de objeto necesitamos manipular, otras funciones utiles:

#head <- #para que nos muestre la parte superior de la tabla que estamos utilizando
#tail <- #para que nos muestre la parte inferior de la tabla que estamos utilizando

#dim <- #para saber las dimensiones o tamaño del objeto a manipular

3.2) Personalización

Es posible cambiar el nombre de las columnas y filas con las funciones “colnames” y “rownames”, respectivamente. También podemos mediante la función “as.numeric” cambiar el texto en mi base de datos por números, y si necesito cambiar números a textos usamos “as.character”

#colnames,
#rownames,
#as.numeric
#as.character

4)Otras funciones para el manejo de base de datos

"Apply aplica una función a todos los elementos de una matriz. La estructura de esta función es la siguiente.

#apply(X, MARGIN, FUN)

apply tiene tres argumentos: • X: Una matriz o un objeto que pueda coercionarse a una matriz, generalmente, un data frame. • MARGIN: La dimensión (margen) que agrupará los elementos de la matriz X, para aplicarles una función. Son identificadas con números, 1 son renglones y 2 son colummnas. • FUN: La función que aplicaremos a la matriz X en su dimención MARGIN"

Tomado de: https://bookdown.org/jboscomendoza/r-principiantes4/apply.html

4.1) “Aggregate”

“La función Aggregate en R, divide los datos en subconjuntos, calcula estadísticas de resumen para cada subconjunto y devuelve el resultado en un grupo por formulario.” Tomado de: https://n9.cl/fm38y

#rango(iris3[,1,1])
#apply(iris3[,,1],2,mean)   #Setosa
#apply(iris3[,,1],2, rango) 
#apply(iris3[,,1],1,rango)
#aggregate(iris)
#aggregate(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)~Species,
          #data=iris,mean)

#aggregate(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)~Species,
          #data=iris,rango)

4.2) “Which”

Nos permite confirmar observaciones que cumplan con una determinada condición

#grupo1<-which(hour(bosque$datetime22)>=3 & hour(bosque$datetime22)<6)
#grupo2<-which(hour(bosque$datetime22)>=22 & hour(bosque$datetime22)<=23)

4.3) FUNCIONES PERSONALIZADAS FUNCIONES DEL USUARIO

#rango<-function(x){max(x)-min(x)}


#rango(iris3[,1,1])
#apply(iris3[,,1],2,mean)   #Setosa
#apply(iris3[,,1],2, rango) 
#apply(iris3[,,1],1,rango)
#aggregate(iris)
#aggregate(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)~Species,
          #data=iris,mean)

#aggregate(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)~Species,
          #data=iris,rango)

# * ayuda de fuciones muy genéricas
#?"function"
#?"*"
#?mean

# 2) coeficiente de variabilidad = sigma/abs(media)

#coef_var<-function(x){sd(x)/abs(mean(x))}
#apply(iris3[,,1],2,mean)  #Setosa
#apply(iris3[,,1],2,coef_var)
#aggregate(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)~Species,
          #data=iris,coef_var)
          
          
# 3) Media cortada: descartar los mayor y menor

#iris[,1,1]
#max(iris3[,1,1])
#min(iris3[,1,1])

#descarte<-c(which(iris3[,3,1]==max(iris3[,3,1])),
            #which(iris3[,3,1]==min(iris3[,3,1])))

4.4) Función as.date y strptime

Con esa función podemos manipular una base de datos y hacer modificaciones a nuestro interés

#fallecidos<-read.csv("C:\\Users\\ARRA\\Desktop\\METPOL 1er SEMESTRE\\Programac\\rstudiotrab\\fallecidos.csv")

#covid_oaxaca<-read.csv("C:\\Users\\ARRA\\Desktop\\METPOL 1er SEMESTRE\\Programac\\rstudiotrab\\covid_oaxaca.csv")

#View(covid_oaxaca)


#funcionas<-as.Date(covid_oaxaca$FECHA_INGRESO,format="%d/%m/%Y")

#funcionas2<-as.Date(covid_oaxaca$FECHA_INGRESO,format="%d/%m/%Y")

#funcionas3<-as.Date(covid_oaxaca$FECHA_SINTOMAS,format="%d/%m/%Y")


#funcionas2<-as.Date(covid_oaxaca$FECHA_INGRESO,formart="%Y-%m-%d")
#library(lubridate)
#install.packages("lubridate")

#library(lubridate)
#day(funcionas2)
#table(month(funcionas2))
#hist(as.numeric(funcionas2-funcionas3))

strptime Para manejar objetos que no solo tengas fechas sino horas

#strptime #Handling time and dates at the same time

#library(lubridate)

#bosque<-read.csv("C:\\Users\\ARRA\\Desktop\\Datos bosque Harvard.csv")
#dim(bosque)
#getwd()#cuál es nuestro directorio de trabajo?
#setwd() #Cambiar el directorio de trabajo

#bosque$datetime[1]
#fechax<-substr(bosque$datetime[1],1,10)
#horax<-substr(bosque$datetime[1],12,16)
#hora_fechx<-paste0(fechax,"",horax)



#hora_fechaxx<-strptime(hora_fechx, format="%Y-%m-%d %H:%M")


#hour(hora_fechaxx)
#minute(hora_fechaxx)
#year(hora_fechaxx)
#month(hora_fechaxx)

Gráfico y tablas relacionadas

datos_covid20<-read.csv("C:\\Users\\ARRA\\Desktop\\basededatos\\COVID2020_5estados.csv")

library(readxl)


catalo_enti<-read_xlsx("C:\\Users\\ARRA\\Desktop\\basededatos\\Catalogos.xlsx", sheet = "Catálogo de ENTIDADES")
tail(catalo_enti)
## # A tibble: 6 x 3
##   CLAVE_ENTIDAD ENTIDAD_FEDERATIVA       ABREVIATURA
##   <chr>         <chr>                    <chr>      
## 1 31            YUCATÁN                  YN         
## 2 32            ZACATECAS                ZS         
## 3 36            ESTADOS UNIDOS MEXICANOS EUM        
## 4 97            NO APLICA                NA         
## 5 98            SE IGNORA                SI         
## 6 99            NO ESPECIFICADO          NE
catalo_sexo<-read_excel("C:\\Users\\ARRA\\Desktop\\basededatos\\Catalogos.xlsx",sheet = "Catálogo SEXO")


#datos_covid20$ENTIDAD_UM
#catalo_enti$CLAVE_ENTIDAD

catalo_enti$CLAVE_ENTIDAD<-as.numeric(catalo_enti$CLAVE_ENTIDAD)
catalo_muni<-read_excel("C:\\Users\\ARRA\\Desktop\\basededatos\\Catalogos.xlsx",sheet = "Catálogo MUNICIPIOS")


#EMPAREJAR TABLAS

empate_estadoUM<-merge(datos_covid20,catalo_enti,by.x="ENTIDAD_UM", by.y="CLAVE_ENTIDAD")

dim(empate_estadoUM)
## [1] 149564     41
dim(datos_covid20)  ##TABLAS, SU DIMENSIÓN
## [1] 149564     39
empate_estadoUM<-merge(datos_covid20,catalo_enti,by.x="ENTIDAD_UM",by.y="CLAVE_ENTIDAD",sort=FALSE)

head(merge(x=empate_estadoUM,y=catalo_sexo,by.x="SEXO",by.y="CLAVE",sort=FALSE))
##   SEXO ENTIDAD_UM       X FECHA_ACTUALIZACION ID_REGISTRO ORIGEN SECTOR
## 1    1          3       5          28/10/2020      016eda      2     12
## 2    1          3 2092469          28/10/2020      2191c4      2     12
## 3    1          3  815907          28/10/2020      0230b3      2     12
## 4    1          2 1000386          28/10/2020      413aae      2      4
## 5    1          3 2174118          28/10/2020      246614      2     12
## 6    1          3  815953          28/10/2020      1a3b55      1      4
##   ENTIDAD_NAC ENTIDAD_RES MUNICIPIO_RES TIPO_PACIENTE FECHA_INGRESO
## 1          14           3             8             1    30/03/2020
## 2           3           3             3             1    22/10/2020
## 3          25           3             8             1    02/09/2020
## 4          21           2             4             1    24/09/2020
## 5           9           3             8             1    24/10/2020
## 6          20           3             3             1    15/07/2020
##   FECHA_SINTOMAS  FECHA_DEF INTUBADO NEUMONIA EDAD NACIONALIDAD EMBARAZO
## 1     23/03/2020 9999-99-99       97        2   29            1        2
## 2     21/10/2020 9999-99-99       97        2   31            1        2
## 3     28/08/2020 9999-99-99       97        2   40            1        2
## 4     20/09/2020 9999-99-99       97        2   50            1        2
## 5     20/10/2020 9999-99-99       97        2   32            1        2
## 6     13/07/2020 9999-99-99       97        2   49            1        2
##   HABLA_LENGUA_INDIG INDIGENA DIABETES EPOC ASMA INMUSUPR HIPERTENSION OTRA_COM
## 1                  2        2        2    2    2        2            2        2
## 2                  2        2        2    2    2        2            2        2
## 3                  2        2        2    2    2        2            2        2
## 4                  2        2        2    2    2        2            2        2
## 5                  2        2        2    2    2        2            2        2
## 6                  2        2        2    2    2        2            2        2
##   CARDIOVASCULAR OBESIDAD RENAL_CRONICA TABAQUISMO OTRO_CASO TOMA_MUESTRA
## 1              2        2             2          2         1            1
## 2              2        2             2          2         1            1
## 3              2        2             2          2         2            1
## 4              2        2             2          2         1            1
## 5              2        2             2          2         1            1
## 6              2        2             2          2         1            1
##   RESULTADO_LAB CLASIFICACION_FINAL MIGRANTE PAIS_NACIONALIDAD PAIS_ORIGEN UCI
## 1             1                   3       99            México          97  97
## 2             1                   3       99            México          97  97
## 3             1                   3       99            México          97  97
## 4             1                   3       99            México          97  97
## 5             2                   7       99            México          97  97
## 6             1                   3       99            México          97  97
##    ENTIDAD_FEDERATIVA ABREVIATURA DESCRIPCIÓN
## 1 BAJA CALIFORNIA SUR          BS       MUJER
## 2 BAJA CALIFORNIA SUR          BS       MUJER
## 3 BAJA CALIFORNIA SUR          BS       MUJER
## 4     BAJA CALIFORNIA          BC       MUJER
## 5 BAJA CALIFORNIA SUR          BS       MUJER
## 6 BAJA CALIFORNIA SUR          BS       MUJER
empate_estadoUM2<-merge(x=empate_estadoUM,y=catalo_sexo,by.x="SEXO",by.y="CLAVE",sort=FALSE)

dim(empate_estadoUM2)
## [1] 149564     42

19 de octubre 2021

library(readxl)


#datos_covid20<-read.csv("C:\\Users\\ARRA\\Desktop\\basededatos\\COVID2020_5estados.csv")


#catalo_enti<-read_xlsx("C:\\Users\\ARRA\\Desktop\\basededatos\\Catalogos.xlsx", sheet = "Catálogo de ENTIDADES")

#catalo_enti$CLAVE_ENTIDAD<-as.numeric(catalo_enti$CLAVE_ENTIDAD)
#tabla_entid<-merge(datos_covid20,catalo_enti,by.x="ENTIDAD_RES",
                   #by.y="ENTIDAD_FEDERATIVA",all.x=TRUE,sort = FALSE)


#<-merge(datos_covid20,catalo_enti,by.x="ENTIDAD_RES",
                   #by.y="ENTIDAD_FEDERATIVA",all.x=FALSE,sort = FALSE)

que pasa si invierto los argumentos, es decir la x & y

#merge(x=catalo_enti,y=datos_covid20,by.x="CLAVE_ENTIDAD",
      #by.y="ENTIDAD_UM",all.x=FALSE,sort = FALSE)

Casos acumulados de estos cuatros estados (en su conjunto)

#datos_covid20<-FECHA_INGRESO<-as.Date(datos_covid20$FECHA_INGRESO,)

#datos_covid20$unos<-rep(1,nrow(datos_covid20))
#aggregate(unos~FECHA_INGRESO,data=datos_covid20,sum)

ordenar los datos

#datos_covid20$FECHA_INGRESO<-as.Date(datos_covid20$FECHA_INGRESO, format = "%d/%m/%Y")


#ts_ingreso<-aggregate(unos~FECHA_INGRESO,data=datos_covid20,sum)

#ts_ingreso$FECHA_INGRESO<-as.Date(ts_ingreso$FECHA_INGRESO, format = "%d/%m/%Y")


#plot(ts_ingreso)
#?par
#?plot

con “main” le damos nombre a la gráfica y los ejex x & y con xlab y ylab respectivamente

#plot(ts_ingreso, main="Primer Gráfico", xlab="Fecha", ylab="Casos nuevos diarios")


#plot(ts_ingreso, main="Primer Gráfico", xlab="Fecha", ylab="Casos nuevos diarios")


#plot(ts_ingreso,main="Primer gráfico",xlab="Fecha",ylab="Casos nuevos diarios",
     #type="l")

cambiar color, ancho de la letra del título, ancho de la línea

#plot(ts_ingreso,main="Primer gráfico",xlab="Fecha",ylab="Casos nuevos diarios",
     #type="l",col="orange",lwd=2)

##Gráfico de barras por mes

#library(lubridate)

#$mes<-month(ts_ingreso$FECHA_INGRESO)
#ts_ingreso2<-aggregate(unos~mes, FUN=sum,data = ts_ingreso)

gráfica de barras por meses

#barplot(ts_ingreso2$unos)

ponerle nombre de meses a las barras

#barplot(ts_ingreso2$unos,
        #names.arg = c("ENERO","FEBRERO","MARZO","ABRIL",
                   #   "MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),
        #horiz=FALSE)

que aparezca una tabla con el nombre de las barras

#barplot(ts_ingreso2$unos,
        #names.arg = c("ENERO","FEBRERO","MARZO","ABRIL",
                    #  "MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),
        #horiz=FALSE, legend.text = c("ENERO","FEBRERO","MARZO","ABRIL",
                                    # "MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),)

darle color a las barras

#barplot(ts_ingreso2$unos,
        #names.arg = c("ENERO","FEBRERO","MARZO","ABRIL",
                     # "MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),
        #horiz=FALSE,legend.text= c("ENERO","FEBRERO","MARZO","ABRIL",
                                  # "MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),
        #col= rainbow(10))

colores hcl.colors(10)

#barplot(ts_ingreso2$unos,
        #names.arg = c("ENERO","FEBRERO","MARZO","ABRIL",
                      #"MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),
        #horiz=FALSE,legend.text= c("ENERO","FEBRERO","MARZO","ABRIL",
                                   #"MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),
        #col= hcl.colors(10,))
#?hcl.colors

colores heat.colrs(10) el 10 es por el número de barras

#barplot(ts_ingreso2$unos,
        #names.arg = c("ENERO","FEBRERO","MARZO","ABRIL",
                     # "MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),
        #horiz=FALSE,legend.text= c("ENERO","FEBRERO","MARZO","ABRIL",
                               #    "MAYO","JUNIO","JULIO","AGOSTO","SEPT","OCTUBRE"),
        #col= heat.colors(10))

##como hacer boxplots

#boxplot(ts_ingreso$unos)

#sexo_fecha<-aggregate(unos~FECHA_INGRESO+SEXO,data=datos_covid20,sum)


#boxplot(unos~SEXO,data = sexo_fecha)

###boxplot por mes

#datos_covid20$FECHA_INGRESO<-as.Date(datos_covid20$FECHA_INGRESO,format="%Y-%m-%d")
#datos_covid20$mes<-month(datos_covid20$FECHA_INGRESO)


#sexo_fecha<-aggregate(unos~FECHA_INGRESO+SEXO, data = datos_covid20)

#boxplot(unos~SEXO, data = sexo_fecha, horizontal = TRUE)


#sexo_fecha_mes<-aggregate(unos~FECHA_INGRESO+SEXO+mes,data=datos_covid20,sum)
#boxplot(unos~SEXO+mes,data=sexo_fecha_mes,horizontal = TRUE)
#boxplot(unos~mes+SEXO,data=sexo_fecha_mes,horizontal = TRUE)

###Boxplot comparando hombre y mujer

#tabla_gen<-data.frame(Codigo=c(1,2),Genero=c("M","H"))

#datos_covid200<-merge(datos_covid20,tabla_gen,by.x="SEXO",
                      #by.y="Codigo")
#sexo_fecha_mes2<-aggregate(unos~FECHA_INGRESO+Genero+mes,data=datos_covid200,sum)


#boxplot(unos~mes+Genero,data=sexo_fecha_mes2,horizontal = FALSE)
#boxplot(unos~Genero+mes,data=sexo_fecha_mes2,horizontal = FALSE)

CLASE MARTES 26.10.21

Vectorizar nuestro nombre

##########clase 26 de Octubre######
####################################

#vectorizar el nombre (quitar espacios) (se necesita un loop?)

nombresss<-"ALBAR UGALDE HERNANDEZ"

LETTERS
##  [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
## [20] "T" "U" "V" "W" "X" "Y" "Z"
nombresss<-gsub(" ","",nombresss) 
strsplit(nombresss, NULL)
## [[1]]
##  [1] "A" "L" "B" "A" "R" "U" "G" "A" "L" "D" "E" "H" "E" "R" "N" "A" "N" "D" "E"
## [20] "Z"
###una opción acortada###

match(unlist(strsplit("ALBARUGALDEHERNANDEZ", split="")), LETTERS)
##  [1]  1 12  2  1 18 21  7  1 12  4  5  8  5 18 14  1 14  4  5 26
#####otra forma###

funcion_asignadora_numeros_letras <- function(x){
  ## Quitamos los espacios 
  nombre_se <- gsub(" ",
                    "",
                    x,
  )
  ## Lo hacemos mayusculas
  nombre_mayus <- toupper(nombre_se)
  ## Separamos las letras en objetos individuales
  nombre_vectorizado <- data.frame(strsplit(nombre_mayus,split = ""))
  ## Renombramos para trabajar más fácil
  nombre_vectorizado$letras <- nombre_vectorizado[,1]
  ## Creamos un objeto data.frame con letras y sus correspondientes valores
  letras_numeros <- data.frame(letras = LETTERS,
                               numeros = c(1:26))
  ## Unimos el nombre vectorizado con la base de datos y le pedimos que solo retorne las observaciones con equivalencias en la
  ## Data frame de la izquierda
  letras_numeros_nombre <- inner_join(nombre_vectorizado,letras_numeros)
  ## Hacemos un vector con los números
  numeros_nombre <- letras_numeros_nombre$numeros
  ## Garantizamos que regrese los números del vector entrante
  return(numeros_nombre)
}

UTILIZAR LA FUNCIÓN FOR Y && ###?“for”?“&&”

########
#UTILIZAR LA FUNCIÓN FOR Y && ###?"for"?"&&"
######


vecto_nom<-c("ALBAR","UGALDE","HERNANDEZ")

for (i in 1:3) {
  print(vecto_nom[i])}
## [1] "ALBAR"
## [1] "UGALDE"
## [1] "HERNANDEZ"
palabra<-"METPOL"

strsplit(palabra,"") ####con la funcion "strsplit"
## [[1]]
## [1] "M" "E" "T" "P" "O" "L"
#convertimos la palabra en vector

unlist(strsplit(palabra,"")) #con "unlist" seperamos las
## [1] "M" "E" "T" "P" "O" "L"
#letras en vectores

palabra2<-unlist(strsplit(palabra,""))

which(LETTERS==palabra2[1]) #con "which==LETTERS" podemos
## [1] 13
#cambiar cada vector, es decir cada letra en número

which(LETTERS==palabra2[2]) #para cada letra
## [1] 5
which(LETTERS==palabra2[3])
## [1] 20
which(LETTERS==palabra2[4]) 
## [1] 16
which(LETTERS==palabra2[5]) 
## [1] 15
which(LETTERS==palabra2[6]) 
## [1] 12
###otra forma de convertir METPOL en números
vector_palabra<-rep(NA,6)

for(k in 1:6){
  print(which(LETTERS==palabra2[k]))
}
## [1] 13
## [1] 5
## [1] 20
## [1] 16
## [1] 15
## [1] 12
#ahora para sustituir los valores y "vector_palabra"
#convierta el vector directamente cada palabra y uno por separado
for(k in 1:6){
  vector_palabra[k]<-which(LETTERS==palabra2[k])
}
vector_palabra
## [1] 13  5 20 16 15 12
#ejercicios

# 1) Suma acumulada del 1 al 100 (loops)
# 2) Multiplicación de todos los números
# 3) rnorm(100) ¿Mayor o menor que 0? Etiquetarlos
# 4) Raiz cuadrada y le resta 1 a 50 números
# 5) Aplicar la función de Coeficiente de variabilidad a 
# 1000 conjuntos de distribución normal estándar de longitud 50 números


#1) Sumatoria

numeross<-c(0,seq(1,100))

cumsum(numeross) #para hacer la suma acumulada "cumsum"
##   [1]    0    1    3    6   10   15   21   28   36   45   55   66   78   91  105
##  [16]  120  136  153  171  190  210  231  253  276  300  325  351  378  406  435
##  [31]  465  496  528  561  595  630  666  703  741  780  820  861  903  946  990
##  [46] 1035 1081 1128 1176 1225 1275 1326 1378 1431 1485 1540 1596 1653 1711 1770
##  [61] 1830 1891 1953 2016 2080 2145 2211 2278 2346 2415 2485 2556 2628 2701 2775
##  [76] 2850 2926 3003 3081 3160 3240 3321 3403 3486 3570 3655 3741 3828 3916 4005
##  [91] 4095 4186 4278 4371 4465 4560 4656 4753 4851 4950 5050
#formula: n(n+1)/2  100(101)/2

sumatoria<-rep(0,100) #A sumar

#numeross<-seq(1,100))#serie de datos

sumatoria[1]<-numeross[2]#Valor igual para la posición 1
for(j in 2:101){
  sumatoria[j]<-sumatoria[j-1]+numeross[j+1] }


sumatoria[2]<-sumatoria[1]+numeross[2] #Para el caso 2
sumatoria[3]<-sumatoria[2]+numeross[3] #Para el caso 3
sumatoria[4]<-sumatoria[3]+numeross[4] #Para el caso 5
sumatoria[j]<-sumatoria[j-1]+numeross[j] #para el caso j

#Ciclo
for(j in 2:100){
  sumatoria[j]<-sumatoria[j-1]+numeross[j]}

#########
#Multiplicación acumulada del 1 al 10


valores_mult<-seq(1,10)
vector_multacu<-rep(NA,10)

vector_multacu[1]<-valores_mult[1]

vector_multacu[2]<-vector_multacu[1]*valores_mult[2]
vector_multacu[3]<-vector_multacu[2]*valores_mult[3]
vector_multacu[4]<-vector_multacu[3]*valores_mult[4]
vector_multacu[5]<-vector_multacu[4]*valores_mult[5]


for(k in 2:10) { 
  vector_multacu[k]<-vector_multacu[k-1]*valores_mult[k]
}

prod(1:10) #funcion para realizar la multiplicación acumulada
## [1] 3628800
cumprod(1:10) #otra funcion para realizar la multiplicación acumulada
##  [1]       1       2       6      24     120     720    5040   40320  362880
## [10] 3628800
# 3) rnorm(100) ¿Mayor o menor que 0? Etiquetarlos

#generar 100 con rnorm()



nume_aleato<-rnorm(100) #Normal (0,1)
etiqueta_alea<-rep(NA,100)

etiqueta_alea[which(nume_aleato>0)]<-"POSITIVO"
etiqueta_alea[which(nume_aleato<0)]<-"NEGATIVO"
table(etiqueta_alea)
## etiqueta_alea
## NEGATIVO POSITIVO 
##       43       57
#IFs como funciona "if" y "else"
if(nume_aleato[1]>0){"POSITIVO"}else{"NEGATIVO"}
## [1] "POSITIVO"
#para cada valor
if(nume_aleato[1]>0){etiqueta_alea[1]<-"POSITIVO"}else{etiqueta_alea[1]<-"NEGATIVO"}
if(nume_aleato[2]>0){etiqueta_alea[2]<-"POSITIVO"}else{etiqueta_alea[2]<-"NEGATIVO"}
if(nume_aleato[7]>0){etiqueta_alea[7]<-"POSITIVO"}else{etiqueta_alea[7]<-"NEGATIVO"}

#para todos los valores
for(k in 1:100){
  if(nume_aleato[k]>0){etiqueta_alea[k]<-"POSITIVO"}else{etiqueta_alea[k]<-"NEGATIVO"} }

table(etiqueta_alea)
## etiqueta_alea
## NEGATIVO POSITIVO 
##       43       57
#sqrt(valor positivo)

raiz_cua<-rep(NA,100)
for(k in 1:100){
  if(nume_aleato[k]>0){raiz_cua[k]<-sqrt(nume_aleato[k])}else{raiz_cua[k]<-"NÚMERO IMAGINARIO"} }

as.numeric(raiz_cua) #hace NA los imaginarios
## Warning: NAs introducidos por coerción
##   [1] 0.96282549 1.16084839         NA 1.33366863         NA 0.99259198
##   [7]         NA 0.64883558         NA         NA         NA 0.69051728
##  [13]         NA 1.44704958 0.72727366         NA 0.18394834         NA
##  [19] 1.12146329         NA 1.26010909 0.75274096         NA         NA
##  [25] 1.08987800 1.33081299 1.17761081         NA 0.10481704 1.27678460
##  [31] 1.25707772         NA 0.71138853 0.88322226         NA 1.19647692
##  [37] 0.80701266 0.86795021 1.15293038 0.80398760 1.32564147 0.41825526
##  [43]         NA         NA 0.18614563 0.82628201         NA 0.32231727
##  [49]         NA         NA 0.64633001         NA 0.68993298         NA
##  [55] 0.82700701 0.80932126 0.59732853 1.15840256 1.12112427 0.43869289
##  [61] 1.04689192         NA         NA 1.37830663 0.24380091 1.27497176
##  [67] 1.08187358         NA         NA         NA         NA         NA
##  [73] 0.74500690         NA 0.47780887         NA         NA 0.60527057
##  [79] 1.43336075         NA 0.99539832 1.32085231         NA 0.09460943
##  [85] 0.21351455         NA         NA 0.43079358         NA 0.45841931
##  [91]         NA 0.53298804         NA 0.92156889         NA         NA
##  [97] 1.39296551         NA 0.63891387         NA
data.frame(nume_aleato,etiqueta_alea,as.numeric(raiz_cua) )
## Warning in data.frame(nume_aleato, etiqueta_alea, as.numeric(raiz_cua)): NAs
## introducidos por coerción
##      nume_aleato etiqueta_alea as.numeric.raiz_cua.
## 1    0.927032926      POSITIVO           0.96282549
## 2    1.347568985      POSITIVO           1.16084839
## 3   -1.397446434      NEGATIVO                   NA
## 4    1.778672007      POSITIVO           1.33366863
## 5   -2.098788524      NEGATIVO                   NA
## 6    0.985238832      POSITIVO           0.99259198
## 7   -0.256717470      NEGATIVO                   NA
## 8    0.420987616      POSITIVO           0.64883558
## 9   -0.064748805      NEGATIVO                   NA
## 10  -2.334933301      NEGATIVO                   NA
## 11  -0.533583152      NEGATIVO                   NA
## 12   0.476814109      POSITIVO           0.69051728
## 13  -0.631706548      NEGATIVO                   NA
## 14   2.093952476      POSITIVO           1.44704958
## 15   0.528926977      POSITIVO           0.72727366
## 16  -0.684574563      NEGATIVO                   NA
## 17   0.033836990      POSITIVO           0.18394834
## 18  -1.229304246      NEGATIVO                   NA
## 19   1.257679912      POSITIVO           1.12146329
## 20  -0.304614852      NEGATIVO                   NA
## 21   1.587874906      POSITIVO           1.26010909
## 22   0.566618950      POSITIVO           0.75274096
## 23  -0.430137615      NEGATIVO                   NA
## 24  -0.302063809      NEGATIVO                   NA
## 25   1.187834052      POSITIVO           1.08987800
## 26   1.771063213      POSITIVO           1.33081299
## 27   1.386767214      POSITIVO           1.17761081
## 28  -0.283075685      NEGATIVO                   NA
## 29   0.010986612      POSITIVO           0.10481704
## 30   1.630178913      POSITIVO           1.27678460
## 31   1.580244403      POSITIVO           1.25707772
## 32  -1.197719691      NEGATIVO                   NA
## 33   0.506073643      POSITIVO           0.71138853
## 34   0.780081562      POSITIVO           0.88322226
## 35  -2.010425615      NEGATIVO                   NA
## 36   1.431557012      POSITIVO           1.19647692
## 37   0.651269438      POSITIVO           0.80701266
## 38   0.753337572      POSITIVO           0.86795021
## 39   1.329248466      POSITIVO           1.15293038
## 40   0.646396054      POSITIVO           0.80398760
## 41   1.757325299      POSITIVO           1.32564147
## 42   0.174937464      POSITIVO           0.41825526
## 43  -0.800785350      NEGATIVO                   NA
## 44  -0.064597993      NEGATIVO                   NA
## 45   0.034650197      POSITIVO           0.18614563
## 46   0.682741968      POSITIVO           0.82628201
## 47  -0.319486886      NEGATIVO                   NA
## 48   0.103888425      POSITIVO           0.32231727
## 49  -0.659512092      NEGATIVO                   NA
## 50  -1.393997644      NEGATIVO                   NA
## 51   0.417742478      POSITIVO           0.64633001
## 52  -0.357987106      NEGATIVO                   NA
## 53   0.476007521      POSITIVO           0.68993298
## 54  -0.080791612      NEGATIVO                   NA
## 55   0.683940591      POSITIVO           0.82700701
## 56   0.655000908      POSITIVO           0.80932126
## 57   0.356801374      POSITIVO           0.59732853
## 58   1.341896488      POSITIVO           1.15840256
## 59   1.256919619      POSITIVO           1.12112427
## 60   0.192451455      POSITIVO           0.43869289
## 61   1.095982690      POSITIVO           1.04689192
## 62  -0.276200568      NEGATIVO                   NA
## 63  -1.908416315      NEGATIVO                   NA
## 64   1.899729158      POSITIVO           1.37830663
## 65   0.059438884      POSITIVO           0.24380091
## 66   1.625552977      POSITIVO           1.27497176
## 67   1.170450453      POSITIVO           1.08187358
## 68  -0.510007827      NEGATIVO                   NA
## 69  -0.367641831      NEGATIVO                   NA
## 70  -0.739238231      NEGATIVO                   NA
## 71  -0.600748431      NEGATIVO                   NA
## 72  -0.566748528      NEGATIVO                   NA
## 73   0.555035288      POSITIVO           0.74500690
## 74  -2.289636221      NEGATIVO                   NA
## 75   0.228301316      POSITIVO           0.47780887
## 76  -1.537612886      NEGATIVO                   NA
## 77  -0.244526835      NEGATIVO                   NA
## 78   0.366352460      POSITIVO           0.60527057
## 79   2.054523032      POSITIVO           1.43336075
## 80  -2.278994286      NEGATIVO                   NA
## 81   0.990817820      POSITIVO           0.99539832
## 82   1.744650835      POSITIVO           1.32085231
## 83  -1.574177644      NEGATIVO                   NA
## 84   0.008950944      POSITIVO           0.09460943
## 85   0.045588465      POSITIVO           0.21351455
## 86  -1.060760295      NEGATIVO                   NA
## 87  -0.447306199      NEGATIVO                   NA
## 88   0.185583107      POSITIVO           0.43079358
## 89  -0.085532098      NEGATIVO                   NA
## 90   0.210148265      POSITIVO           0.45841931
## 91  -0.765701558      NEGATIVO                   NA
## 92   0.284076252      POSITIVO           0.53298804
## 93  -0.989708844      NEGATIVO                   NA
## 94   0.849289213      POSITIVO           0.92156889
## 95  -0.209282694      NEGATIVO                   NA
## 96  -0.846237012      NEGATIVO                   NA
## 97   1.940352916      POSITIVO           1.39296551
## 98  -0.368603862      NEGATIVO                   NA
## 99   0.408210928      POSITIVO           0.63891387
## 100 -1.505913817      NEGATIVO                   NA

Clase 9 de noviembre

#### CLASE 09 noviembre###

# 5) Aplicar la función de Coeficiente de variabilidad a 
# 1000 conjuntos de distribución normal estándar de longitud 50 números

# 6) ¿Qué es más rápido en lo anterior, un apply o un for-loop?

# if ...
# 7) Ejemplo elaborado de codificación de variables (Hombre, mujer) (meh!)

# 8) vector de longitud 1000 con distribución normal estándar, sacarle
# la raiz cuadrada a cada uno (solo a los positivos)

# 9) Generar una matriz de 1000 x 50 y aplicar sqrt a cada valor,
# almacenarlo en otra matriz (hacer un doble loop-for)

# 10) La media de cada fila y cada columna... generar un vector con
# cada una (almacenar uno por uno... generar un vector "vacío")

# 11) Generar un vector donde pruebe si el CV es menor o mayor a cierto
# valor y generarle una etiqueta


# 1) Generar matriz con dim. 1000 x 50 con valores "Nulos" (NA)
# 2) Rellenar dicha matriz con 50 muestras de tamaño 100 de Norm(0,1)
# 3) A cada valor de esa matriz, obtener la raiz cuadrada si es un valor >0, y si no, "Etiqueta"
# 4) Almacenar los resultados anteriores en una nueva matriz (1000 x 50)

# 5) De cada fila, y de cada columna, obtener su CV (CV = una función personalizada)
# ¿Paralelizar (apply's) o repetición(for-loop)


#########
#1) Matriz a rellenar

mat_fic<-matrix(rep(NA,50*1000), ncol=50)

for (j in 1:50) {
  set.seed(1235+j)
  mat_fic[,j]<-rnorm(1000,0,1)
}

mean(mat_fic[,50]) ##los valores de la columna 50
## [1] 0.01789922
#para un valor
if(mat_fic[1,1]>0){sqrt(mat_fic[1,1])}else{NA} #si es mayor a 0, es decir
## [1] NA
#positiva entonces que imprima la matriz si es negativa que 
#imprima NA


#para una columna

vect_fic<-rep(NA,1000)

vect_fic[1]<-if(mat_fic[1,1]>0){sqrt(mat_fic[1,1])}else{NA}
vect_fic[2]<-if(mat_fic[2,1]>0){sqrt(mat_fic[2,1])}else{NA}
vect_fic[3]<-if(mat_fic[3,1]>0){sqrt(mat_fic[4,1])}else{NA}
vect_fic[4]<-if(mat_fic[4,1]>0){sqrt(mat_fic[4,1])}else{NA}
vect_fic[5]<-if(mat_fic[5,1]>0){sqrt(mat_fic[5,1])}else{NA}

for(k in 1:1000){
  vect_fic[k]<-if(mat_fic[k,1]>0){sqrt(mat_fic[k,1])}else{NA}
}


#for(k in 1:1000){
# if(vect_fic[k,1]>0){vect_fic[k]<-sqrt(mat_fic[k+1])}else{vect_fic[k]<-NA}

#### VARIAS COLUMNAS#####
###LOOPS ANIDADOS####
#j para columnas
#k para renglones

matriz_ficti2<-matrix(rep(NA,50*1000), ncol=50)

for(j in 1:50){
  
  for(k in 1:1000){
    matriz_ficti2[k,j]<-if(mat_fic[k,j]>0){sqrt(mat_fic[k,j])}else{NA}
}}
  
## 1) qué es el coeficiente de variabilidad, como se calcula?

#la desviación estándar entre la media de valor absoluto

##2) obtener el CV de todas las columnas, y todas la filas
# de la tabla mat_fic


mean(mat_fic[1,]) ##la media de mat_fic
## [1] -0.1381448
med<-mean(mat_fic[1,])

abs(med)
## [1] 0.1381448
med2<-abs(med)

sd(mat_fic[,]) #la desviación estandar
## [1] 1.001632
desvest<-sd(mat_fic[1,])

desvest/med2
## [1] 8.303273
#####OTRA FORMA###

sd(mat_fic[1,])/abs(mean(mat_fic[1,]))
## [1] 8.303273
vecc<-rep(NA,50)
for (c in 1:50) {
  vecc[c]<-sd(mat_fic[,c])/abs(mean(mat_fic[,c]))
  
}

vecr<-rep(NA,1000)
for(r in 1:1000){
  vecr[r]<-sd(mat_fic[r,])/abs(mean(mat_fic[r,]))
}

###cuánto tiempo me toma este ciclo?###

#Para las columnas
start_time <- Sys.time()
#for(i in 1:50){
  #vec_col_cv[i]<-coef_var(mat_fic[,i])
#}
end_time <- Sys.time()
end_time - start_time
## Time difference of 0.001506805 secs
start_time <- Sys.time()
#vec_col_cv<-apply(mat_fic,2,coef_var)
end_time <- Sys.time()
end_time - start_time
## Time difference of 0.001004934 secs
#Para los renglones
#¿Cuánto tiempo me toma este ciclo?
start_time <- Sys.time()
#for(j in 1:1000){
  #vec_reng_cv[j]<-coef_var(mat_fic[j,])
#}
end_time <- Sys.time()
end_time - start_time
## Time difference of 0.001005173 secs
start_time <- Sys.time()
#vec_reng_cv<-apply(mat_fic,1,coef_var)
end_time <- Sys.time()
end_time - start_time
## Time difference of 0.001003981 secs

clase 16 nov, mapas geoespaciales

library(rgdal)
## Warning: package 'rgdal' was built under R version 4.1.2
## Loading required package: sp
## Please note that rgdal will be retired by the end of 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
## 
## rgdal: version: 1.5-27, (SVN revision 1148)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.2.1, released 2020/12/29
## Path to GDAL shared files: C:/Users/ARRA/Documents/R/win-library/4.1/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 7.2.1, January 1st, 2021, [PJ_VERSION: 721]
## Path to PROJ shared files: C:/Users/ARRA/Documents/R/win-library/4.1/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.4-6
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
## Overwritten PROJ_LIB was C:/Users/ARRA/Documents/R/win-library/4.1/rgdal/proj
mapa_jalisco<-readOGR("C:\\Users\\ARRA\\Desktop\\METPOL 1er SEMESTRE\\Programac", layer="mapajalisco")
## OGR data source with driver: ESRI Shapefile 
## Source: "C:\Users\ARRA\Desktop\METPOL 1er SEMESTRE\Programac", layer: "mapajalisco"
## with 125 features
## It has 4 fields
plot(mapa_jalisco)

plot(mapa_jalisco[74,])

####################

mapa_jalisco@data[74,]
##    CVEGEO CVE_ENT CVE_MUN             NOMGEO
## 73  14064      14     064 Ojuelos de Jalisco
#############
#Descargar datos del censo Población y Vivienda 2020
library(readxl)

datos_inegi_jal<-read_xlsx("C:\\Users\\ARRA\\Desktop\\METPOL 1er SEMESTRE\\Programac\\ITER_14XLSX20.xlsx")
datos_inegi_jal2<-read.csv("C:\\Users\\ARRA\\Desktop\\METPOL 1er SEMESTRE\\Programac\\ITER_14CSV20.csv")

datos_inegi_jal$LOC
##     [1] "0000" "9998" "9999" "0000" "0001" "0002" "0003" "0006" "0007" "0009"
##    [11] "0010" "0011" "0012" "0013" "0014" "0016" "0018" "0019" "0020" "0021"
##    [21] "0022" "0023" "0024" "0026" "0027" "0028" "0029" "0030" "0031" "0032"
##    [31] "0033" "0034" "0035" "0036" "0037" "0038" "0040" "0041" "0042" "0043"
##    [41] "0044" "0046" "0047" "0048" "0049" "0052" "0053" "0054" "0055" "0056"
##    [51] "0057" "0059" "0060" "0062" "0063" "0066" "0067" "0068" "0069" "0070"
##    [61] "0071" "0072" "0073" "0074" "0075" "0078" "0079" "0081" "0084" "0086"
##    [71] "0087" "0088" "0094" "0102" "0104" "0106" "0107" "0108" "0109" "0111"
##    [81] "0112" "0113" "0115" "0116" "0118" "0119" "0122" "0123" "0128" "0129"
##    [91] "0131" "0132" "0133" "0135" "0137" "0139" "0141" "0142" "9998" "9999"
##   [101] "0000" "0001" "0002" "0004" "0005" "0007" "0008" "0009" "0010" "0013"
##   [111] "0019" "0021" "0024" "0025" "0027" "0030" "0034" "0035" "0036" "0037"
##   [121] "0039" "0040" "0041" "0043" "0048" "0053" "0055" "0058" "0061" "0062"
##   [131] "0063" "0064" "0065" "9998" "9999" "0000" "0001" "0004" "0007" "0019"
##   [141] "0021" "0028" "0030" "0031" "0032" "0038" "0051" "0056" "0057" "0058"
##   [151] "0059" "0068" "0074" "0080" "0082" "0083" "0086" "0094" "0096" "0097"
##   [161] "0099" "9998" "9999" "0000" "0001" "0003" "0004" "0005" "0007" "0008"
##   [171] "0010" "0014" "0017" "0020" "0022" "0023" "0025" "0026" "0030" "0032"
##   [181] "0039" "0053" "0061" "0064" "0066" "9998" "9999" "0000" "0001" "0002"
##   [191] "0003" "0004" "0005" "0007" "0008" "0009" "0010" "0013" "0015" "0020"
##   [201] "0022" "0026" "0029" "0031" "0032" "0035" "0036" "0039" "0040" "0043"
##   [211] "0045" "0056" "0065" "0070" "0071" "0074" "0075" "9998" "9999" "0000"
##   [221] "0001" "0002" "0003" "0004" "0005" "0007" "0010" "0011" "0012" "0013"
##   [231] "0014" "0015" "0017" "0018" "0019" "0020" "0022" "0023" "0024" "0025"
##   [241] "0026" "0027" "0028" "0030" "0031" "0032" "0033" "0034" "0037" "0038"
##   [251] "0039" "0040" "0041" "0042" "0043" "0044" "0045" "0046" "0047" "0048"
##   [261] "0049" "0050" "0051" "0052" "0053" "0054" "0057" "0058" "0059" "0061"
##   [271] "0062" "0070" "0073" "0075" "0076" "0077" "0079" "0080" "0082" "0083"
##   [281] "0084" "0085" "0087" "0088" "0089" "0091" "0092" "0095" "0097" "0098"
##   [291] "0100" "0102" "0107" "0109" "0111" "0112" "0116" "0121" "0122" "0123"
##   [301] "0130" "0133" "0137" "0140" "0142" "0147" "0148" "0149" "0153" "0156"
##   [311] "0157" "0158" "0160" "0162" "0165" "0167" "0171" "0174" "0182" "0185"
##   [321] "0187" "0189" "0190" "0192" "0193" "0194" "9998" "9999" "0000" "0001"
##   [331] "0003" "0004" "0008" "0009" "0010" "0012" "0013" "0014" "0015" "0022"
##   [341] "0076" "0086" "9998" "0000" "0001" "0002" "0003" "0004" "0005" "0006"
##   [351] "0007" "0009" "0011" "0014" "0016" "0021" "0022" "0024" "0026" "0028"
##   [361] "0032" "0036" "0045" "0046" "0048" "0050" "0051" "0054" "0056" "0057"
##   [371] "0058" "0061" "0063" "0064" "0065" "0066" "0068" "0072" "0073" "0076"
##   [381] "0078" "0083" "0089" "0090" "0093" "0095" "0096" "0097" "0101" "0102"
##   [391] "0103" "0106" "0108" "0110" "0113" "0115" "0116" "0117" "0118" "0120"
##   [401] "0127" "0130" "0131" "0133" "0137" "0139" "0141" "0142" "0143" "0145"
##   [411] "0146" "0147" "0150" "0151" "0153" "0154" "0156" "0158" "0160" "0161"
##   [421] "0162" "0167" "0171" "0172" "0175" "0177" "0178" "0181" "0184" "0187"
##   [431] "0188" "0189" "0191" "0193" "0194" "0196" "0198" "0201" "0202" "0203"
##   [441] "0207" "0210" "0212" "0213" "0214" "0216" "0217" "0222" "0225" "0228"
##   [451] "0230" "0231" "0234" "0238" "0239" "0241" "0243" "0244" "0245" "0247"
##   [461] "0248" "0249" "0250" "0257" "0258" "0261" "0262" "0263" "0266" "0267"
##   [471] "0269" "0271" "0272" "0274" "0275" "0277" "0279" "0280" "0281" "0283"
##   [481] "0287" "0288" "0289" "0294" "0295" "0301" "0303" "0307" "0311" "0317"
##   [491] "0318" "0320" "0321" "0322" "0327" "0328" "0331" "0337" "0339" "0342"
##   [501] "0343" "0345" "0346" "0348" "0351" "0352" "0353" "0358" "0360" "0361"
##   [511] "0371" "0372" "0375" "0376" "0378" "0379" "0381" "0382" "0390" "0393"
##   [521] "0394" "0395" "0396" "0403" "0405" "0406" "0408" "0409" "0411" "0412"
##   [531] "0415" "0417" "0418" "0422" "0423" "0424" "0425" "0494" "0497" "0500"
##   [541] "0501" "0503" "0509" "0511" "0512" "0513" "0516" "0519" "0520" "0521"
##   [551] "0523" "0525" "0532" "0533" "0536" "0537" "0538" "0540" "0541" "0543"
##   [561] "0548" "0552" "0553" "0557" "0560" "0567" "0570" "0571" "0574" "0575"
##   [571] "0576" "0579" "0582" "0585" "0586" "0587" "0589" "0590" "0592" "0593"
##   [581] "0596" "0602" "0606" "0607" "0610" "0611" "0612" "0614" "0617" "0621"
##   [591] "0624" "0626" "0627" "0631" "0632" "0633" "0635" "0637" "0638" "0639"
##   [601] "0641" "0643" "0645" "0646" "0649" "0650" "0657" "0659" "0661" "0662"
##   [611] "0664" "0665" "0666" "0667" "0668" "0669" "0672" "0673" "0675" "0676"
##   [621] "0677" "0681" "0682" "0683" "0684" "0686" "0687" "0688" "0689" "0690"
##   [631] "0691" "0694" "0695" "0696" "0697" "0698" "0701" "9998" "9999" "0000"
##   [641] "0001" "0003" "0004" "0005" "0006" "0007" "0009" "0012" "0014" "0020"
##   [651] "0021" "0024" "0030" "0032" "0034" "0041" "0043" "0044" "0048" "0054"
##   [661] "0055" "0057" "0060" "0065" "0066" "0067" "0068" "0069" "0070" "0071"
##   [671] "0072" "0073" "0074" "0075" "0076" "0077" "0078" "0079" "0080" "0081"
##   [681] "9998" "9999" "0000" "0001" "0003" "0016" "0021" "0023" "0024" "0025"
##   [691] "0026" "0027" "0028" "0029" "0032" "0033" "0046" "0051" "0052" "0055"
##   [701] "0058" "0060" "0061" "0107" "9998" "0000" "0001" "0003" "0008" "0009"
##   [711] "0011" "0015" "0016" "0017" "0021" "0022" "0024" "0026" "0029" "0030"
##   [721] "0033" "0041" "0047" "0054" "0068" "9998" "9999" "0000" "0001" "0002"
##   [731] "0003" "0004" "0005" "0010" "0012" "0013" "0016" "0021" "0032" "0038"
##   [741] "0039" "0040" "0041" "0044" "0045" "0046" "0049" "0050" "0053" "0056"
##   [751] "0058" "0059" "0060" "0061" "0063" "0064" "0066" "0067" "0073" "0074"
##   [761] "0076" "0090" "0095" "0103" "0104" "0107" "0109" "0111" "0114" "0116"
##   [771] "0119" "0130" "0139" "0141" "0142" "0148" "0149" "0152" "0155" "0156"
##   [781] "9998" "9999" "0000" "0001" "0002" "0003" "0004" "0005" "0006" "0007"
##   [791] "0008" "0010" "0011" "0012" "0013" "0014" "0016" "0017" "0018" "0019"
##   [801] "0023" "0024" "0025" "0026" "0028" "0029" "0030" "0032" "0035" "0036"
##   [811] "0037" "0038" "0039" "0041" "0043" "0044" "0045" "0046" "0047" "0048"
##   [821] "0050" "0051" "0052" "0054" "0055" "0057" "0058" "0060" "0061" "0065"
##   [831] "0067" "0068" "0069" "0070" "0074" "0075" "0076" "0077" "0078" "0080"
##   [841] "0082" "0083" "0084" "0085" "0087" "0089" "0090" "0091" "0092" "0093"
##   [851] "0094" "0096" "0098" "0099" "0101" "0105" "0106" "0109" "0114" "0121"
##   [861] "0123" "0125" "0127" "0128" "0130" "0131" "0134" "0136" "0137" "0141"
##   [871] "0142" "0145" "0146" "0147" "0148" "0151" "0154" "0155" "0160" "0165"
##   [881] "0166" "0167" "0169" "0173" "0175" "0177" "0178" "0180" "0185" "0188"
##   [891] "0191" "0195" "0203" "0204" "0205" "0207" "0211" "0212" "0213" "0215"
##   [901] "0216" "0218" "0219" "0220" "0221" "0224" "0225" "0227" "0230" "0232"
##   [911] "0235" "0240" "0241" "0242" "0243" "0245" "0246" "0248" "9998" "9999"
##   [921] "0000" "0001" "0003" "0004" "0005" "0006" "0008" "0009" "0010" "0013"
##   [931] "0015" "0016" "0019" "0020" "0021" "0023" "0024" "0025" "0026" "0028"
##   [941] "0029" "0031" "0045" "0047" "0056" "0057" "0062" "0063" "0068" "0071"
##   [951] "0073" "0079" "9998" "9999" "0000" "0001" "0002" "0003" "0005" "0007"
##   [961] "0009" "0011" "0012" "0013" "0014" "0015" "0017" "0019" "0020" "0022"
##   [971] "0023" "0024" "0025" "0026" "0027" "0028" "0031" "0033" "0036" "0038"
##   [981] "0041" "0042" "0046" "0047" "0048" "0051" "0053" "0055" "0058" "0060"
##   [991] "0063" "0064" "0068" "0069" "0071" "0075" "0076" "0077" "0079" "0081"
##  [1001] "0082" "0084" "0085" "0086" "0088" "0097" "0102" "0104" "0105" "0107"
##  [1011] "0108" "0112" "0116" "0119" "0120" "0125" "0130" "0131" "0132" "0133"
##  [1021] "0134" "0136" "0138" "0139" "0140" "0142" "0144" "0146" "0152" "0154"
##  [1031] "0156" "0158" "0160" "0161" "0163" "0165" "0175" "0176" "0178" "0186"
##  [1041] "0190" "0194" "0195" "0203" "0204" "0207" "0208" "0212" "0213" "0216"
##  [1051] "0225" "0227" "0237" "0239" "0242" "0244" "0247" "0248" "0251" "0252"
##  [1061] "0253" "0255" "0257" "0258" "0259" "0264" "0265" "0266" "0267" "0270"
##  [1071] "0273" "0275" "0276" "0283" "0287" "0296" "0298" "0301" "0302" "0304"
##  [1081] "0309" "0314" "0333" "0337" "0347" "0348" "0358" "0360" "0369" "0372"
##  [1091] "0375" "0378" "0379" "0382" "0383" "9998" "9999" "0000" "0001" "0002"
##  [1101] "0003" "0004" "0005" "0008" "0010" "0011" "0012" "0014" "0015" "0017"
##  [1111] "0018" "0020" "0024" "0027" "0029" "0030" "0033" "0035" "0037" "0038"
##  [1121] "0039" "0043" "0046" "0047" "0048" "0049" "0050" "0051" "0052" "0053"
##  [1131] "0054" "0055" "0069" "0070" "0071" "0072" "0073" "0075" "0077" "0079"
##  [1141] "0080" "0082" "0083" "0085" "0086" "0087" "0089" "0093" "0095" "0100"
##  [1151] "0101" "0103" "0104" "0106" "0108" "0112" "0114" "0115" "0116" "0121"
##  [1161] "0122" "0124" "0128" "0133" "0141" "0142" "0145" "0152" "0156" "0160"
##  [1171] "0161" "0162" "0164" "0170" "9998" "9999" "0000" "0001" "0005" "0006"
##  [1181] "0012" "0013" "0017" "0018" "0020" "0026" "0037" "0041" "0042" "0054"
##  [1191] "0056" "0058" "0064" "0066" "0076" "0078" "0083" "0084" "0085" "0086"
##  [1201] "0087" "0088" "0093" "0096" "0097" "0100" "0102" "0103" "0104" "0105"
##  [1211] "0110" "0111" "0112" "0116" "0119" "0120" "0121" "0123" "0124" "0125"
##  [1221] "0130" "0133" "0134" "0135" "0139" "0141" "0145" "0150" "0181" "0182"
##  [1231] "0188" "0200" "0203" "0205" "0206" "0211" "0214" "0215" "0227" "0230"
##  [1241] "0233" "0242" "0245" "0247" "0250" "0251" "0253" "9998" "9999" "0000"
##  [1251] "0001" "0003" "0005" "0007" "0008" "0009" "0010" "0011" "0012" "0013"
##  [1261] "0015" "0017" "0018" "0019" "0022" "0023" "0024" "0026" "0027" "0028"
##  [1271] "0029" "0031" "0032" "0033" "0034" "0036" "0037" "0038" "0039" "0040"
##  [1281] "0041" "0042" "0055" "0060" "0061" "0062" "0071" "0074" "0075" "0086"
##  [1291] "0089" "0095" "0109" "0112" "0123" "0129" "0135" "0139" "0144" "0149"
##  [1301] "0154" "0174" "0178" "0180" "0191" "0195" "0204" "0210" "0211" "0214"
##  [1311] "0220" "0230" "0231" "0232" "0240" "0243" "0244" "0245" "0246" "0251"
##  [1321] "0257" "0259" "0262" "0264" "0265" "0266" "9998" "9999" "0000" "0001"
##  [1331] "0002" "0007" "0010" "0013" "0017" "0018" "0020" "0023" "0026" "0027"
##  [1341] "0032" "0035" "0036" "0040" "0044" "0048" "0050" "0052" "0061" "0063"
##  [1351] "0067" "0070" "0072" "0073" "0075" "0076" "0081" "0085" "0092" "0094"
##  [1361] "0096" "0098" "0100" "0101" "0102" "0103" "0105" "0109" "0110" "0111"
##  [1371] "0114" "0119" "0131" "0133" "0136" "0137" "0138" "0152" "0153" "0158"
##  [1381] "0162" "0165" "0167" "0174" "0177" "0187" "0188" "0193" "0197" "0200"
##  [1391] "0201" "0217" "0221" "0238" "0239" "0243" "0244" "0249" "0261" "0262"
##  [1401] "0263" "0266" "0275" "0276" "0277" "0285" "0286" "0287" "0292" "0293"
##  [1411] "0296" "0307" "0315" "0334" "0335" "0336" "0340" "0345" "0350" "0351"
##  [1421] "0352" "0358" "0359" "0362" "0366" "0367" "0368" "0375" "0377" "0381"
##  [1431] "0384" "0387" "0389" "0390" "0391" "0394" "0396" "0397" "0400" "0405"
##  [1441] "0407" "0411" "0412" "0413" "0415" "0417" "0420" "0421" "0423" "0425"
##  [1451] "0427" "0428" "0429" "0430" "0431" "0432" "0436" "0438" "0440" "0441"
##  [1461] "0443" "0444" "9998" "9999" "0000" "0001" "0007" "0010" "0013" "0020"
##  [1471] "0021" "0022" "0032" "0033" "0034" "0035" "0037" "0038" "0041" "0043"
##  [1481] "0047" "0053" "0055" "0057" "0060" "0062" "0063" "0064" "0065" "0066"
##  [1491] "0069" "0070" "0073" "0074" "0075" "0076" "0078" "0079" "0082" "0086"
##  [1501] "0087" "0088" "0090" "0091" "0092" "0094" "0095" "0096" "0097" "0099"
##  [1511] "0100" "0101" "0102" "0106" "0107" "0109" "0110" "0111" "0114" "0116"
##  [1521] "0117" "0121" "0123" "0125" "0127" "0128" "0129" "0130" "0131" "0134"
##  [1531] "0135" "0136" "0138" "0148" "0152" "0153" "0155" "0161" "0164" "0177"
##  [1541] "0191" "0193" "0194" "0196" "0203" "0207" "0208" "0211" "0212" "0213"
##  [1551] "0216" "0217" "0219" "0220" "0225" "0226" "0228" "0234" "0237" "0238"
##  [1561] "0240" "0241" "0242" "0245" "0248" "0249" "0251" "0258" "0260" "0263"
##  [1571] "0264" "0267" "0271" "0273" "0279" "0282" "0284" "0285" "0286" "0287"
##  [1581] "0289" "0293" "0295" "0296" "0297" "0298" "0299" "0300" "0302" "0303"
##  [1591] "0309" "0311" "0312" "0313" "9998" "9999" "0000" "0001" "0002" "0003"
##  [1601] "0008" "0011" "0015" "0018" "0020" "0021" "0024" "0029" "0033" "0034"
##  [1611] "0035" "0042" "0043" "0044" "0046" "0049" "0050" "0051" "0053" "0057"
##  [1621] "0060" "0061" "0062" "0064" "0068" "0075" "0078" "0084" "0089" "0092"
##  [1631] "0094" "0103" "0104" "0109" "0131" "0135" "0136" "0140" "0162" "0164"
##  [1641] "9998" "9999" "0000" "0001" "0002" "0003" "0004" "0006" "0007" "0009"
##  [1651] "0012" "0016" "0017" "0024" "0030" "0033" "0034" "0036" "0047" "0049"
##  [1661] "0051" "0058" "0059" "0062" "0068" "0069" "0071" "0077" "0082" "0087"
##  [1671] "0094" "0100" "0102" "0103" "0104" "0107" "0108" "0109" "0110" "0112"
##  [1681] "0113" "0115" "0118" "0119" "0120" "0123" "0124" "0133" "0134" "0136"
##  [1691] "0138" "0139" "0141" "0143" "0144" "0145" "0146" "0147" "0150" "0151"
##  [1701] "0154" "0157" "0159" "0162" "0163" "9998" "9999" "0000" "0001" "0003"
##  [1711] "0005" "0008" "0011" "0014" "0021" "0024" "0028" "0037" "0038" "0042"
##  [1721] "0069" "0071" "0074" "0076" "0093" "0101" "0102" "0125" "0137" "0139"
##  [1731] "0149" "0152" "0167" "0171" "0174" "0194" "0206" "0207" "0211" "0222"
##  [1741] "0232" "0234" "0235" "0236" "0237" "0238" "9998" "9999" "0000" "0001"
##  [1751] "0002" "0003" "0004" "0005" "0007" "0008" "0010" "0011" "0013" "0015"
##  [1761] "0016" "0017" "0018" "0019" "0020" "0021" "0022" "0023" "0024" "0032"
##  [1771] "0037" "0038" "0040" "0041" "0043" "0045" "0047" "0052" "0053" "0055"
##  [1781] "0056" "0058" "0060" "0062" "0066" "0067" "0068" "0069" "9998" "9999"
##  [1791] "0000" "0001" "0005" "0006" "0007" "0008" "0012" "0013" "0014" "0016"
##  [1801] "0018" "0020" "0023" "0026" "0028" "0031" "0032" "0035" "0037" "0042"
##  [1811] "0043" "0045" "0051" "0058" "0061" "0062" "0063" "0065" "0066" "0067"
##  [1821] "0068" "0070" "0074" "0075" "0076" "0079" "0080" "0085" "0089" "0090"
##  [1831] "0099" "0103" "0107" "0112" "0119" "0120" "0128" "0130" "0133" "0135"
##  [1841] "0136" "0140" "0143" "0144" "0145" "0147" "0149" "0153" "0154" "0169"
##  [1851] "0178" "0179" "0190" "0193" "0195" "0196" "0200" "0204" "0207" "9998"
##  [1861] "9999" "0000" "0001" "0005" "0009" "0014" "0018" "0021" "0024" "0025"
##  [1871] "0030" "0031" "0032" "0223" "0228" "0233" "0235" "0238" "0239" "0241"
##  [1881] "0242" "0243" "0244" "9998" "0000" "0001" "0005" "0008" "0010" "0012"
##  [1891] "0014" "0021" "0025" "0029" "0030" "0031" "0032" "0033" "0034" "0035"
##  [1901] "0038" "0040" "0041" "0042" "0043" "0044" "0049" "0051" "0054" "0055"
##  [1911] "0056" "0059" "0060" "0061" "0063" "0067" "0068" "0071" "0076" "0078"
##  [1921] "0080" "0081" "0084" "0087" "0092" "0093" "0095" "0096" "0099" "0101"
##  [1931] "0103" "0104" "0106" "0110" "0111" "0114" "0115" "0116" "0121" "0128"
##  [1941] "0129" "0132" "0134" "0138" "0140" "0148" "0150" "0152" "0153" "0162"
##  [1951] "0163" "0164" "0165" "0167" "0168" "0174" "0176" "0181" "0188" "0191"
##  [1961] "0192" "0195" "0196" "0199" "0204" "0205" "0208" "0209" "0210" "0212"
##  [1971] "0213" "0215" "0216" "0218" "0220" "0221" "0227" "0228" "0231" "0232"
##  [1981] "0237" "0238" "0239" "0240" "0246" "0247" "0248" "0252" "0254" "0255"
##  [1991] "0256" "0259" "0262" "0264" "0273" "0279" "0282" "0283" "0284" "0286"
##  [2001] "0287" "0288" "0294" "0295" "0296" "0297" "9998" "9999" "0000" "0001"
##  [2011] "0004" "0005" "0007" "0008" "0009" "0010" "0016" "0017" "0019" "0021"
##  [2021] "0022" "0023" "0026" "0028" "0029" "0031" "0052" "0060" "0061" "0062"
##  [2031] "0064" "0065" "0068" "0069" "0073" "9998" "9999" "0000" "0001" "0002"
##  [2041] "0003" "0004" "0005" "0006" "0008" "0010" "0012" "0013" "0015" "0017"
##  [2051] "0018" "0019" "0020" "0022" "0024" "0025" "0027" "0028" "0029" "0030"
##  [2061] "0031" "0035" "0036" "0040" "0042" "0043" "0044" "0045" "0047" "0048"
##  [2071] "0049" "0050" "0051" "0054" "0057" "0058" "0059" "0060" "0062" "0063"
##  [2081] "0066" "0069" "0071" "0072" "0074" "0076" "0077" "0079" "0080" "0081"
##  [2091] "0083" "0084" "0085" "0086" "0088" "0089" "0091" "0092" "0093" "0094"
##  [2101] "0095" "0097" "0099" "0101" "0102" "0103" "0104" "0105" "0106" "0107"
##  [2111] "0108" "0109" "0110" "0111" "0112" "0113" "0115" "0116" "0117" "0118"
##  [2121] "0120" "0122" "0123" "0124" "0126" "0128" "0134" "0135" "0138" "0144"
##  [2131] "0145" "0146" "0152" "0154" "0155" "0156" "0167" "0168" "0169" "0170"
##  [2141] "0173" "0174" "0176" "0178" "0180" "0183" "0188" "0189" "0191" "0192"
##  [2151] "0194" "0195" "0196" "0197" "0198" "0200" "0203" "0205" "0206" "0212"
##  [2161] "0216" "0217" "0219" "0222" "0227" "0228" "0231" "0232" "0234" "0236"
##  [2171] "0237" "0239" "0242" "0243" "0245" "0247" "0248" "0249" "0251" "0253"
##  [2181] "0259" "0260" "0261" "0262" "9998" "9999" "0000" "0001" "0002" "0003"
##  [2191] "0004" "0005" "0006" "0007" "0018" "0024" "0025" "0026" "0027" "0031"
##  [2201] "0038" "0039" "0041" "0042" "0044" "0048" "0050" "0051" "0052" "0053"
##  [2211] "0054" "0055" "0056" "0057" "0058" "0060" "0064" "0065" "0066" "0067"
##  [2221] "0072" "0074" "0077" "0078" "0081" "0082" "0086" "0087" "0092" "0093"
##  [2231] "0094" "0096" "0099" "0100" "0101" "0102" "0104" "9998" "9999" "0000"
##  [2241] "0001" "0003" "0007" "0012" "0013" "0014" "0016" "0018" "0020" "0021"
##  [2251] "0022" "0024" "0029" "0030" "0035" "0037" "0039" "0040" "0045" "0050"
##  [2261] "0051" "0055" "0058" "0060" "0064" "0066" "0069" "0070" "0071" "0073"
##  [2271] "0074" "0088" "0089" "0090" "0091" "0093" "0094" "0096" "0098" "0109"
##  [2281] "0111" "0118" "0119" "0120" "0124" "0126" "0137" "0140" "0141" "0152"
##  [2291] "0160" "0161" "0176" "0179" "0189" "0190" "0206" "0211" "0214" "0215"
##  [2301] "0223" "0234" "9998" "9999" "0000" "0001" "0002" "0003" "0004" "0005"
##  [2311] "0006" "0008" "0009" "0010" "0012" "0014" "0016" "0020" "0024" "0025"
##  [2321] "0027" "0034" "0040" "0045" "0047" "0053" "0054" "0055" "9998" "9999"
##  [2331] "0000" "0001" "0002" "0006" "0007" "0008" "0010" "0011" "0013" "0014"
##  [2341] "0019" "0022" "0023" "0024" "0026" "0027" "0029" "0030" "0033" "0035"
##  [2351] "0036" "0037" "0038" "0039" "0044" "0046" "0048" "0049" "0051" "0053"
##  [2361] "0054" "0056" "0058" "0059" "0060" "0061" "0062" "0064" "0065" "0067"
##  [2371] "0068" "0069" "0070" "0071" "0072" "0073" "0074" "0076" "0077" "0078"
##  [2381] "0079" "0080" "0081" "0085" "0091" "0092" "0094" "0095" "0097" "0101"
##  [2391] "0103" "0108" "0110" "0119" "0122" "0132" "0133" "0137" "0139" "0141"
##  [2401] "0142" "0144" "0146" "0151" "0152" "0153" "0159" "0160" "0163" "0167"
##  [2411] "0168" "0169" "0171" "0172" "0174" "0176" "0177" "9998" "9999" "0000"
##  [2421] "0001" "0003" "0008" "0013" "0015" "0017" "0020" "0021" "0023" "0034"
##  [2431] "0042" "0050" "0057" "0065" "0069" "0073" "0074" "0077" "9998" "0000"
##  [2441] "0001" "0002" "0003" "0017" "0021" "0025" "0032" "0033" "0034" "0035"
##  [2451] "0036" "0039" "0040" "0044" "0048" "0050" "0051" "0054" "0061" "0062"
##  [2461] "0066" "0069" "0073" "0075" "0079" "0081" "0082" "0085" "0086" "0087"
##  [2471] "0090" "0100" "0104" "0108" "0110" "0117" "0123" "0125" "0127" "0128"
##  [2481] "0132" "0134" "0136" "0138" "0139" "0140" "0148" "0150" "0156" "0158"
##  [2491] "0161" "0162" "0169" "0172" "0176" "0178" "0181" "0184" "0190" "0194"
##  [2501] "0202" "0203" "0207" "0210" "0213" "0216" "0217" "0218" "0222" "0225"
##  [2511] "0226" "0228" "0230" "0235" "0236" "0238" "0241" "0243" "0244" "0245"
##  [2521] "0246" "0247" "0249" "0251" "0252" "0259" "0260" "0261" "0264" "0268"
##  [2531] "0269" "0270" "0273" "0277" "0278" "0283" "0284" "0286" "0292" "0293"
##  [2541] "0295" "0300" "0301" "0302" "0303" "0305" "0313" "0314" "0320" "0329"
##  [2551] "0331" "0332" "0350" "0351" "0355" "0357" "0359" "0363" "0375" "0379"
##  [2561] "0381" "0382" "0383" "0385" "0386" "0395" "0398" "0399" "0406" "0407"
##  [2571] "0409" "0410" "0412" "0413" "0414" "0415" "0416" "0417" "0419" "0421"
##  [2581] "0422" "0423" "0425" "0427" "0428" "0429" "0430" "0431" "0432" "0433"
##  [2591] "0434" "0435" "0438" "0440" "0442" "0443" "0446" "0449" "0452" "0453"
##  [2601] "0454" "0460" "0463" "0466" "0468" "0471" "0472" "0473" "0474" "0475"
##  [2611] "0476" "0478" "0481" "0483" "0487" "0491" "0492" "0495" "0497" "0498"
##  [2621] "0500" "0501" "0502" "0504" "0507" "0508" "0509" "0510" "0516" "0521"
##  [2631] "0523" "0524" "0525" "0526" "0527" "0529" "0534" "0536" "0542" "0546"
##  [2641] "0549" "0551" "0552" "0563" "0564" "0566" "0568" "0569" "0571" "0573"
##  [2651] "0575" "0576" "0577" "0590" "0591" "0594" "0598" "0599" "0602" "0603"
##  [2661] "0604" "0605" "0606" "0608" "0609" "0610" "0611" "0612" "0613" "0617"
##  [2671] "0619" "0620" "0622" "0624" "0625" "0627" "0631" "0632" "0633" "0634"
##  [2681] "0635" "0636" "0637" "0638" "0639" "0640" "0641" "0642" "0643" "0646"
##  [2691] "0647" "0650" "0653" "0655" "0656" "0657" "0659" "0661" "0663" "0666"
##  [2701] "0671" "0672" "0673" "0677" "0678" "0679" "0682" "0683" "0684" "0685"
##  [2711] "0687" "0691" "0692" "0693" "0694" "0696" "0699" "0705" "0706" "0707"
##  [2721] "0710" "0711" "0713" "0714" "0716" "0717" "0719" "0720" "0721" "0722"
##  [2731] "0723" "0724" "0727" "0728" "0731" "0732" "0734" "0736" "0737" "0738"
##  [2741] "0739" "0740" "0741" "0743" "0744" "0750" "0755" "0757" "0763" "0764"
##  [2751] "0765" "0766" "0769" "0774" "0776" "0777" "0778" "0779" "0781" "0782"
##  [2761] "0786" "0787" "0789" "0790" "0791" "0792" "0793" "0794" "0795" "0796"
##  [2771] "0797" "0800" "0802" "9998" "9999" "0000" "0001" "0003" "0012" "0014"
##  [2781] "0019" "0020" "0025" "0027" "0030" "0031" "0032" "0036" "0037" "0039"
##  [2791] "0046" "0047" "0052" "0055" "0057" "0058" "0059" "0060" "0066" "0076"
##  [2801] "0083" "0086" "0090" "0102" "0127" "0132" "0133" "9998" "9999" "0000"
##  [2811] "0001" "0002" "0007" "0009" "0011" "0012" "0018" "0020" "0024" "0025"
##  [2821] "0026" "0027" "0031" "0043" "0048" "0054" "0057" "0060" "0076" "0079"
##  [2831] "0080" "0081" "0082" "0087" "0088" "0089" "0090" "0093" "0098" "0115"
##  [2841] "0118" "0119" "0126" "0133" "0135" "0138" "0161" "0162" "0164" "0167"
##  [2851] "0168" "9998" "9999" "0000" "0001" "0015" "0016" "0022" "0027" "0028"
##  [2861] "0029" "0030" "0032" "0033" "0034" "0042" "0044" "0045" "0049" "0053"
##  [2871] "0061" "0065" "0070" "0072" "0074" "0076" "0077" "0078" "0084" "0090"
##  [2881] "0095" "0097" "0098" "0099" "0100" "0113" "0115" "0116" "0117" "0119"
##  [2891] "0121" "0126" "0130" "0131" "0132" "0155" "0166" "0170" "0171" "0175"
##  [2901] "0183" "0234" "0260" "0261" "0263" "0264" "9998" "9999" "0000" "0001"
##  [2911] "0002" "9998" "0000" "0001" "0008" "0010" "0011" "0013" "0015" "0016"
##  [2921] "0018" "0019" "0021" "0023" "0025" "0030" "0031" "0035" "0038" "0039"
##  [2931] "0043" "0044" "0046" "0047" "0048" "0049" "0057" "0060" "0064" "0065"
##  [2941] "0067" "0070" "0071" "0072" "0074" "0077" "0078" "0082" "0085" "0086"
##  [2951] "0095" "0100" "0121" "0122" "0123" "0130" "0147" "0149" "0156" "0163"
##  [2961] "9998" "9999" "0000" "0001" "0002" "0003" "0004" "0005" "0006" "0007"
##  [2971] "0009" "0010" "0012" "0013" "0014" "0015" "0017" "0018" "0019" "0020"
##  [2981] "0021" "0022" "0023" "0026" "0044" "0045" "0046" "0052" "0055" "0062"
##  [2991] "0063" "0068" "0074" "0077" "0078" "0084" "0093" "0095" "0117" "9998"
##  [3001] "9999" "0000" "0001" "0002" "0003" "0006" "0007" "0008" "0009" "0010"
##  [3011] "0012" "0013" "0014" "0015" "0016" "0018" "0019" "0020" "0021" "0022"
##  [3021] "0023" "0024" "0026" "0027" "0028" "0029" "0030" "0031" "0033" "0034"
##  [3031] "0035" "0036" "0037" "0038" "0039" "0041" "0042" "0043" "0044" "0046"
##  [3041] "0047" "0048" "0049" "0061" "0063" "0067" "0082" "0105" "0110" "0117"
##  [3051] "0130" "0132" "0133" "0134" "0140" "0148" "0151" "0163" "0172" "0173"
##  [3061] "0175" "0176" "0183" "0199" "0200" "9998" "9999" "0000" "0001" "0004"
##  [3071] "0006" "0007" "0009" "0010" "0012" "0015" "0016" "0022" "0024" "0025"
##  [3081] "0026" "0030" "0031" "0033" "0036" "0039" "0040" "0041" "0042" "0048"
##  [3091] "0052" "0057" "0060" "0062" "0063" "0066" "0067" "0068" "0074" "0081"
##  [3101] "0085" "0086" "0091" "0092" "0094" "0095" "0097" "0099" "0101" "0102"
##  [3111] "0105" "0110" "0111" "0114" "0115" "0117" "0123" "0124" "0125" "0126"
##  [3121] "0132" "0135" "0136" "0137" "0139" "0140" "0141" "0146" "0147" "0148"
##  [3131] "0150" "0152" "0154" "0159" "0161" "0165" "0166" "0173" "0176" "0182"
##  [3141] "0183" "0186" "0190" "0191" "0202" "0212" "0213" "0216" "0220" "0226"
##  [3151] "0227" "0232" "0236" "0242" "0247" "0249" "0252" "0253" "0257" "0263"
##  [3161] "0276" "0281" "0284" "0290" "0291" "0306" "0308" "0325" "0329" "0330"
##  [3171] "0331" "0338" "0345" "0350" "0358" "0363" "9998" "9999" "0000" "0001"
##  [3181] "0002" "0003" "0004" "0005" "0006" "0007" "0009" "0010" "0011" "0012"
##  [3191] "0014" "0018" "0019" "0020" "0027" "0030" "0033" "0034" "0035" "0041"
##  [3201] "0042" "0043" "0048" "0049" "0050" "0051" "0054" "0057" "0059" "0060"
##  [3211] "0062" "0064" "0067" "0069" "0070" "0071" "0073" "0074" "0075" "0077"
##  [3221] "0078" "0079" "0080" "0082" "0083" "0084" "0085" "0089" "0091" "0094"
##  [3231] "0096" "0097" "0099" "0101" "0103" "0105" "0106" "0109" "0110" "0113"
##  [3241] "0114" "0116" "0120" "0127" "0128" "0129" "0130" "0131" "0134" "0135"
##  [3251] "0137" "0139" "0141" "0142" "0145" "0147" "0152" "0153" "0154" "0155"
##  [3261] "0156" "0157" "0161" "0162" "0163" "0164" "0165" "0166" "0168" "0169"
##  [3271] "0170" "0171" "0172" "0173" "0174" "0175" "0176" "0177" "0178" "0179"
##  [3281] "0180" "0181" "9998" "9999" "0000" "0001" "0005" "0007" "0008" "0009"
##  [3291] "0010" "0011" "0013" "0016" "0021" "0022" "0024" "0025" "0026" "0027"
##  [3301] "0028" "0030" "0032" "0033" "0034" "0035" "0040" "0043" "0045" "0046"
##  [3311] "0047" "0048" "0050" "0051" "0054" "0056" "0057" "0060" "0063" "0065"
##  [3321] "0071" "0072" "0076" "0077" "0078" "0079" "0080" "0081" "0083" "0084"
##  [3331] "0088" "0089" "0093" "0095" "0098" "0099" "0100" "0101" "0104" "0106"
##  [3341] "0107" "0108" "0109" "0110" "0114" "0115" "0116" "0117" "0119" "0120"
##  [3351] "0121" "0122" "0123" "0124" "0126" "0127" "0130" "0131" "0132" "0135"
##  [3361] "0136" "0137" "0139" "0140" "0141" "0142" "0144" "0147" "0148" "0151"
##  [3371] "0157" "0158" "0159" "0164" "0165" "0169" "0174" "0179" "0181" "0186"
##  [3381] "0199" "0203" "0205" "0206" "0207" "0208" "0210" "0211" "0212" "0214"
##  [3391] "0217" "0218" "0221" "0226" "0227" "0231" "0232" "0233" "0234" "0236"
##  [3401] "0239" "0240" "0241" "0242" "0250" "0253" "0255" "0258" "0264" "0265"
##  [3411] "0266" "0268" "0272" "0273" "0274" "0278" "0279" "0280" "0281" "0289"
##  [3421] "0292" "0295" "0297" "0298" "0302" "0306" "0308" "0310" "0317" "0319"
##  [3431] "0320" "0327" "0330" "0333" "0337" "0341" "0344" "0345" "0346" "0347"
##  [3441] "0351" "0352" "9998" "9999" "0000" "0001" "0002" "0003" "0006" "0008"
##  [3451] "0012" "0013" "0014" "0017" "0018" "0020" "0021" "0024" "0025" "0026"
##  [3461] "0027" "0028" "0029" "0031" "0032" "0034" "0035" "0037" "0038" "0041"
##  [3471] "0042" "0045" "0046" "0047" "0051" "0052" "0055" "0056" "0057" "0059"
##  [3481] "0061" "0062" "0064" "0065" "0066" "0067" "0068" "0069" "0070" "0071"
##  [3491] "0072" "0074" "0076" "0078" "0080" "0081" "0087" "0088" "0091" "0092"
##  [3501] "0093" "0095" "0098" "0100" "0101" "0102" "0103" "0104" "0108" "0110"
##  [3511] "0111" "0112" "0113" "0114" "0115" "0116" "0117" "0118" "0120" "0121"
##  [3521] "0122" "0123" "0130" "0133" "0136" "0139" "0142" "0143" "0144" "0147"
##  [3531] "0149" "0151" "0152" "0153" "0154" "0163" "0177" "0178" "0181" "0182"
##  [3541] "0183" "0189" "0192" "0193" "0194" "0195" "0198" "0199" "0203" "0206"
##  [3551] "0207" "0210" "0213" "0217" "0223" "0224" "0228" "0230" "0232" "0235"
##  [3561] "0238" "0239" "0241" "0242" "0243" "0244" "0245" "0246" "0249" "0251"
##  [3571] "0252" "0253" "0254" "0255" "0256" "0257" "0258" "0259" "0260" "0261"
##  [3581] "0262" "0265" "0266" "0268" "0271" "0273" "0274" "0275" "0277" "0283"
##  [3591] "0284" "0285" "0286" "0291" "0292" "0293" "0295" "0296" "0297" "0298"
##  [3601] "0299" "0300" "0301" "0302" "0303" "0304" "0307" "0309" "9998" "9999"
##  [3611] "0000" "0001" "0002" "0003" "0004" "0005" "0006" "0007" "0028" "0029"
##  [3621] "0033" "0038" "0039" "0044" "0045" "0056" "0057" "0058" "0061" "0063"
##  [3631] "9998" "9999" "0000" "0001" "0003" "0004" "0006" "0007" "0009" "0011"
##  [3641] "0015" "0017" "0018" "0019" "0021" "0022" "0023" "0024" "0025" "0026"
##  [3651] "0027" "0029" "0030" "0032" "0033" "0034" "0037" "0038" "0039" "0040"
##  [3661] "0042" "0044" "0046" "0048" "0049" "0050" "0052" "0053" "0055" "0056"
##  [3671] "0058" "0060" "0061" "0063" "0065" "0066" "0067" "0069" "0070" "0071"
##  [3681] "0074" "0075" "0076" "0077" "0079" "0080" "0082" "0083" "0084" "0086"
##  [3691] "0087" "0089" "0090" "0093" "0096" "0097" "0099" "0101" "0102" "0103"
##  [3701] "0104" "0105" "0106" "0109" "0110" "0111" "0113" "0114" "0116" "0118"
##  [3711] "0120" "0121" "0122" "0124" "0126" "0128" "0129" "0132" "0133" "0134"
##  [3721] "0136" "0137" "0138" "0139" "0140" "0142" "0143" "0145" "0146" "0149"
##  [3731] "0150" "0151" "0152" "0159" "0164" "0169" "0175" "0176" "0180" "0181"
##  [3741] "0183" "0187" "0192" "0202" "0203" "0204" "0205" "0206" "0207" "0214"
##  [3751] "0215" "0217" "0218" "0219" "0220" "0221" "0222" "0223" "0224" "0225"
##  [3761] "0226" "0227" "0228" "0229" "0232" "0237" "0238" "0239" "0243" "0245"
##  [3771] "0249" "0250" "0251" "0254" "0256" "0259" "0260" "0263" "0264" "0265"
##  [3781] "0266" "0267" "0271" "0272" "0273" "0274" "0275" "0276" "0278" "0286"
##  [3791] "0288" "0293" "0294" "0295" "0296" "0297" "9998" "9999" "0000" "0001"
##  [3801] "0005" "0006" "0008" "0009" "0011" "0014" "0015" "0019" "0021" "0023"
##  [3811] "0026" "0028" "0030" "0031" "0033" "0037" "0038" "0039" "0040" "0042"
##  [3821] "0049" "0053" "0055" "0058" "0062" "0064" "0069" "0073" "0078" "0079"
##  [3831] "0086" "0087" "0088" "0089" "0090" "0091" "0096" "0097" "0098" "0099"
##  [3841] "0100" "0108" "0109" "0112" "0113" "0116" "0117" "0118" "0126" "0128"
##  [3851] "0130" "0131" "0134" "0136" "0137" "0139" "0140" "0148" "0153" "0154"
##  [3861] "0157" "0159" "0163" "0165" "0170" "0173" "0174" "0177" "0178" "0179"
##  [3871] "0185" "0187" "0188" "0189" "0191" "0195" "0197" "0199" "0200" "0210"
##  [3881] "0219" "0220" "0221" "0222" "0226" "0227" "0230" "0235" "0245" "0248"
##  [3891] "0250" "0253" "0256" "0258" "0260" "0261" "0266" "0267" "0268" "0269"
##  [3901] "0270" "0274" "0276" "0278" "0283" "0286" "0289" "0291" "0294" "0304"
##  [3911] "0306" "0307" "0308" "0310" "0312" "0313" "0314" "0317" "0318" "0321"
##  [3921] "0345" "0347" "0355" "0358" "0362" "0363" "0368" "0427" "0435" "0437"
##  [3931] "0442" "0448" "0452" "0458" "0461" "0464" "0466" "0467" "0474" "0475"
##  [3941] "0476" "0479" "0480" "0481" "0483" "0485" "0496" "0497" "0503" "0505"
##  [3951] "0510" "0511" "0512" "0513" "9998" "9999" "0000" "0001" "0002" "0003"
##  [3961] "0004" "0005" "0007" "0008" "0010" "0011" "0012" "0013" "0014" "0015"
##  [3971] "0016" "0017" "0019" "0020" "0021" "0022" "0024" "0025" "0027" "0029"
##  [3981] "0031" "0039" "0045" "0046" "0047" "0048" "0050" "0051" "0053" "0054"
##  [3991] "0057" "0066" "0070" "0071" "0076" "0077" "0078" "0079" "0080" "0089"
##  [4001] "0090" "0091" "0098" "0101" "0103" "0105" "0108" "0109" "9998" "9999"
##  [4011] "0000" "0001" "0002" "0004" "0007" "0008" "0009" "0010" "0011" "0013"
##  [4021] "0014" "0015" "0016" "0017" "0019" "0021" "0024" "0027" "0028" "0029"
##  [4031] "0030" "0031" "0035" "0036" "0039" "0043" "0044" "0048" "9998" "9999"
##  [4041] "0000" "0001" "0002" "0005" "0007" "0008" "0009" "0012" "0014" "0018"
##  [4051] "0023" "0025" "0028" "0032" "0033" "0035" "0043" "0051" "0056" "0057"
##  [4061] "0059" "0064" "0066" "9998" "9999" "0000" "0001" "0002" "0006" "0007"
##  [4071] "0010" "0019" "0020" "0021" "0022" "0024" "0025" "0026" "0027" "0028"
##  [4081] "0030" "0031" "0032" "0034" "0035" "0036" "0037" "0038" "0042" "0044"
##  [4091] "0046" "0048" "0050" "0051" "0053" "0055" "0057" "0059" "0063" "0064"
##  [4101] "0065" "0066" "0067" "0069" "0070" "0071" "0072" "0075" "0076" "0077"
##  [4111] "0079" "0081" "0082" "0084" "0085" "0086" "0090" "0091" "0093" "0094"
##  [4121] "0095" "0096" "0098" "0099" "0101" "0102" "0103" "0104" "0107" "0110"
##  [4131] "0113" "0115" "0117" "0118" "0119" "0120" "0121" "0122" "0124" "0125"
##  [4141] "0127" "0129" "0131" "0132" "0133" "0135" "0138" "0142" "0144" "0145"
##  [4151] "0153" "0154" "0156" "0158" "0159" "0161" "0165" "0166" "0167" "0168"
##  [4161] "0171" "0176" "0177" "0178" "0179" "0183" "0184" "0185" "0188" "0189"
##  [4171] "0190" "0193" "0194" "0195" "0196" "0198" "0199" "0201" "0211" "0213"
##  [4181] "0215" "0216" "0219" "0222" "0224" "0225" "0228" "0230" "0233" "0234"
##  [4191] "0237" "0240" "0241" "0242" "0245" "0246" "0248" "0249" "0250" "0255"
##  [4201] "0256" "0258" "0260" "0261" "0265" "0268" "0270" "0273" "0275" "0277"
##  [4211] "0278" "0279" "0281" "0284" "0287" "0291" "0292" "0293" "0299" "0301"
##  [4221] "0307" "0308" "0309" "0310" "0311" "0313" "0317" "0322" "0323" "0324"
##  [4231] "0326" "0328" "0332" "0333" "0334" "0336" "0337" "0338" "0342" "0344"
##  [4241] "0345" "0347" "0348" "0351" "0360" "0361" "0363" "0365" "0367" "0369"
##  [4251] "0375" "0378" "0386" "0387" "0388" "0390" "0391" "0392" "0393" "0400"
##  [4261] "0401" "0404" "0408" "0410" "0415" "0419" "0431" "0433" "0434" "0446"
##  [4271] "0458" "0461" "0464" "0467" "0468" "0473" "0474" "0475" "0476" "0478"
##  [4281] "0479" "0483" "0484" "0488" "0489" "0490" "0492" "0494" "0495" "0496"
##  [4291] "0498" "0502" "0503" "0506" "0515" "0517" "0518" "0520" "0521" "0525"
##  [4301] "0527" "0530" "0531" "0532" "0537" "0540" "0541" "0545" "0551" "0557"
##  [4311] "0559" "0560" "0565" "0566" "0570" "0573" "0579" "0580" "0581" "0582"
##  [4321] "0583" "0587" "0589" "0590" "0591" "0592" "0594" "0600" "0604" "0605"
##  [4331] "0606" "0613" "0617" "0619" "0622" "0623" "0624" "0625" "0626" "0627"
##  [4341] "0628" "0632" "0633" "0634" "0637" "0638" "0641" "0643" "0649" "0650"
##  [4351] "0651" "0656" "0657" "0658" "0659" "0663" "0665" "0667" "0668" "0671"
##  [4361] "0672" "0675" "0677" "0680" "0683" "0684" "0686" "0687" "0688" "0689"
##  [4371] "0690" "0691" "0692" "0694" "0695" "0696" "0697" "0699" "0701" "0702"
##  [4381] "0705" "0706" "0707" "0709" "0710" "0711" "0712" "0713" "0715" "0716"
##  [4391] "0718" "0721" "0722" "0723" "0724" "0726" "0729" "0730" "0732" "0734"
##  [4401] "0735" "0736" "0737" "0738" "0739" "0740" "0742" "0744" "0745" "0749"
##  [4411] "0750" "0751" "0752" "0754" "0755" "0757" "0759" "0763" "0765" "0766"
##  [4421] "0767" "0768" "0771" "0772" "0773" "0776" "0777" "0779" "0783" "0784"
##  [4431] "0785" "0793" "0794" "0795" "0799" "0800" "0801" "0802" "0805" "0806"
##  [4441] "0807" "0808" "0811" "0812" "0813" "0814" "0815" "0816" "0817" "0818"
##  [4451] "0819" "0820" "0821" "0823" "0824" "0825" "0826" "0828" "0829" "0830"
##  [4461] "0831" "0832" "0833" "0834" "0837" "0838" "0840" "0841" "0842" "0843"
##  [4471] "0845" "0846" "0847" "0849" "0852" "0857" "0859" "0861" "0862" "0863"
##  [4481] "0865" "0866" "0867" "0869" "0870" "0871" "0873" "0874" "0878" "0880"
##  [4491] "0883" "0884" "0885" "0887" "0888" "0891" "0893" "0895" "0896" "0898"
##  [4501] "0900" "0901" "0903" "0904" "0907" "0908" "0909" "0910" "0912" "0914"
##  [4511] "0916" "0917" "0918" "0919" "0920" "0921" "0922" "0923" "0926" "0927"
##  [4521] "0928" "0929" "0931" "9998" "9999" "0000" "0001" "0002" "0003" "0004"
##  [4531] "0005" "0006" "0007" "0008" "0010" "0043" "0049" "9998" "0000" "0001"
##  [4541] "0002" "0003" "0004" "0006" "0007" "0008" "0009" "0010" "0015" "0021"
##  [4551] "0037" "0039" "0043" "0048" "0049" "0052" "0062" "0063" "9998" "0000"
##  [4561] "0001" "0002" "0003" "0005" "0006" "0017" "0021" "0024" "0027" "0032"
##  [4571] "0039" "0041" "0043" "0044" "0045" "0047" "0049" "0052" "0054" "0055"
##  [4581] "0059" "0066" "0069" "0070" "0071" "0078" "0082" "0087" "0089" "0092"
##  [4591] "0095" "0106" "0108" "0109" "0110" "0112" "0120" "0121" "0125" "0133"
##  [4601] "0135" "0136" "0137" "0139" "0141" "0142" "0144" "0145" "0146" "0147"
##  [4611] "0163" "0171" "0175" "0177" "0192" "0196" "0197" "0199" "0204" "0208"
##  [4621] "0214" "0215" "0219" "0227" "0232" "0240" "0252" "0255" "0257" "9998"
##  [4631] "9999" "0000" "0001" "0002" "0003" "0012" "0013" "0014" "0016" "0018"
##  [4641] "0024" "0038" "0040" "9998" "9999" "0000" "0001" "0002" "0006" "0008"
##  [4651] "0014" "0017" "0018" "0020" "0021" "0023" "0030" "0032" "0035" "0038"
##  [4661] "0043" "0044" "0047" "0048" "0049" "0052" "0055" "0056" "0059" "0060"
##  [4671] "0064" "0066" "0067" "0068" "0069" "0072" "0075" "0076" "0078" "0079"
##  [4681] "0083" "0085" "0086" "0087" "0089" "0094" "0097" "0100" "0101" "0106"
##  [4691] "0112" "0113" "0114" "0116" "0117" "0119" "0120" "0122" "0125" "0126"
##  [4701] "0127" "0131" "0133" "0134" "0136" "0137" "0138" "0140" "0142" "0146"
##  [4711] "0152" "0154" "0156" "0160" "0161" "0162" "0163" "0164" "0165" "0166"
##  [4721] "0168" "0169" "0174" "0178" "0182" "0187" "0190" "0192" "0193" "0194"
##  [4731] "0195" "0196" "0197" "0198" "0201" "0202" "0205" "0208" "0210" "0211"
##  [4741] "0214" "0215" "0216" "0217" "0218" "0221" "0224" "0225" "0226" "0231"
##  [4751] "0234" "0241" "0242" "0249" "0251" "0252" "0253" "0257" "0258" "0260"
##  [4761] "0263" "0264" "0267" "0268" "0272" "0279" "0290" "0291" "0294" "0295"
##  [4771] "0299" "0300" "0302" "0303" "0304" "0305" "0306" "0308" "0309" "0315"
##  [4781] "0316" "0319" "0323" "0324" "0328" "0329" "0330" "0333" "0334" "0335"
##  [4791] "0340" "0341" "0342" "0362" "0363" "0366" "0367" "0368" "0379" "0380"
##  [4801] "0383" "9998" "9999" "0000" "0001" "0006" "0007" "0008" "0009" "0012"
##  [4811] "0013" "0015" "0016" "0017" "0022" "0023" "0025" "0026" "0028" "0029"
##  [4821] "0030" "0032" "0035" "0038" "0039" "0041" "0042" "0043" "0044" "0045"
##  [4831] "0047" "0048" "0053" "0055" "0056" "0058" "0065" "0068" "0069" "0071"
##  [4841] "0072" "0074" "0076" "0077" "0084" "0089" "0090" "0095" "0097" "0099"
##  [4851] "0100" "0104" "0105" "0107" "0108" "0109" "0110" "0113" "0114" "0115"
##  [4861] "0116" "0118" "9998" "9999" "0000" "0001" "0002" "0008" "0009" "0011"
##  [4871] "0012" "0013" "0017" "0019" "0020" "0021" "0026" "0027" "0029" "0033"
##  [4881] "0034" "0039" "0041" "0050" "0053" "0054" "0056" "0057" "0058" "0060"
##  [4891] "0063" "0065" "0071" "0074" "0078" "0079" "0095" "0097" "0100" "0103"
##  [4901] "0105" "0108" "0115" "0118" "0133" "0135" "0136" "0137" "0146" "0156"
##  [4911] "0157" "0167" "0169" "0170" "9998" "9999" "0000" "0001" "0003" "0005"
##  [4921] "0006" "0008" "0011" "0013" "0015" "0024" "0025" "0027" "0031" "0033"
##  [4931] "0036" "0037" "0039" "0040" "0042" "0045" "0048" "0051" "0053" "0056"
##  [4941] "0058" "0065" "0066" "0067" "0077" "0080" "0082" "0087" "0088" "0091"
##  [4951] "0095" "0098" "0100" "0104" "0105" "0109" "0110" "0117" "0120" "0129"
##  [4961] "0130" "0131" "0132" "0139" "0140" "0142" "0143" "0146" "0149" "0150"
##  [4971] "0151" "0152" "0158" "0163" "0164" "0165" "0166" "0168" "0177" "0178"
##  [4981] "0186" "0187" "0190" "0191" "0193" "0195" "0197" "0198" "0201" "0202"
##  [4991] "0204" "0205" "0207" "0208" "0213" "0221" "0227" "0228" "0229" "0230"
##  [5001] "0235" "0236" "0238" "0240" "0241" "0245" "0248" "0251" "0259" "0268"
##  [5011] "0293" "0294" "0298" "0302" "0309" "0325" "0326" "0328" "0330" "0331"
##  [5021] "0335" "0336" "0337" "0350" "0351" "0358" "0363" "0365" "0367" "0373"
##  [5031] "0374" "0376" "0377" "0380" "0384" "0385" "0388" "0393" "0394" "0402"
##  [5041] "0404" "0406" "0412" "0413" "0416" "0419" "0420" "0421" "0423" "0425"
##  [5051] "0426" "0427" "0428" "0430" "0432" "0434" "0435" "0441" "0442" "0444"
##  [5061] "0446" "0448" "0451" "0454" "0455" "0457" "0458" "0462" "0465" "0467"
##  [5071] "0468" "0470" "0472" "0474" "0475" "0477" "0478" "0480" "0482" "0483"
##  [5081] "0484" "0486" "0488" "0489" "0490" "0491" "0492" "0493" "0494" "0495"
##  [5091] "0499" "0500" "0503" "0506" "0508" "0510" "0514" "0515" "0517" "0520"
##  [5101] "0521" "0522" "0524" "0525" "0528" "0532" "0533" "0535" "0538" "0539"
##  [5111] "0540" "0541" "0542" "0544" "0545" "0547" "0548" "0552" "0555" "0556"
##  [5121] "0557" "0560" "0563" "0564" "0570" "0571" "0573" "0575" "0589" "0590"
##  [5131] "0591" "0592" "0593" "0595" "0596" "0598" "0600" "0601" "0603" "0605"
##  [5141] "0606" "0608" "0609" "0610" "0611" "0615" "0617" "0618" "0619" "0621"
##  [5151] "0622" "0626" "0627" "0629" "0632" "0634" "0637" "0646" "0648" "0649"
##  [5161] "0651" "0661" "0662" "0663" "0666" "0668" "0679" "0684" "0703" "0704"
##  [5171] "0705" "0731" "0737" "0745" "0749" "0760" "0763" "0765" "0768" "0773"
##  [5181] "0775" "0777" "0778" "0780" "0784" "0787" "0793" "0799" "0802" "0807"
##  [5191] "0810" "0815" "0818" "0821" "0822" "0824" "0831" "0835" "0839" "0844"
##  [5201] "0848" "0850" "0851" "0854" "0855" "0857" "0858" "0859" "0861" "0862"
##  [5211] "0863" "0865" "0867" "0870" "0873" "0874" "0877" "0879" "0880" "0883"
##  [5221] "0885" "0887" "0891" "0892" "0895" "0902" "0906" "0908" "0913" "0917"
##  [5231] "0920" "0922" "0923" "0926" "0927" "0929" "0931" "0932" "0933" "0935"
##  [5241] "0937" "0940" "0942" "0945" "0948" "0952" "0953" "0954" "0958" "0959"
##  [5251] "0960" "0961" "0963" "0966" "0967" "0968" "0971" "0974" "0976" "0981"
##  [5261] "0983" "0984" "0985" "0990" "0992" "0994" "0999" "1000" "1004" "1006"
##  [5271] "1008" "1014" "1019" "1024" "1025" "1026" "1028" "1029" "1031" "1032"
##  [5281] "1034" "1035" "1036" "1037" "1039" "1040" "1041" "1042" "1044" "1045"
##  [5291] "1046" "1052" "1053" "1055" "1058" "1059" "1062" "1063" "1064" "1067"
##  [5301] "1068" "1069" "1070" "1073" "1074" "1078" "1079" "1080" "1082" "1084"
##  [5311] "1087" "1095" "1096" "1099" "1100" "1101" "1102" "1103" "1104" "1106"
##  [5321] "1107" "1108" "1110" "1111" "1112" "1115" "1116" "1124" "1127" "1128"
##  [5331] "1130" "1145" "1146" "1147" "1148" "1151" "1153" "1154" "1155" "1157"
##  [5341] "1158" "1159" "1160" "1161" "1162" "1163" "1164" "1165" "1166" "1167"
##  [5351] "1168" "1170" "1171" "1172" "1173" "1174" "1176" "1178" "1179" "1181"
##  [5361] "1182" "1183" "1185" "1186" "1188" "1189" "1193" "1194" "1196" "1197"
##  [5371] "1199" "1200" "1203" "1206" "1208" "1209" "1213" "1214" "1216" "1217"
##  [5381] "1218" "1220" "1221" "1222" "1224" "1225" "1227" "1229" "1235" "1236"
##  [5391] "1238" "1239" "1242" "1243" "1244" "1246" "1248" "1249" "1251" "1252"
##  [5401] "1253" "1254" "1256" "1260" "1261" "1262" "1263" "1264" "1265" "1266"
##  [5411] "1267" "1268" "1269" "1270" "1271" "1273" "1274" "1275" "9998" "9999"
##  [5421] "0000" "0001" "0003" "0004" "0007" "0008" "0010" "0011" "0012" "0015"
##  [5431] "0016" "0019" "0021" "0022" "0023" "0024" "0025" "0027" "0030" "0033"
##  [5441] "0034" "0036" "0043" "0054" "0066" "0073" "0075" "0079" "0084" "0092"
##  [5451] "0095" "0096" "0099" "0103" "0107" "0108" "0109" "9998" "9999" "0000"
##  [5461] "0001" "0009" "0010" "0011" "0012" "0014" "0016" "0017" "0018" "0019"
##  [5471] "0021" "0022" "0023" "0024" "0026" "0028" "0029" "0031" "0032" "0040"
##  [5481] "0041" "0043" "0045" "0047" "0060" "0062" "0063" "0066" "0069" "0072"
##  [5491] "0075" "0077" "0080" "0081" "0082" "0090" "0092" "0098" "0100" "0102"
##  [5501] "0106" "0109" "0112" "0113" "0117" "0118" "0121" "0122" "0123" "0125"
##  [5511] "0126" "9998" "9999" "0000" "0001" "0003" "0007" "0009" "0015" "0017"
##  [5521] "0019" "0020" "0021" "0024" "0025" "0026" "0028" "0029" "0032" "0033"
##  [5531] "0035" "0038" "0039" "0045" "0046" "0048" "0049" "0053" "0057" "0058"
##  [5541] "0063" "0065" "0067" "0071" "0072" "0090" "0092" "0096" "0097" "0105"
##  [5551] "0108" "0114" "0117" "0120" "0123" "0127" "0128" "0130" "0140" "0142"
##  [5561] "0144" "0149" "0151" "0155" "0156" "0163" "0164" "0168" "0171" "0183"
##  [5571] "0184" "9998" "9999" "0000" "0001" "0003" "0005" "0009" "0011" "0018"
##  [5581] "0019" "0020" "0021" "0024" "0025" "0031" "0032" "0034" "0035" "0037"
##  [5591] "0038" "0040" "0042" "0044" "0045" "0049" "0050" "0051" "0052" "0063"
##  [5601] "0065" "0066" "0067" "0069" "0070" "0072" "0073" "0074" "0075" "0081"
##  [5611] "0083" "0084" "0086" "0087" "0093" "0096" "0098" "0100" "0104" "0108"
##  [5621] "0109" "0121" "0127" "0132" "0134" "0136" "0137" "0141" "0144" "0147"
##  [5631] "0148" "0149" "0151" "0153" "0154" "0156" "0161" "0162" "0164" "0175"
##  [5641] "0187" "0195" "0196" "0198" "0200" "0202" "0207" "0210" "0230" "0238"
##  [5651] "0254" "0255" "0256" "0269" "0335" "0336" "0346" "0349" "0354" "0366"
##  [5661] "0373" "0379" "0394" "0396" "0398" "0401" "0406" "0407" "0408" "0416"
##  [5671] "0419" "0420" "0427" "0430" "0432" "0449" "0451" "0461" "9998" "9999"
##  [5681] "0000" "0001" "0002" "0004" "0006" "0007" "0010" "0011" "0013" "0015"
##  [5691] "0016" "0017" "0019" "0020" "0021" "0022" "0025" "0026" "0027" "0028"
##  [5701] "0030" "0031" "0032" "0033" "0036" "0037" "0040" "0041" "0042" "0043"
##  [5711] "0044" "0045" "0048" "0051" "0052" "0054" "0056" "0057" "0058" "0059"
##  [5721] "0060" "0062" "0067" "0075" "0076" "0079" "0080" "0081" "0089" "0092"
##  [5731] "0096" "0102" "0106" "0109" "0114" "0122" "0123" "0124" "0133" "0136"
##  [5741] "0142" "0145" "0147" "0152" "0153" "9998" "9999" "0000" "0001" "0004"
##  [5751] "0007" "0008" "0009" "0011" "0014" "0015" "0022" "0023" "0024" "0027"
##  [5761] "0028" "0030" "0031" "0038" "0043" "0044" "0045" "0048" "0049" "0050"
##  [5771] "0052" "0057" "0058" "0059" "0061" "0066" "0068" "0073" "0077" "0078"
##  [5781] "0085" "0086" "0103" "0104" "0109" "0112" "0115" "0117" "0120" "0121"
##  [5791] "0126" "0127" "0128" "0130" "0131" "0133" "0134" "0141" "0142" "0148"
##  [5801] "0156" "0157" "0158" "0162" "0164" "0166" "0167" "0168" "0169" "0173"
##  [5811] "0178" "0179" "0180" "0182" "0183" "0190" "0191" "0194" "0195" "0198"
##  [5821] "0202" "0204" "0205" "0208" "0222" "0227" "0231" "0232" "0235" "0239"
##  [5831] "0240" "0242" "0244" "0245" "0246" "0247" "0248" "0249" "0251" "0252"
##  [5841] "0255" "0257" "0258" "0260" "0261" "0262" "0267" "0268" "9998" "9999"
##  [5851] "0000" "0001" "0002" "0005" "0008" "0009" "0010" "0021" "0023" "0025"
##  [5861] "0027" "0030" "0032" "0039" "0040" "0042" "0043" "0044" "0049" "0052"
##  [5871] "0053" "0055" "0057" "0063" "0064" "0065" "0066" "0069" "0076" "0082"
##  [5881] "0084" "0087" "0091" "0100" "0101" "0105" "0107" "0115" "0116" "0119"
##  [5891] "0123" "0130" "0131" "0132" "0136" "0139" "0141" "0145" "0146" "0147"
##  [5901] "0148" "0153" "0157" "0160" "0163" "0164" "0165" "0166" "0167" "0168"
##  [5911] "0169" "0170" "0172" "0173" "0174" "0175" "0178" "0180" "0182" "0185"
##  [5921] "0186" "0190" "0191" "0192" "0193" "0204" "0206" "0208" "0215" "0217"
##  [5931] "0219" "0228" "0233" "0240" "0242" "0244" "0245" "0254" "0255" "0256"
##  [5941] "0266" "0269" "0270" "0274" "0429" "0437" "0447" "0449" "0451" "0471"
##  [5951] "0479" "0483" "0488" "0490" "0494" "0496" "0500" "0506" "0508" "0512"
##  [5961] "0513" "0518" "0521" "0526" "0527" "0530" "0534" "0540" "0542" "0544"
##  [5971] "0545" "0549" "0551" "0558" "0571" "0573" "0574" "0580" "0593" "0597"
##  [5981] "0598" "0602" "0603" "0607" "0608" "0619" "9998" "9999" "0000" "0001"
##  [5991] "0002" "0006" "0010" "0013" "0018" "0020" "0023" "0024" "0028" "0030"
##  [6001] "0031" "0033" "0040" "0041" "0043" "0044" "0045" "0047" "0049" "0054"
##  [6011] "0057" "0059" "0061" "0063" "0064" "0068" "0073" "0077" "0079" "0080"
##  [6021] "0082" "0083" "0086" "0087" "0088" "0090" "0091" "0092" "0095" "0097"
##  [6031] "0098" "0099" "0101" "0106" "0107" "0108" "0111" "0117" "0118" "0119"
##  [6041] "0123" "0129" "0132" "0136" "0137" "0138" "0139" "0140" "0142" "0143"
##  [6051] "0145" "0148" "0149" "0151" "0153" "0154" "0155" "0156" "0161" "0163"
##  [6061] "0164" "0165" "0166" "0167" "0169" "0170" "0173" "0175" "0189" "0193"
##  [6071] "0201" "0202" "0203" "0204" "0212" "0216" "0217" "0220" "0221" "0222"
##  [6081] "0224" "0228" "0232" "0237" "0239" "0240" "0243" "0245" "0257" "0263"
##  [6091] "0267" "0268" "0270" "0271" "0278" "0279" "9998" "9999" "0000" "0001"
##  [6101] "0002" "0004" "0009" "0011" "0012" "0013" "0014" "0020" "0021" "0026"
##  [6111] "0027" "0034" "0035" "0043" "0044" "0051" "0061" "0064" "0083" "0086"
##  [6121] "0089" "0096" "0105" "0111" "0114" "0115" "0116" "0117" "0118" "0120"
##  [6131] "0121" "0124" "0125" "0126" "0127" "0128" "0129" "0130" "0131" "0132"
##  [6141] "0133" "0134" "9998" "9999" "0000" "0001" "0003" "0004" "0010" "0012"
##  [6151] "0013" "0017" "0018" "0023" "0024" "0028" "0029" "0030" "0035" "0036"
##  [6161] "0042" "0044" "0045" "0049" "0050" "0054" "0056" "0060" "0061" "0066"
##  [6171] "0067" "0069" "0071" "0073" "0074" "0075" "0076" "0079" "0081" "0083"
##  [6181] "0084" "0087" "0089" "0090" "0091" "0095" "0096" "0098" "0099" "0109"
##  [6191] "0112" "0115" "0117" "0118" "0121" "0162" "0167" "0168" "0170" "0178"
##  [6201] "0179" "0180" "0181" "0201" "0209" "0211" "0212" "0216" "0218" "0219"
##  [6211] "0226" "0231" "0235" "0239" "0251" "0263" "0267" "0269" "0272" "9998"
##  [6221] "9999" "0000" "0001" "0002" "0005" "0006" "0011" "0012" "0014" "0015"
##  [6231] "0016" "0018" "0021" "0022" "0024" "0025" "0032" "0033" "0036" "0043"
##  [6241] "0046" "0049" "0053" "0054" "0056" "0057" "0063" "0064" "0069" "0074"
##  [6251] "0075" "0076" "0078" "0079" "0081" "0082" "0083" "0086" "0090" "0091"
##  [6261] "0092" "0094" "0098" "0100" "0102" "0103" "0105" "0107" "0111" "0120"
##  [6271] "0126" "0130" "0131" "0147" "0148" "0151" "0153" "0154" "0155" "0156"
##  [6281] "0161" "0162" "0166" "0167" "0168" "0197" "0209" "0213" "0219" "0220"
##  [6291] "0223" "0224" "0225" "0226" "0227" "0228" "0229" "0230" "0231" "0232"
##  [6301] "0234" "9998" "9999" "0000" "0001" "0002" "0003" "0004" "0006" "0007"
##  [6311] "0008" "0010" "0011" "0012" "0013" "0019" "0020" "0025" "0026" "0027"
##  [6321] "0028" "0031" "0038" "0040" "0041" "0045" "0046" "0047" "0048" "0049"
##  [6331] "0051" "0052" "0053" "0055" "0056" "0057" "0058" "0059" "0064" "0065"
##  [6341] "0066" "0067" "0070" "0071" "0072" "0075" "0078" "0081" "0082" "0085"
##  [6351] "0087" "0092" "0097" "0101" "0103" "0107" "0108" "0111" "0112" "0113"
##  [6361] "0115" "0116" "0117" "0118" "0120" "0121" "0122" "0124" "0127" "0128"
##  [6371] "0133" "0134" "0135" "0136" "0138" "0140" "0142" "0148" "0149" "0150"
##  [6381] "0152" "0154" "0157" "0158" "0160" "0161" "0162" "0165" "0166" "0167"
##  [6391] "0170" "0173" "0174" "0178" "0179" "0180" "0181" "0182" "0183" "0185"
##  [6401] "0186" "0187" "0188" "0189" "0190" "0194" "0195" "0196" "0197" "0198"
##  [6411] "0200" "0204" "0206" "0208" "0209" "0210" "0212" "0214" "0215" "0216"
##  [6421] "0218" "0219" "0220" "0221" "0223" "0224" "0225" "0227" "0228" "0229"
##  [6431] "0232" "0233" "0234" "0236" "0237" "0239" "0241" "0242" "0243" "0244"
##  [6441] "0246" "0247" "0251" "0252" "0253" "0254" "0256" "0258" "0260" "0264"
##  [6451] "0268" "0269" "0270" "0271" "0273" "0275" "0276" "0277" "0281" "0282"
##  [6461] "0291" "0292" "0294" "0295" "0296" "0297" "0300" "0302" "0303" "0304"
##  [6471] "0305" "0311" "0313" "0314" "0316" "0317" "0319" "0321" "0323" "0329"
##  [6481] "0332" "0333" "0335" "0336" "0337" "0338" "0340" "0343" "0345" "0346"
##  [6491] "0347" "0349" "0350" "0351" "0352" "0354" "0356" "0357" "0358" "0360"
##  [6501] "0362" "0363" "0364" "0365" "0366" "0367" "0368" "0369" "0371" "0372"
##  [6511] "0373" "0374" "0375" "0376" "0378" "0379" "0380" "0381" "0382" "0384"
##  [6521] "0385" "0387" "0389" "0390" "0391" "0392" "0393" "0394" "0395" "0396"
##  [6531] "0398" "0399" "0401" "0402" "0403" "0404" "0405" "0408" "0409" "0414"
##  [6541] "0417" "0418" "0419" "0420" "0421" "0423" "0424" "0425" "0426" "0427"
##  [6551] "0428" "0429" "0430" "0431" "0432" "0433" "0434" "0435" "0437" "0438"
##  [6561] "0439" "0440" "0441" "0445" "9998" "9999" "0000" "0001" "0002" "0003"
##  [6571] "0006" "0009" "0011" "0013" "0014" "0015" "0017" "0019" "0020" "0021"
##  [6581] "0022" "0025" "0030" "0031" "0032" "0034" "0036" "0038" "0039" "0041"
##  [6591] "0042" "0043" "0044" "0045" "0046" "0048" "0052" "0053" "0054" "0056"
##  [6601] "0057" "0061" "0062" "0065" "0072" "0073" "0075" "0078" "0090" "0103"
##  [6611] "0109" "0114" "0117" "0122" "0123" "0127" "9998" "9999" "0000" "0001"
##  [6621] "0003" "0012" "0019" "0020" "0022" "0039" "0044" "0047" "0048" "0049"
##  [6631] "0051" "0052" "0060" "0068" "0071" "0076" "0082" "0086" "0088" "0090"
##  [6641] "0093" "0112" "0195" "0196" "0197" "0198" "0199" "9998" "9999" "0000"
##  [6651] "0001" "0002" "0003" "0007" "0015" "0027" "0028" "0032" "0033" "0034"
##  [6661] "0036" "0037" "0040" "0041" "0047" "0057" "0064" "0067" "0073" "0074"
##  [6671] "0083" "0085" "0086" "0092" "0093" "0096" "0097" "0098" "0099" "0103"
##  [6681] "0105" "0110" "0112" "0128" "0131" "0133" "0139" "0140" "0141" "0153"
##  [6691] "0158" "0174" "0185" "0188" "0190" "0191" "0202" "0207" "0210" "0214"
##  [6701] "0220" "0227" "0229" "0236" "0237" "0241" "0244" "0250" "0253" "0271"
##  [6711] "0274" "0281" "0283" "0285" "0286" "0289" "9998" "9999" "0000" "0001"
##  [6721] "0002" "0003" "0004" "0005" "0006" "0007" "0009" "0010" "0011" "0012"
##  [6731] "0013" "0014" "0015" "0016" "0017" "0018" "0019" "0020" "0022" "0023"
##  [6741] "0024" "0027" "0032" "0037" "0040" "0051" "0053" "0054" "0063" "0064"
##  [6751] "0065" "0066" "0074" "0075" "0083" "0084" "0086" "9998" "9999" "0000"
##  [6761] "0001" "0003" "0005" "0006" "0007" "0009" "0012" "0013" "0014" "0020"
##  [6771] "0022" "0023" "0026" "0027" "0034" "0037" "0039" "0041" "0045" "0046"
##  [6781] "0047" "0049" "0051" "0054" "0055" "0056" "0057" "0058" "0059" "0060"
##  [6791] "0061" "0062" "0063" "0064" "0065" "0066" "0068" "0070" "0074" "0080"
##  [6801] "0081" "0082" "0086" "0087" "0088" "0093" "0095" "0096" "0100" "0103"
##  [6811] "0104" "0105" "0108" "0112" "0115" "0117" "0120" "0121" "0122" "0123"
##  [6821] "0125" "0126" "0129" "0131" "0133" "0134" "0135" "0137" "0138" "0139"
##  [6831] "0141" "0144" "0146" "0148" "0153" "0155" "0157" "0158" "0164" "0165"
##  [6841] "0167" "0170" "0173" "0175" "0176" "0178" "0180" "0181" "0182" "0183"
##  [6851] "0184" "0185" "0186" "0187" "0189" "0190" "0191" "0195" "0196" "0198"
##  [6861] "0202" "0203" "0204" "0216" "0217" "0218" "0220" "0224" "0225" "0226"
##  [6871] "0227" "0228" "0233" "0240" "0241" "0245" "0250" "0253" "0254" "0258"
##  [6881] "0261" "0267" "0270" "0274" "0307" "0308" "0309" "0310" "0313" "0317"
##  [6891] "0320" "0324" "0327" "0328" "0330" "0333" "0336" "0338" "0339" "0346"
##  [6901] "0350" "0352" "0354" "0355" "0357" "0358" "0359" "0360" "0361" "0363"
##  [6911] "0364" "0368" "0370" "0371" "0378" "9998" "9999" "0000" "0001" "0008"
##  [6921] "0011" "0013" "0014" "0026" "0029" "0030" "0032" "0065" "0073" "0087"
##  [6931] "9998" "0000" "0001" "0005" "0014" "0015" "0016" "0019" "0020" "0021"
##  [6941] "0028" "0031" "0032" "0033" "0034" "0035" "0037" "0040" "0041" "0045"
##  [6951] "0061" "0062" "0065" "0067" "0068" "0069" "0070" "0071" "0079" "0082"
##  [6961] "0084" "0085" "0086" "0087" "0092" "0095" "0101" "0103" "0104" "0108"
##  [6971] "0111" "0112" "0114" "0115" "0120" "0122" "0124" "0127" "0129" "0137"
##  [6981] "0141" "0146" "0148" "0150" "0156" "0157" "0161" "0167" "0170" "0171"
##  [6991] "0172" "0180" "0181" "0185" "0191" "0198" "0200" "0215" "0227" "0229"
##  [7001] "9998" "9999" "0000" "0001" "0002" "0003" "0006" "0007" "0008" "0009"
##  [7011] "0011" "0012" "0014" "0016" "0022" "0023" "0026" "0027" "0028" "0030"
##  [7021] "0034" "0038" "0046" "0054" "0056" "9999" "0000" "0001" "0003" "0004"
##  [7031] "0010" "0020" "0025" "0026" "0031" "0041" "0046" "0049" "0055" "0062"
##  [7041] "0065" "0067" "0073" "0078" "0080" "0086" "0102" "0114" "0116" "0117"
##  [7051] "0134" "0136" "0146" "0151" "0159" "9998" "9999" "0000" "0001" "0002"
##  [7061] "0004" "0005" "0007" "0008" "0009" "0010" "0011" "0012" "0013" "0014"
##  [7071] "0015" "0016" "0017" "0018" "0024" "0025" "0026" "0033" "0034" "0035"
##  [7081] "0039" "0043" "0049" "0054" "0075" "0082" "0085" "0092" "0104" "0107"
##  [7091] "0110" "0112" "0117" "0118" "0119" "0123" "0125" "0128" "0130" "0132"
##  [7101] "0134" "0138" "0141" "0142" "0144" "0153" "0154" "0156" "0159" "0163"
##  [7111] "0166" "0168" "0176" "0177" "0179" "0180" "0181" "0182" "0188" "0191"
##  [7121] "0192" "0198" "0205" "0207" "0209" "0210" "0212" "0213" "0215" "0217"
##  [7131] "0219" "0220" "0221" "0222" "0228" "0229" "0236" "0240" "0248" "0249"
##  [7141] "0252" "0253" "0255" "9998" "9999" "0000" "0001" "0002" "0003" "0004"
##  [7151] "0006" "0007" "0008" "0010" "0015" "0024" "0026" "0028" "0029" "0030"
##  [7161] "0033" "0038" "0041" "0044" "0045" "0050" "0053" "0054" "0063" "0066"
##  [7171] "0070" "0072" "0077" "0079" "0081" "0082" "0083" "0084" "0086" "0090"
##  [7181] "0098" "0100" "0103" "0106" "0111" "0113" "0115" "0119" "0120" "0129"
##  [7191] "0131" "0134" "0136" "0144" "0146" "0151" "0155" "0156" "0160" "0163"
##  [7201] "0167" "0169" "0172" "0174" "0175" "0181" "0183" "0188" "0191" "0204"
##  [7211] "0206" "0209" "0215" "0217" "0218" "0223" "0224" "0227" "0228" "0233"
##  [7221] "0234" "0235" "0237" "0241" "0247" "0249" "0251" "0252" "0257" "0264"
##  [7231] "0266" "0268" "0269" "0270" "0271" "0272" "0276" "0277" "0278" "0279"
##  [7241] "0280" "0284" "0285" "0287" "0288" "0289" "0292" "0299" "0300" "0305"
##  [7251] "0311" "0406" "0410" "0411" "0417" "0429" "0430" "0442" "0452" "0453"
##  [7261] "0454" "0455" "0460" "0464" "0476" "0488" "0502" "0504" "0505" "0513"
##  [7271] "0517" "0519" "0523" "0524" "0527" "0541" "0549" "0551" "0553" "0554"
##  [7281] "0555" "0556" "0561" "0566" "0568" "0575" "0589" "0592" "0594" "0596"
##  [7291] "0760" "0766" "0767" "9998" "9999" "0000" "0001" "0002" "0005" "0006"
##  [7301] "0010" "0011" "0013" "0020" "0024" "0025" "0031" "0032" "0033" "0034"
##  [7311] "0035" "0037" "0038" "0040" "0042" "0050" "0051" "0052" "0053" "0058"
##  [7321] "0060" "0061" "0063" "0066" "0071" "0072" "0076" "0077" "0080" "0083"
##  [7331] "0084" "0087" "0088" "0089" "0090" "0094" "0095" "0096" "0098" "0103"
##  [7341] "0104" "0105" "0106" "0111" "0112" "0116" "0118" "0120" "0123" "0124"
##  [7351] "0126" "0128" "0129" "0131" "0133" "0135" "0137" "0140" "0141" "0142"
##  [7361] "0146" "0148" "0152" "0153" "0154" "0155" "0156" "0157" "0161" "0163"
##  [7371] "0164" "0170" "0172" "0173" "0174" "0179" "0183" "0184" "0188" "0189"
##  [7381] "0190" "0195" "0205" "0222" "0229" "0230" "0231" "0232" "0235" "0239"
##  [7391] "0242" "0248" "0251" "0252" "0259" "0260" "0261" "0264" "0266" "0272"
##  [7401] "0275" "0276" "0288" "0302" "0304" "0310" "0315" "0319" "0322" "0323"
##  [7411] "0324" "0332" "0335" "0339" "0345" "0346" "0352" "0357" "0361" "0385"
##  [7421] "0391" "0398" "0400" "0412" "0418" "0422" "0423" "0432" "0433" "0435"
##  [7431] "0442" "0443" "0444" "0447" "0449" "0453" "0455" "0458" "0460" "0461"
##  [7441] "0462" "0463" "0464" "0466" "0467" "0468" "0469" "0470" "0473" "0477"
##  [7451] "9998" "9999" "0000" "0001" "0003" "0004" "0005" "0006" "0007" "0009"
##  [7461] "0010" "0012" "0015" "0016" "0017" "0019" "0020" "0024" "0025" "0026"
##  [7471] "0030" "0031" "0032" "0033" "0034" "0035" "0036" "0038" "0040" "0042"
##  [7481] "0043" "0044" "0047" "0050" "0051" "0052" "0059" "0062" "0075" "0087"
##  [7491] "0089" "0092" "0093" "0094" "0097" "0098" "0102" "0105" "0111" "0113"
##  [7501] "0115" "0119" "0125" "0127" "0130" "0132" "0135" "0137" "0140" "0143"
##  [7511] "0147" "0148" "0150" "0151" "0152" "0154" "0156" "0157" "0161" "0162"
##  [7521] "0164" "0167" "0169" "0172" "0180" "0185" "0194" "0195" "0196" "0197"
##  [7531] "0198" "0201" "0202" "0206" "0207" "0209" "0210" "0211" "0215" "0223"
##  [7541] "0229" "0230" "0232" "0233" "0234" "0239" "0240" "9998" "9999" "0000"
##  [7551] "0001" "0008" "0009" "0015" "0017" "0027" "0031" "0032" "0043" "0047"
##  [7561] "0050" "0070" "0072" "0084" "0087" "0089" "0095" "0096" "0100" "0102"
##  [7571] "0103" "0107" "0108" "0111" "0116" "0132" "0144" "0145" "0148" "0149"
##  [7581] "0155" "0156" "0160" "0161" "0169" "0172" "0177" "0178" "0180" "0182"
##  [7591] "0185" "0190" "0198" "0207" "0209" "0210" "0212" "0213" "0220" "0227"
##  [7601] "0233" "0238" "0239" "0242" "0244" "0246" "0250" "0251" "0253" "0256"
##  [7611] "0261" "0262" "0272" "0273" "0274" "0280" "0287" "0289" "0290" "0291"
##  [7621] "0296" "0298" "0301" "0303" "0304" "0308" "0316" "0324" "0357" "0362"
##  [7631] "0363" "0379" "0386" "0389" "0398" "0412" "0425" "0447" "0449" "0454"
##  [7641] "0474" "0481" "0483" "0490" "0492" "0493" "0494" "0500" "0504" "0505"
##  [7651] "0508" "0509" "0516" "0519" "0531" "0532" "0541" "0544" "0545" "0549"
##  [7661] "0553" "0556" "0557" "0560" "0561" "0562" "0566" "0568" "0569" "0571"
##  [7671] "0575" "0576" "0578" "0580" "0581" "0582" "0584" "0585" "0590" "0593"
##  [7681] "0594" "0602" "0603" "0604" "0605" "0607" "0608" "0609" "0611" "0613"
##  [7691] "0614" "0615" "0617" "0619" "0620" "0623" "9998" "9999" "0000" "0001"
##  [7701] "0003" "0004" "0005" "0006" "0007" "0010" "0012" "0013" "0014" "0016"
##  [7711] "0018" "0021" "0022" "0023" "0025" "0026" "0030" "0031" "0032" "0035"
##  [7721] "0036" "0041" "0044" "0047" "0048" "0051" "0053" "0058" "0078" "0091"
##  [7731] "0096" "0107" "0112" "0121" "0130" "0132" "0138" "9998" "9999" "0000"
##  [7741] "0001" "0003" "0004" "0008" "0013" "0017" "0018" "0023" "0027" "0030"
##  [7751] "0035" "0038" "0041" "9998" "9999" "0000" "0001" "0007" "0008" "0009"
##  [7761] "0011" "0012" "0013" "0014" "0017" "0019" "0027" "0029" "0032" "0038"
##  [7771] "0044" "0054" "0055" "0087" "9998" "0000" "0001" "0008" "0009" "0011"
##  [7781] "0012" "0014" "0015" "0016" "0019" "0021" "0022" "0024" "0025" "0027"
##  [7791] "0029" "0030" "0033" "0037" "0039" "0044" "0046" "0047" "0048" "0050"
##  [7801] "0052" "0053" "0057" "0058" "0059" "0060" "0064" "0069" "0070" "0071"
##  [7811] "0073" "0081" "0085" "0092" "0094" "0095" "0096" "0101" "0104" "0105"
##  [7821] "0107" "0111" "0112" "0113" "0115" "0116" "0120" "0121" "0122" "0125"
##  [7831] "0129" "0130" "0131" "0132" "0135" "0136" "0137" "0138" "0140" "0141"
##  [7841] "0143" "0144" "0150" "0151" "0153" "0155" "0159" "0160" "0165" "0167"
##  [7851] "0173" "0178" "0182" "0185" "0187" "0193" "0198" "0199" "0202" "0204"
##  [7861] "0209" "0213" "0215" "0217" "0218" "0221" "0222" "0223" "0224" "0226"
##  [7871] "0231" "0232" "0237" "0240" "0244" "0246" "0248" "0250" "0252" "0253"
##  [7881] "0255" "0262" "0269" "0272" "0282" "0289" "0290" "0295" "0298" "0299"
##  [7891] "0301" "0302" "0303" "0304" "0308" "0310" "0313" "0318" "0320" "0324"
##  [7901] "0327" "0331" "0332" "0333" "0336" "0337" "0338" "0344" "0346" "0347"
##  [7911] "0348" "0351" "0353" "0355" "0359" "0360" "0361" "0364" "0367" "0373"
##  [7921] "0374" "0375" "0376" "0378" "0381" "9998" "9999" "0000" "0001" "0002"
##  [7931] "0003" "0004" "0006" "0008" "0009" "0010" "0011" "0012" "0014" "0015"
##  [7941] "0016" "0017" "0018" "0019" "0020" "0021" "0022" "0023" "0024" "0025"
##  [7951] "0026" "0027" "0034" "0035" "0037" "0041" "0042" "0043" "0044" "0046"
##  [7961] "0048" "9998" "9999" "0000" "0001" "0002" "0004" "0005" "0008" "0009"
##  [7971] "0012" "0018" "0024" "0029" "0032" "0038" "0039" "0041" "0042" "0044"
##  [7981] "0047" "0049" "0051" "0053" "0054" "0058" "0059" "0062" "0063" "0068"
##  [7991] "0069" "0070" "0071" "0073" "0074" "0075" "0079" "0082" "0087" "0089"
##  [8001] "0095" "0099" "0100" "0103" "0104" "0105" "0109" "0110" "0112" "0113"
##  [8011] "0115" "0117" "0119" "0122" "0128" "0129" "0130" "0131" "0134" "0135"
##  [8021] "0136" "0137" "0138" "0140" "0149" "0151" "0152" "0153" "0154" "0155"
##  [8031] "0157" "0158" "0162" "0167" "0169" "0171" "0174" "0176" "0177" "0178"
##  [8041] "0180" "0181" "0182" "0183" "0185" "0186" "0187" "0188" "0189" "0190"
##  [8051] "0193" "0196" "0197" "0198" "0199" "0200" "0202" "0203" "0204" "0205"
##  [8061] "0208" "0209" "0210" "0211" "0214" "0216" "0218" "0219" "0220" "0223"
##  [8071] "0224" "0226" "0227" "0230" "0241" "0242" "0244" "0250" "0255" "0257"
##  [8081] "0258" "0264" "0265" "0266" "0267" "0268" "0270" "0271" "0273" "0276"
##  [8091] "0277" "0278" "0282" "0285" "0287" "0290" "0291" "0292" "0293" "0295"
##  [8101] "0296" "0297" "0298" "0299" "0300" "0302" "0303" "0305" "0307" "0310"
##  [8111] "0311" "0312" "0315" "0316" "0318" "0320" "0322" "0324" "0325" "0326"
##  [8121] "0327" "0328" "0329" "0330" "0332" "0333" "0334" "0337" "0339" "0340"
##  [8131] "0341" "0344" "0345" "0348" "0358" "0360" "0365" "0371" "0374" "0376"
##  [8141] "0377" "0378" "0382" "0384" "0385" "0387" "0388" "0389" "0391" "0392"
##  [8151] "0394" "0395" "0396" "0399" "0400" "0402" "0403" "0404" "0405" "0406"
##  [8161] "0408" "0412" "0413" "0414" "0418" "0419" "0424" "0425" "0427" "0428"
##  [8171] "0429" "0430" "0431" "0432" "0433" "0435" "0436" "0447" "0461" "0462"
##  [8181] "0463" "0464" "0465" "0468" "0475" "0476" "0481" "0483" "0484" "0485"
##  [8191] "0487" "0488" "0489" "0665" "0666" "0667" "0673" "0676" "0678" "0680"
##  [8201] "0683" "0685" "0694" "0695" "0700" "0702" "0703" "0706" "0707" "0708"
##  [8211] "0710" "0715" "0716" "0717" "0718" "0721" "0722" "0723" "0726" "0730"
##  [8221] "0731" "0732" "0733" "0734" "0736" "0739" "0740" "0741" "0744" "0745"
##  [8231] "0746" "0748" "0749" "0751" "0752" "0755" "0757" "0758" "0759" "0760"
##  [8241] "0761" "0762" "0764" "0765" "0766" "0768" "0769" "0770" "0771" "0774"
##  [8251] "0775" "0777" "0779" "0783" "0784" "0785" "0786" "0787" "0788" "0789"
##  [8261] "0790" "0791" "0793" "0794" "0798" "0800" "0801" "0803" "0805" "0807"
##  [8271] "0808" "0811" "0812" "0813" "0814" "0815" "0816" "0826" "0828" "0831"
##  [8281] "0839" "0841" "0844" "0845" "0848" "0853" "0854" "0857" "0858" "0859"
##  [8291] "0860" "0861" "0862" "0863" "0864" "0866" "0867" "0868" "0869" "0870"
##  [8301] "9998" "9999" "0000" "0001" "0003" "0005" "0012" "0013" "0016" "0017"
##  [8311] "0018" "0019" "0022" "0026" "0027" "0033" "0035" "0039" "0040" "0041"
##  [8321] "0045" "0048" "0056" "0058" "0062" "0063" "0066" "0068" "0069" "0071"
##  [8331] "0077" "0079" "0086" "0088" "0093" "0094" "0095" "0096" "0102" "0109"
##  [8341] "0110" "0118" "0119" "0124" "0127" "0128" "0129" "0133" "0134" "0136"
##  [8351] "0138" "0140" "0141" "0144" "0145" "0152" "0164" "0166" "0169" "0177"
##  [8361] "0180" "0182" "0185" "0188" "0191" "0193" "0197" "0200" "0213" "0219"
##  [8371] "0220" "0221" "0223" "0224" "0227" "0231" "0232" "0233" "0234" "0235"
##  [8381] "0236" "0237" "0252" "0254" "0256" "0265" "0270" "0272" "0280" "0282"
##  [8391] "0284" "0285" "0292" "0295" "0296" "0301" "0303" "0311" "0317" "0417"
##  [8401] "0440" "0447" "0453" "0591" "0596" "0597" "0600" "0605" "0607" "0612"
##  [8411] "0618" "0621" "0623" "0625" "0627" "0634" "0635" "0641" "0642" "0643"
##  [8421] "0646" "0647" "0650" "0651" "0652" "0653" "0656" "0661" "0670" "0673"
##  [8431] "0684" "0686" "0690" "0692" "0694" "0695" "0696" "0700" "0703" "0712"
##  [8441] "0717" "0720" "0722" "0726" "0728" "0729" "0736" "0738" "0741" "0743"
##  [8451] "0746" "0750" "0751" "0754" "0765" "0766" "0767" "0768" "0769" "9998"
##  [8461] "9999" "0000" "0001" "0002" "0003" "0004" "0005" "0006" "0007" "0011"
##  [8471] "0015" "0026" "0028" "0029" "0038" "0039" "0048" "0054" "0057" "0058"
##  [8481] "0061" "9998" "9999" "0000" "0001" "0003" "0004" "0005" "0006" "0008"
##  [8491] "0009" "0010" "0011" "0013" "0014" "0015" "0016" "0017" "0018" "0023"
##  [8501] "0026" "0027" "0029" "0033" "0035" "0043" "0049" "0050" "9998" "9999"
##  [8511] "0000" "0001" "0003" "0004" "0005" "0006" "0008" "0009" "0011" "0013"
##  [8521] "0014" "0015" "0019" "0020" "0021" "0023" "0024" "0025" "0026" "0028"
##  [8531] "0031" "0032" "0033" "0034" "0035" "0037" "0038" "0039" "0041" "0042"
##  [8541] "0043" "0045" "0046" "0048" "0050" "0051" "0055" "0060" "0075" "0087"
##  [8551] "0089" "0093" "0103" "0105" "0106" "0107" "0110" "0115" "0117" "0119"
##  [8561] "0122" "0125" "0140" "0166" "0169" "0172" "0174" "0177" "0180" "0186"
##  [8571] "0200" "0235" "0237" "0242" "0244" "0325" "0333" "0349" "0372" "0383"
##  [8581] "0394" "0397" "0402" "0403" "0424" "0435" "0439" "0441" "0459" "0461"
##  [8591] "0464" "0466" "0473" "0474" "0487" "0500" "0501" "0502" "0510" "0519"
##  [8601] "0529" "0535" "0538" "0540" "0552" "0560" "0561" "0563" "0569" "0573"
##  [8611] "0575" "0583" "0591" "0606" "0611" "0613" "0617" "0622" "0624" "0626"
##  [8621] "0629" "0632" "0633" "0636" "0637" "0647" "0657" "0658" "0659" "0666"
##  [8631] "0672" "0674" "0676" "0682" "0694" "0695" "0698" "0699" "0701" "0710"
##  [8641] "0714" "0720" "0725" "0729" "0734" "0737" "0738" "0743" "0745" "0750"
##  [8651] "0754" "0756" "0760" "0762" "0763" "0765" "0766" "0767" "0768" "0769"
##  [8661] "0771" "0772" "0773" "0774" "0775" "0777" "0783" "0784" "0787" "0789"
##  [8671] "0790" "0791" "0792" "0793" "0795" "0798" "0799" "0800" "0801" "0802"
##  [8681] "0803" "0806" "0807" "0808" "0809" "0811" "0813" "0814" "0818" "0819"
##  [8691] "0822" "0823" "0827" "0831" "0832" "0833" "0835" "0836" "0837" "0838"
##  [8701] "0842" "0843" "0844" "0845" "0846" "0848" "0852" "0853" "0854" "0856"
##  [8711] "0857" "0858" "0859" "0860" "0861" "0862" "0863" "0864" "0866" "0869"
##  [8721] "0870" "0871" "0872" "0874" "0875" "0877" "0878" "0879" "0880" "0881"
##  [8731] "0882" "0883" "0884" "0890" "0891" "0894" "0895" "0897" "0901" "0902"
##  [8741] "0903" "0904" "0905" "9998" "9999" "0000" "0001" "0003" "0014" "0017"
##  [8751] "0029" "0039" "0049" "0070" "0081" "0083" "0091" "0092" "0095" "0105"
##  [8761] "0108" "0113" "0124" "0126" "0128" "0130" "0131" "0132" "0133" "0134"
##  [8771] "0135" "9998" "9999" "0000" "0001" "0002" "0003" "0006" "0007" "0008"
##  [8781] "0010" "0011" "0012" "0014" "0015" "0017" "0018" "0019" "0020" "0021"
##  [8791] "0023" "0025" "0027" "0029" "0031" "0032" "0036" "0042" "0043" "0044"
##  [8801] "0045" "0058" "0061" "0064" "0071" "0073" "0074" "0077" "0085" "0086"
##  [8811] "0087" "0088" "0089" "9998" "9999" "0000" "0001" "0005" "0009" "0012"
##  [8821] "0013" "0018" "0020" "0021" "0023" "0025" "0026" "0029" "0030" "0033"
##  [8831] "0034" "0038" "0039" "0045" "0046" "0047" "0048" "0050" "0051" "0053"
##  [8841] "0054" "0057" "0058" "0059" "0065" "0067" "0069" "0070" "0073" "0075"
##  [8851] "0076" "0078" "0079" "0080" "0081" "0082" "0086" "0087" "0091" "0092"
##  [8861] "0095" "0096" "0098" "0100" "0101" "0105" "0109" "0110" "0112" "0113"
##  [8871] "0115" "0116" "0120" "0122" "0123" "0125" "0132" "0137" "0138" "0143"
##  [8881] "0145" "0147" "0149" "0152" "0153" "0156" "0157" "0159" "0161" "0165"
##  [8891] "0167" "0168" "0171" "0172" "0180" "0189" "0215" "0217" "0218" "0219"
##  [8901] "0220" "0221" "0230" "0235" "0237" "0242" "0244" "0249" "0250" "0252"
##  [8911] "0261" "0263" "0266" "0267" "0269" "0270" "0271" "0272" "0273" "0275"
##  [8921] "0276" "0280" "0285" "0286" "0287" "0288" "0290" "0292" "0293" "0296"
##  [8931] "0302" "0303" "0306" "0308" "0313" "0314" "0320" "0329" "0338" "0341"
##  [8941] "0343" "0345" "0348" "0351" "0354" "0357" "0358" "0361" "0362" "0363"
##  [8951] "0366" "0367" "0368" "0372" "0374" "0379" "0382" "0383" "0387" "0388"
##  [8961] "0391" "0392" "0393" "0402" "0403" "0406" "0408" "0414" "0418" "0424"
##  [8971] "0427" "0432" "0438" "0452" "0460" "0463" "0473" "0476" "0477" "0479"
##  [8981] "0480" "0482" "0484" "0488" "0490" "0493" "0499" "0509" "0511" "0516"
##  [8991] "0520" "0522" "9998" "9999" "0000" "0001" "0002" "0009" "0012" "0022"
##  [9001] "0023" "0025" "0026" "0027" "0031" "0034" "0038" "0050" "0051" "0056"
##  [9011] "0061" "0073" "0101" "0105" "0109" "0111" "0112" "0114" "0123" "0125"
##  [9021] "0126" "0130" "0133" "0135" "0136" "0154" "0156" "0157" "0164" "0165"
##  [9031] "0169" "0174" "0184" "0188" "0189" "0190" "0192" "0193" "0194" "0195"
##  [9041] "0196" "0197" "0199" "0200" "0204" "0205" "9998" "9999" "0000" "0001"
##  [9051] "0002" "0003" "0009" "0010" "0013" "0015" "0016" "0019" "0022" "0023"
##  [9061] "0025" "0026" "0027" "0028" "0034" "0035" "0037" "0043" "0044" "0047"
##  [9071] "0073" "9998" "9999" "0000" "0001" "0006" "0007" "0009" "0010" "0011"
##  [9081] "0015" "0016" "0019" "0033" "0044" "0048" "0054" "0064" "0065" "0067"
##  [9091] "0068" "0069" "9998" "0000" "0001" "0002" "0003" "0004" "0005" "0006"
##  [9101] "0011" "0013" "0014" "0015" "0016" "0020" "0021" "0023" "0027" "0031"
##  [9111] "0034" "0035" "0037" "0047" "0050" "0052" "0055" "0056" "0061" "0062"
##  [9121] "0063" "0068" "0070" "0071" "0072" "0074" "0075" "0076" "0077" "0078"
##  [9131] "0079" "0082" "0084" "0089" "0104" "0110" "0119" "0135" "0146" "0156"
##  [9141] "0157" "0160" "0161" "0181" "0198" "9998" "9999" "0000" "0001" "0002"
##  [9151] "0005" "0006" "0007" "0008" "0009" "0010" "0011" "0012" "0013" "0015"
##  [9161] "0016" "0017" "0018" "0021" "0027" "0029" "0031" "0032" "0034" "0035"
##  [9171] "0037" "0038" "0039" "0040" "0041" "0044" "0045" "0046" "0047" "0049"
##  [9181] "0050" "0053" "0054" "0058" "0061" "0062" "0063" "0065" "0067" "0068"
##  [9191] "0070" "0074" "0075" "0076" "0105" "0106" "0107" "0113" "0114" "0115"
##  [9201] "0116" "0117" "0118" "0119" "0120" "0127" "0131" "0134" "0136" "0138"
##  [9211] "0140" "0141" "0144" "0148" "0149" "0154" "0155" "0160" "0162" "0165"
##  [9221] "0166" "0170" "0176" "0180" "0181" "0183" "0184" "0185" "0187" "0191"
##  [9231] "0194" "0196" "0199" "0201" "0202" "0206" "0207" "0212" "0215" "0216"
##  [9241] "0222" "0226" "0230" "0232" "9998" "9999" "0000" "0001" "0003" "0006"
##  [9251] "0007" "0008" "0010" "0011" "0013" "0014" "0016" "0019" "0020" "0021"
##  [9261] "0022" "0023" "0024" "0025" "0033" "0036" "0039" "0042" "0046" "9998"
##  [9271] "9999" "0000" "0001" "0002" "0003" "0004" "0005" "0006" "0007" "0008"
##  [9281] "0009" "0010" "0014" "0019" "0020" "0022" "0024" "0040" "0042" "0045"
##  [9291] "0047" "0048" "9998" "9999" "0000" "0001" "0003" "0005" "0006" "0007"
##  [9301] "0010" "0012" "0014" "0022" "0024" "0026" "0028" "0029" "0031" "0032"
##  [9311] "0034" "0037" "0038" "0041" "0042" "0046" "0047" "0048" "0050" "0051"
##  [9321] "0053" "0056" "0058" "0059" "0062" "0065" "0066" "0072" "0086" "0093"
##  [9331] "0101" "0109" "0111" "0112" "0122" "0125" "0126" "0127" "0131" "0132"
##  [9341] "0134" "0136" "0260" "0262" "0270" "0271" "0276" "0280" "0285" "0288"
##  [9351] "0290" "0293" "0294" "0295" "0297" "0298" "0300" "0301" "0303" "0306"
##  [9361] "0309" "0312" "0315" "0324" "0327" "0331" "0333" "0334" "0338" "0340"
##  [9371] "0345" "0346" "0349" "0355" "0359" "0362" "9998" "9999" "0000" "0001"
##  [9381] "0002" "0005" "0006" "0008" "0011" "0014" "0015" "0017" "0020" "0022"
##  [9391] "0023" "0027" "0030" "0032" "0036" "0037" "0044" "0045" "0046" "0047"
##  [9401] "0049" "0050" "0060" "0061" "0066" "0071" "0072" "0074" "0075" "0076"
##  [9411] "0081" "0082" "0084" "0086" "0088" "0089" "0091" "0092" "0094" "0098"
##  [9421] "0100" "0101" "0102" "0106" "0107" "0108" "0109" "0110" "0111" "0112"
##  [9431] "0117" "0118" "0120" "0121" "0125" "0126" "0128" "0129" "0130" "0140"
##  [9441] "0144" "0146" "0151" "0152" "0153" "0154" "0157" "0158" "0161" "0167"
##  [9451] "0168" "0170" "0176" "0183" "0238" "0244" "0245" "0246" "0247" "0249"
##  [9461] "0255" "0256" "0265" "0267" "0270" "0271" "0278" "0344" "0362" "0378"
##  [9471] "0380" "0382" "0385" "0392" "0394" "0395" "0399" "0400" "0402" "0403"
##  [9481] "0404" "0405" "0407" "0409" "0412" "0417" "0419" "0420" "0423" "0427"
##  [9491] "0429" "0431" "0432" "0434" "0435" "0438" "0440" "0441" "0443" "0444"
##  [9501] "0446" "0448" "0451" "0452" "0453" "0455" "0458" "0461" "0462" "0463"
##  [9511] "0464" "0466" "0467" "0469" "0471" "0472" "9998" "9999" "0000" "0001"
##  [9521] "0003" "0006" "0008" "0014" "0021" "0022" "0027" "0032" "0034" "0036"
##  [9531] "0038" "0039" "0040" "0041" "0042" "0044" "0045" "0047" "0048" "0049"
##  [9541] "0050" "0058" "0060" "0064" "0066" "0068" "0073" "0086" "0089" "0091"
##  [9551] "0110" "0125" "0135" "0138" "0143" "0155" "0156" "9998" "9999" "0000"
##  [9561] "0001" "0005" "0008" "0009" "0011" "0012" "0014" "0016" "0017" "0018"
##  [9571] "0019" "0020" "0022" "0029" "0035" "0036" "0039" "0040" "0047" "0048"
##  [9581] "0054" "0055" "0057" "0060" "0062" "0064" "0065" "0067" "0070" "0071"
##  [9591] "0072" "0075" "0076" "0078" "0080" "0081" "0085" "0086" "0091" "0092"
##  [9601] "0101" "0104" "0105" "0106" "0107" "0125" "0132" "0135" "0147" "0149"
##  [9611] "0150" "0152" "0155" "0156" "0157" "0160" "0162" "0163" "0164" "0165"
##  [9621] "0167" "0168" "0169" "0170" "0173" "0174" "0176" "0177" "0178" "0182"
##  [9631] "0183" "9998" "9999" "0000" "0001" "0002" "0005" "0006" "0009" "0012"
##  [9641] "0013" "0014" "0021" "0026" "0028" "0029" "0030" "0031" "0032" "0033"
##  [9651] "0035" "0036" "0037" "0041" "0043" "0045" "0046" "0053" "0054" "0055"
##  [9661] "0056" "0057" "0063" "0064" "0067" "0071" "0072" "0077" "0078" "0079"
##  [9671] "0080" "9998" "9999" "0000" "0001" "0002" "0003" "0004" "0006" "0009"
##  [9681] "0010" "0011" "0012" "0013" "0018" "0020" "0021" "0023" "0024" "0026"
##  [9691] "0027" "0028" "0029" "0030" "0033" "0034" "0040" "0041" "0042" "0043"
##  [9701] "0046" "0047" "0051" "0052" "0053" "0055" "0058" "0059" "0060" "0061"
##  [9711] "0062" "0064" "0066" "0068" "0080" "0081" "0084" "0092" "0093" "0096"
##  [9721] "0097" "0104" "0115" "0116" "0119" "0124" "0125" "0126" "0137" "0138"
##  [9731] "0141" "0143" "0151" "0173" "0178" "0187" "0189" "9998" "9999" "0000"
##  [9741] "0001" "0002" "0003" "0004" "0005" "0006" "0008" "0009" "0017" "0018"
##  [9751] "0019" "0020" "0022" "0024" "0025" "0026" "0028" "0029" "0030" "0032"
##  [9761] "0033" "0036" "0037" "0040" "0041" "0043" "0044" "0047" "0050" "9998"
##  [9771] "9999" "0000" "0001" "0003" "0008" "0009" "0011" "0013" "0015" "0018"
##  [9781] "0021" "0028" "0033" "0035" "0040" "0041" "0042" "0045" "0046" "0048"
##  [9791] "0058" "0060" "0061" "0066" "0069" "0070" "0080" "0083" "0084" "0086"
##  [9801] "0088" "0090" "0094" "0097" "0099" "0116" "0130" "0136" "0149" "0150"
##  [9811] "0152" "0156" "0163" "0164" "0165" "0170" "0208" "0231" "0234" "0260"
##  [9821] "0270" "0275" "0276" "9998" "9999" "0000" "0001" "0002" "0004" "0006"
##  [9831] "0012" "0013" "0016" "0018" "0019" "0020" "0023" "0024" "0025" "0027"
##  [9841] "0028" "0031" "0032" "0036" "0044" "0045" "0046" "0048" "0052" "0055"
##  [9851] "0067" "0074" "0085" "0086" "0091" "0093" "0094" "0097" "0099" "0102"
##  [9861] "0103" "0104" "0107" "0109" "0110" "0112" "0113" "0119" "0121" "0123"
##  [9871] "0124" "0129" "0130" "0131" "9998" "9999" "0000" "0001" "0002" "0003"
##  [9881] "0004" "0007" "0013" "0015" "0020" "0021" "0023" "0026" "0027" "0032"
##  [9891] "0041" "0047" "0051" "0052" "0053" "0054" "0057" "0058" "0062" "0063"
##  [9901] "0064" "0065" "0066" "0067" "0073" "0074" "0075" "0076" "0080" "0089"
##  [9911] "0092" "0101" "0102" "0109" "0116" "0120" "0124" "0130" "0132" "0133"
##  [9921] "0135" "0136" "9998" "9999" "0000" "0001" "0002" "0005" "0006" "0009"
##  [9931] "0010" "0012" "0013" "0019" "0021" "0024" "0025" "0026" "0027" "0028"
##  [9941] "0031" "0032" "0036" "0046" "0047" "0049" "0052" "0056" "0058" "0059"
##  [9951] "0061" "0062" "0066" "0068" "0069" "0071" "0074" "0075" "0076" "0077"
##  [9961] "0079" "0081" "0083" "0084" "0087" "0088" "0091" "0095" "0097" "0098"
##  [9971] "0101" "0103" "0105" "0108" "0110" "0112" "0114" "0118" "0120" "0121"
##  [9981] "0122" "0124" "0125" "0128" "0130" "0131" "0133" "0135" "0137" "0140"
##  [9991] "0141" "0143" "0147" "0153" "0154" "0164" "0165" "0169" "0172" "0177"
## [10001] "0180" "0183" "0186" "0187" "0189" "0193" "0195" "0199" "0209" "0210"
## [10011] "0213" "0222" "0224" "0225" "0229" "0230" "0232" "0233" "0235" "0236"
## [10021] "0239" "0240" "0244" "0247" "0248" "0249" "0250" "0252" "0253" "0254"
## [10031] "0255" "0257" "0260" "0264" "0267" "0271" "0273" "0278" "0280" "0282"
## [10041] "0283" "0286" "0289" "0291" "0309" "0310" "0314" "0317" "0318" "0321"
## [10051] "0322" "0324" "0331" "0332" "0333" "0334" "0335" "0340" "0345" "0346"
## [10061] "0347" "0348" "0350" "9998" "9999" "0000" "0001" "0002" "0003" "0004"
## [10071] "0005" "0006" "0007" "0008" "0009" "0010" "0011" "0012" "0013" "0014"
## [10081] "0015" "0016" "0017" "0018" "0022" "0024" "0025" "0026" "0027" "0035"
## [10091] "0036" "0042" "0043" "0044" "0057" "0059" "0060" "9998" "9999" "0000"
## [10101] "0001" "0004" "0006" "0018" "0020" "0022" "0027" "0029" "0033" "0038"
## [10111] "0047" "0050" "0056" "0057" "0062" "0064" "0070" "0078" "0089" "0095"
## [10121] "0097" "0099" "0111" "0124" "0129" "0133" "0134" "0139" "0143" "0151"
## [10131] "0153" "0168" "0183" "0190" "0194" "0198" "0201" "0202" "0206" "0210"
## [10141] "0213" "0214" "0218" "0227" "0230" "0231" "0232" "0235" "0242" "0243"
## [10151] "0249" "0250" "0253" "0255" "0258" "0259" "0263" "0264" "0268" "0270"
## [10161] "0271" "0272" "0273" "0274" "0276" "0277" "0279" "0280" "0286" "0288"
## [10171] "0297" "0300" "0302" "0312" "0313" "0314" "0315" "0317" "0318" "0319"
## [10181] "0324" "0329" "0334" "0342" "0343" "0350" "0355" "0356" "0360" "0369"
## [10191] "0376" "0377" "0378" "0380" "0391" "0396" "0405" "0407" "0415" "0417"
## [10201] "0430" "0435" "0440" "0444" "0449" "0450" "0451" "0452" "0453" "0458"
## [10211] "0460" "0463" "0464" "0468" "0470" "0471" "0476" "0486" "0511" "0512"
## [10221] "0513" "0516" "0522" "0526" "0528" "0529" "0535" "0536" "0537" "0539"
## [10231] "0540" "0542" "0544" "0547" "0550" "0560" "0565" "0566" "0568" "0572"
## [10241] "0573" "0574" "0575" "0577" "0583" "0587" "0588" "0591" "0592" "0593"
## [10251] "0594" "0595" "0596" "0597" "0600" "0605" "0608" "0610" "0611" "0613"
## [10261] "0615" "0620" "0621" "0622" "0626" "0632" "0660" "0668" "0683" "0684"
## [10271] "0690" "0697" "0703" "0706" "0708" "0709" "0712" "0714" "0715" "0718"
## [10281] "0721" "0722" "0724" "0726" "0727" "0728" "0735" "0737" "0738" "0739"
## [10291] "0741" "0747" "0748" "0749" "0750" "0752" "0753" "0754" "0755" "0756"
## [10301] "0757" "0758" "0760" "0761" "0763" "0764" "0766" "0767" "0770" "0771"
## [10311] "9998" "9999" "0000" "0001" "0005" "0009" "0010" "0011" "0012" "0013"
## [10321] "0018" "0020" "0021" "0022" "0023" "0024" "0025" "0029" "0031" "0037"
## [10331] "0052" "0053" "0057" "0059" "0067" "0071" "0072" "0074" "0084" "0086"
## [10341] "9998" "9999" "0000" "0001" "0009" "0010" "0011" "0014" "0016" "0017"
## [10351] "0018" "0019" "0020" "0021" "0023" "0025" "0027" "0028" "0029" "0031"
## [10361] "0033" "0034" "0035" "0036" "0037" "0038" "0039" "0040" "0041" "0042"
## [10371] "0046" "0047" "0049" "0053" "0054" "0068" "0069" "0071" "0072" "0081"
## [10381] "0082" "0083" "0084" "9998" "9999" "0000" "0001" "0002" "0003" "0005"
## [10391] "0008" "0009" "0011" "0014" "0015" "0016" "0018" "0019" "0020" "0024"
## [10401] "0026" "0027" "0028" "0029" "0030" "0031" "0034" "0036" "0037" "0038"
## [10411] "0039" "0041" "0042" "0043" "0044" "0045" "0046" "0047" "0051" "0052"
## [10421] "0053" "0069" "0070" "0071" "0077" "0079" "0083" "0084" "0085" "0086"
## [10431] "0087" "0090" "0096" "0112" "0118" "0127" "0132" "0134" "0141" "0144"
## [10441] "0150" "0151" "0152" "0153" "9998" "9999" "0000" "0001" "0003" "0004"
## [10451] "0006" "0007" "0009" "0010" "0015" "0016" "0017" "0018" "0019" "0020"
## [10461] "0025" "0026" "0027" "0030" "0031" "0034" "0036" "0039" "0042" "0043"
## [10471] "0044" "0045" "0046" "0047" "0049" "0050" "0051" "0052" "0054" "0055"
## [10481] "0058" "0059" "0060" "0061" "0062" "0063" "0064" "0067" "0068" "0070"
## [10491] "0071" "0073" "0075" "0081" "0082" "0086" "0088" "0089" "0092" "0093"
## [10501] "0094" "0095" "0096" "0097" "0100" "0102" "0104" "0105" "0107" "0109"
## [10511] "0114" "0115" "0116" "0117" "0120" "0122" "0124" "0125" "0127" "0129"
## [10521] "0131" "0133" "0134" "0135" "0139" "0143" "0147" "0149" "0154" "0155"
## [10531] "0156" "0158" "0161" "0162" "0163" "0167" "0168" "0174" "0175" "0176"
## [10541] "0179" "0180" "0181" "0182" "0184" "0185" "0187" "0189" "0191" "0192"
## [10551] "0195" "0196" "0197" "0198" "0199" "0200" "0201" "0203" "0205" "0209"
## [10561] "0210" "0212" "0214" "0216" "0217" "0218" "0221" "0223" "0226" "0228"
## [10571] "0233" "0235" "0237" "0240" "0244" "0246" "0247" "0248" "0250" "0251"
## [10581] "0253" "0255" "0258" "0260" "0271" "0272" "0273" "0276" "0277" "0284"
## [10591] "0286" "0288" "0289" "0290" "0291" "0293" "0295" "0297" "0302" "0303"
## [10601] "0307" "0310" "0312" "0314" "0317" "0318" "0322" "0325" "0326" "0327"
## [10611] "0331" "0332" "0333" "0337" "0338" "0340" "0342" "0343" "0344" "0346"
## [10621] "0348" "0349" "0350" "0351" "0352" "0355" "0357" "0358" "0359" "0360"
## [10631] "0361" "0362" "0365" "9998" "9999" "0000" "0001" "0003" "0004" "0006"
## [10641] "0007" "0009" "0010" "0011" "0012" "0013" "0014" "0015" "0016" "0018"
## [10651] "0019" "0020" "0022" "0023" "0024" "0025" "0026" "0027" "0028" "0029"
## [10661] "0030" "0031" "0032" "0033" "0034" "0035" "0036" "0037" "0039" "0040"
## [10671] "0041" "0042" "0043" "0044" "0045" "0047" "0050" "0051" "0052" "0053"
## [10681] "0055" "0056" "0057" "0058" "0059" "0060" "0062" "0063" "0064" "0066"
## [10691] "0067" "0068" "0069" "0070" "0072" "0073" "0074" "0075" "0076" "0077"
## [10701] "0078" "0079" "0080" "0081" "0082" "0083" "0085" "0086" "0087" "0088"
## [10711] "0089" "0090" "0091" "9998" "9999"
datos_inegi_jal2$LOC
##     [1]    0 9998 9999    0    1    2    3    6    7    9   10   11   12   13
##    [15]   14   16   18   19   20   21   22   23   24   26   27   28   29   30
##    [29]   31   32   33   34   35   36   37   38   40   41   42   43   44   46
##    [43]   47   48   49   52   53   54   55   56   57   59   60   62   63   66
##    [57]   67   68   69   70   71   72   73   74   75   78   79   81   84   86
##    [71]   87   88   94  102  104  106  107  108  109  111  112  113  115  116
##    [85]  118  119  122  123  128  129  131  132  133  135  137  139  141  142
##    [99] 9998 9999    0    1    2    4    5    7    8    9   10   13   19   21
##   [113]   24   25   27   30   34   35   36   37   39   40   41   43   48   53
##   [127]   55   58   61   62   63   64   65 9998 9999    0    1    4    7   19
##   [141]   21   28   30   31   32   38   51   56   57   58   59   68   74   80
##   [155]   82   83   86   94   96   97   99 9998 9999    0    1    3    4    5
##   [169]    7    8   10   14   17   20   22   23   25   26   30   32   39   53
##   [183]   61   64   66 9998 9999    0    1    2    3    4    5    7    8    9
##   [197]   10   13   15   20   22   26   29   31   32   35   36   39   40   43
##   [211]   45   56   65   70   71   74   75 9998 9999    0    1    2    3    4
##   [225]    5    7   10   11   12   13   14   15   17   18   19   20   22   23
##   [239]   24   25   26   27   28   30   31   32   33   34   37   38   39   40
##   [253]   41   42   43   44   45   46   47   48   49   50   51   52   53   54
##   [267]   57   58   59   61   62   70   73   75   76   77   79   80   82   83
##   [281]   84   85   87   88   89   91   92   95   97   98  100  102  107  109
##   [295]  111  112  116  121  122  123  130  133  137  140  142  147  148  149
##   [309]  153  156  157  158  160  162  165  167  171  174  182  185  187  189
##   [323]  190  192  193  194 9998 9999    0    1    3    4    8    9   10   12
##   [337]   13   14   15   22   76   86 9998    0    1    2    3    4    5    6
##   [351]    7    9   11   14   16   21   22   24   26   28   32   36   45   46
##   [365]   48   50   51   54   56   57   58   61   63   64   65   66   68   72
##   [379]   73   76   78   83   89   90   93   95   96   97  101  102  103  106
##   [393]  108  110  113  115  116  117  118  120  127  130  131  133  137  139
##   [407]  141  142  143  145  146  147  150  151  153  154  156  158  160  161
##   [421]  162  167  171  172  175  177  178  181  184  187  188  189  191  193
##   [435]  194  196  198  201  202  203  207  210  212  213  214  216  217  222
##   [449]  225  228  230  231  234  238  239  241  243  244  245  247  248  249
##   [463]  250  257  258  261  262  263  266  267  269  271  272  274  275  277
##   [477]  279  280  281  283  287  288  289  294  295  301  303  307  311  317
##   [491]  318  320  321  322  327  328  331  337  339  342  343  345  346  348
##   [505]  351  352  353  358  360  361  371  372  375  376  378  379  381  382
##   [519]  390  393  394  395  396  403  405  406  408  409  411  412  415  417
##   [533]  418  422  423  424  425  494  497  500  501  503  509  511  512  513
##   [547]  516  519  520  521  523  525  532  533  536  537  538  540  541  543
##   [561]  548  552  553  557  560  567  570  571  574  575  576  579  582  585
##   [575]  586  587  589  590  592  593  596  602  606  607  610  611  612  614
##   [589]  617  621  624  626  627  631  632  633  635  637  638  639  641  643
##   [603]  645  646  649  650  657  659  661  662  664  665  666  667  668  669
##   [617]  672  673  675  676  677  681  682  683  684  686  687  688  689  690
##   [631]  691  694  695  696  697  698  701 9998 9999    0    1    3    4    5
##   [645]    6    7    9   12   14   20   21   24   30   32   34   41   43   44
##   [659]   48   54   55   57   60   65   66   67   68   69   70   71   72   73
##   [673]   74   75   76   77   78   79   80   81 9998 9999    0    1    3   16
##   [687]   21   23   24   25   26   27   28   29   32   33   46   51   52   55
##   [701]   58   60   61  107 9998    0    1    3    8    9   11   15   16   17
##   [715]   21   22   24   26   29   30   33   41   47   54   68 9998 9999    0
##   [729]    1    2    3    4    5   10   12   13   16   21   32   38   39   40
##   [743]   41   44   45   46   49   50   53   56   58   59   60   61   63   64
##   [757]   66   67   73   74   76   90   95  103  104  107  109  111  114  116
##   [771]  119  130  139  141  142  148  149  152  155  156 9998 9999    0    1
##   [785]    2    3    4    5    6    7    8   10   11   12   13   14   16   17
##   [799]   18   19   23   24   25   26   28   29   30   32   35   36   37   38
##   [813]   39   41   43   44   45   46   47   48   50   51   52   54   55   57
##   [827]   58   60   61   65   67   68   69   70   74   75   76   77   78   80
##   [841]   82   83   84   85   87   89   90   91   92   93   94   96   98   99
##   [855]  101  105  106  109  114  121  123  125  127  128  130  131  134  136
##   [869]  137  141  142  145  146  147  148  151  154  155  160  165  166  167
##   [883]  169  173  175  177  178  180  185  188  191  195  203  204  205  207
##   [897]  211  212  213  215  216  218  219  220  221  224  225  227  230  232
##   [911]  235  240  241  242  243  245  246  248 9998 9999    0    1    3    4
##   [925]    5    6    8    9   10   13   15   16   19   20   21   23   24   25
##   [939]   26   28   29   31   45   47   56   57   62   63   68   71   73   79
##   [953] 9998 9999    0    1    2    3    5    7    9   11   12   13   14   15
##   [967]   17   19   20   22   23   24   25   26   27   28   31   33   36   38
##   [981]   41   42   46   47   48   51   53   55   58   60   63   64   68   69
##   [995]   71   75   76   77   79   81   82   84   85   86   88   97  102  104
##  [1009]  105  107  108  112  116  119  120  125  130  131  132  133  134  136
##  [1023]  138  139  140  142  144  146  152  154  156  158  160  161  163  165
##  [1037]  175  176  178  186  190  194  195  203  204  207  208  212  213  216
##  [1051]  225  227  237  239  242  244  247  248  251  252  253  255  257  258
##  [1065]  259  264  265  266  267  270  273  275  276  283  287  296  298  301
##  [1079]  302  304  309  314  333  337  347  348  358  360  369  372  375  378
##  [1093]  379  382  383 9998 9999    0    1    2    3    4    5    8   10   11
##  [1107]   12   14   15   17   18   20   24   27   29   30   33   35   37   38
##  [1121]   39   43   46   47   48   49   50   51   52   53   54   55   69   70
##  [1135]   71   72   73   75   77   79   80   82   83   85   86   87   89   93
##  [1149]   95  100  101  103  104  106  108  112  114  115  116  121  122  124
##  [1163]  128  133  141  142  145  152  156  160  161  162  164  170 9998 9999
##  [1177]    0    1    5    6   12   13   17   18   20   26   37   41   42   54
##  [1191]   56   58   64   66   76   78   83   84   85   86   87   88   93   96
##  [1205]   97  100  102  103  104  105  110  111  112  116  119  120  121  123
##  [1219]  124  125  130  133  134  135  139  141  145  150  181  182  188  200
##  [1233]  203  205  206  211  214  215  227  230  233  242  245  247  250  251
##  [1247]  253 9998 9999    0    1    3    5    7    8    9   10   11   12   13
##  [1261]   15   17   18   19   22   23   24   26   27   28   29   31   32   33
##  [1275]   34   36   37   38   39   40   41   42   55   60   61   62   71   74
##  [1289]   75   86   89   95  109  112  123  129  135  139  144  149  154  174
##  [1303]  178  180  191  195  204  210  211  214  220  230  231  232  240  243
##  [1317]  244  245  246  251  257  259  262  264  265  266 9998 9999    0    1
##  [1331]    2    7   10   13   17   18   20   23   26   27   32   35   36   40
##  [1345]   44   48   50   52   61   63   67   70   72   73   75   76   81   85
##  [1359]   92   94   96   98  100  101  102  103  105  109  110  111  114  119
##  [1373]  131  133  136  137  138  152  153  158  162  165  167  174  177  187
##  [1387]  188  193  197  200  201  217  221  238  239  243  244  249  261  262
##  [1401]  263  266  275  276  277  285  286  287  292  293  296  307  315  334
##  [1415]  335  336  340  345  350  351  352  358  359  362  366  367  368  375
##  [1429]  377  381  384  387  389  390  391  394  396  397  400  405  407  411
##  [1443]  412  413  415  417  420  421  423  425  427  428  429  430  431  432
##  [1457]  436  438  440  441  443  444 9998 9999    0    1    7   10   13   20
##  [1471]   21   22   32   33   34   35   37   38   41   43   47   53   55   57
##  [1485]   60   62   63   64   65   66   69   70   73   74   75   76   78   79
##  [1499]   82   86   87   88   90   91   92   94   95   96   97   99  100  101
##  [1513]  102  106  107  109  110  111  114  116  117  121  123  125  127  128
##  [1527]  129  130  131  134  135  136  138  148  152  153  155  161  164  177
##  [1541]  191  193  194  196  203  207  208  211  212  213  216  217  219  220
##  [1555]  225  226  228  234  237  238  240  241  242  245  248  249  251  258
##  [1569]  260  263  264  267  271  273  279  282  284  285  286  287  289  293
##  [1583]  295  296  297  298  299  300  302  303  309  311  312  313 9998 9999
##  [1597]    0    1    2    3    8   11   15   18   20   21   24   29   33   34
##  [1611]   35   42   43   44   46   49   50   51   53   57   60   61   62   64
##  [1625]   68   75   78   84   89   92   94  103  104  109  131  135  136  140
##  [1639]  162  164 9998 9999    0    1    2    3    4    6    7    9   12   16
##  [1653]   17   24   30   33   34   36   47   49   51   58   59   62   68   69
##  [1667]   71   77   82   87   94  100  102  103  104  107  108  109  110  112
##  [1681]  113  115  118  119  120  123  124  133  134  136  138  139  141  143
##  [1695]  144  145  146  147  150  151  154  157  159  162  163 9998 9999    0
##  [1709]    1    3    5    8   11   14   21   24   28   37   38   42   69   71
##  [1723]   74   76   93  101  102  125  137  139  149  152  167  171  174  194
##  [1737]  206  207  211  222  232  234  235  236  237  238 9998 9999    0    1
##  [1751]    2    3    4    5    7    8   10   11   13   15   16   17   18   19
##  [1765]   20   21   22   23   24   32   37   38   40   41   43   45   47   52
##  [1779]   53   55   56   58   60   62   66   67   68   69 9998 9999    0    1
##  [1793]    5    6    7    8   12   13   14   16   18   20   23   26   28   31
##  [1807]   32   35   37   42   43   45   51   58   61   62   63   65   66   67
##  [1821]   68   70   74   75   76   79   80   85   89   90   99  103  107  112
##  [1835]  119  120  128  130  133  135  136  140  143  144  145  147  149  153
##  [1849]  154  169  178  179  190  193  195  196  200  204  207 9998 9999    0
##  [1863]    1    5    9   14   18   21   24   25   30   31   32  223  228  233
##  [1877]  235  238  239  241  242  243  244 9998    0    1    5    8   10   12
##  [1891]   14   21   25   29   30   31   32   33   34   35   38   40   41   42
##  [1905]   43   44   49   51   54   55   56   59   60   61   63   67   68   71
##  [1919]   76   78   80   81   84   87   92   93   95   96   99  101  103  104
##  [1933]  106  110  111  114  115  116  121  128  129  132  134  138  140  148
##  [1947]  150  152  153  162  163  164  165  167  168  174  176  181  188  191
##  [1961]  192  195  196  199  204  205  208  209  210  212  213  215  216  218
##  [1975]  220  221  227  228  231  232  237  238  239  240  246  247  248  252
##  [1989]  254  255  256  259  262  264  273  279  282  283  284  286  287  288
##  [2003]  294  295  296  297 9998 9999    0    1    4    5    7    8    9   10
##  [2017]   16   17   19   21   22   23   26   28   29   31   52   60   61   62
##  [2031]   64   65   68   69   73 9998 9999    0    1    2    3    4    5    6
##  [2045]    8   10   12   13   15   17   18   19   20   22   24   25   27   28
##  [2059]   29   30   31   35   36   40   42   43   44   45   47   48   49   50
##  [2073]   51   54   57   58   59   60   62   63   66   69   71   72   74   76
##  [2087]   77   79   80   81   83   84   85   86   88   89   91   92   93   94
##  [2101]   95   97   99  101  102  103  104  105  106  107  108  109  110  111
##  [2115]  112  113  115  116  117  118  120  122  123  124  126  128  134  135
##  [2129]  138  144  145  146  152  154  155  156  167  168  169  170  173  174
##  [2143]  176  178  180  183  188  189  191  192  194  195  196  197  198  200
##  [2157]  203  205  206  212  216  217  219  222  227  228  231  232  234  236
##  [2171]  237  239  242  243  245  247  248  249  251  253  259  260  261  262
##  [2185] 9998 9999    0    1    2    3    4    5    6    7   18   24   25   26
##  [2199]   27   31   38   39   41   42   44   48   50   51   52   53   54   55
##  [2213]   56   57   58   60   64   65   66   67   72   74   77   78   81   82
##  [2227]   86   87   92   93   94   96   99  100  101  102  104 9998 9999    0
##  [2241]    1    3    7   12   13   14   16   18   20   21   22   24   29   30
##  [2255]   35   37   39   40   45   50   51   55   58   60   64   66   69   70
##  [2269]   71   73   74   88   89   90   91   93   94   96   98  109  111  118
##  [2283]  119  120  124  126  137  140  141  152  160  161  176  179  189  190
##  [2297]  206  211  214  215  223  234 9998 9999    0    1    2    3    4    5
##  [2311]    6    8    9   10   12   14   16   20   24   25   27   34   40   45
##  [2325]   47   53   54   55 9998 9999    0    1    2    6    7    8   10   11
##  [2339]   13   14   19   22   23   24   26   27   29   30   33   35   36   37
##  [2353]   38   39   44   46   48   49   51   53   54   56   58   59   60   61
##  [2367]   62   64   65   67   68   69   70   71   72   73   74   76   77   78
##  [2381]   79   80   81   85   91   92   94   95   97  101  103  108  110  119
##  [2395]  122  132  133  137  139  141  142  144  146  151  152  153  159  160
##  [2409]  163  167  168  169  171  172  174  176  177 9998 9999    0    1    3
##  [2423]    8   13   15   17   20   21   23   34   42   50   57   65   69   73
##  [2437]   74   77 9998    0    1    2    3   17   21   25   32   33   34   35
##  [2451]   36   39   40   44   48   50   51   54   61   62   66   69   73   75
##  [2465]   79   81   82   85   86   87   90  100  104  108  110  117  123  125
##  [2479]  127  128  132  134  136  138  139  140  148  150  156  158  161  162
##  [2493]  169  172  176  178  181  184  190  194  202  203  207  210  213  216
##  [2507]  217  218  222  225  226  228  230  235  236  238  241  243  244  245
##  [2521]  246  247  249  251  252  259  260  261  264  268  269  270  273  277
##  [2535]  278  283  284  286  292  293  295  300  301  302  303  305  313  314
##  [2549]  320  329  331  332  350  351  355  357  359  363  375  379  381  382
##  [2563]  383  385  386  395  398  399  406  407  409  410  412  413  414  415
##  [2577]  416  417  419  421  422  423  425  427  428  429  430  431  432  433
##  [2591]  434  435  438  440  442  443  446  449  452  453  454  460  463  466
##  [2605]  468  471  472  473  474  475  476  478  481  483  487  491  492  495
##  [2619]  497  498  500  501  502  504  507  508  509  510  516  521  523  524
##  [2633]  525  526  527  529  534  536  542  546  549  551  552  563  564  566
##  [2647]  568  569  571  573  575  576  577  590  591  594  598  599  602  603
##  [2661]  604  605  606  608  609  610  611  612  613  617  619  620  622  624
##  [2675]  625  627  631  632  633  634  635  636  637  638  639  640  641  642
##  [2689]  643  646  647  650  653  655  656  657  659  661  663  666  671  672
##  [2703]  673  677  678  679  682  683  684  685  687  691  692  693  694  696
##  [2717]  699  705  706  707  710  711  713  714  716  717  719  720  721  722
##  [2731]  723  724  727  728  731  732  734  736  737  738  739  740  741  743
##  [2745]  744  750  755  757  763  764  765  766  769  774  776  777  778  779
##  [2759]  781  782  786  787  789  790  791  792  793  794  795  796  797  800
##  [2773]  802 9998 9999    0    1    3   12   14   19   20   25   27   30   31
##  [2787]   32   36   37   39   46   47   52   55   57   58   59   60   66   76
##  [2801]   83   86   90  102  127  132  133 9998 9999    0    1    2    7    9
##  [2815]   11   12   18   20   24   25   26   27   31   43   48   54   57   60
##  [2829]   76   79   80   81   82   87   88   89   90   93   98  115  118  119
##  [2843]  126  133  135  138  161  162  164  167  168 9998 9999    0    1   15
##  [2857]   16   22   27   28   29   30   32   33   34   42   44   45   49   53
##  [2871]   61   65   70   72   74   76   77   78   84   90   95   97   98   99
##  [2885]  100  113  115  116  117  119  121  126  130  131  132  155  166  170
##  [2899]  171  175  183  234  260  261  263  264 9998 9999    0    1    2 9998
##  [2913]    0    1    8   10   11   13   15   16   18   19   21   23   25   30
##  [2927]   31   35   38   39   43   44   46   47   48   49   57   60   64   65
##  [2941]   67   70   71   72   74   77   78   82   85   86   95  100  121  122
##  [2955]  123  130  147  149  156  163 9998 9999    0    1    2    3    4    5
##  [2969]    6    7    9   10   12   13   14   15   17   18   19   20   21   22
##  [2983]   23   26   44   45   46   52   55   62   63   68   74   77   78   84
##  [2997]   93   95  117 9998 9999    0    1    2    3    6    7    8    9   10
##  [3011]   12   13   14   15   16   18   19   20   21   22   23   24   26   27
##  [3025]   28   29   30   31   33   34   35   36   37   38   39   41   42   43
##  [3039]   44   46   47   48   49   61   63   67   82  105  110  117  130  132
##  [3053]  133  134  140  148  151  163  172  173  175  176  183  199  200 9998
##  [3067] 9999    0    1    4    6    7    9   10   12   15   16   22   24   25
##  [3081]   26   30   31   33   36   39   40   41   42   48   52   57   60   62
##  [3095]   63   66   67   68   74   81   85   86   91   92   94   95   97   99
##  [3109]  101  102  105  110  111  114  115  117  123  124  125  126  132  135
##  [3123]  136  137  139  140  141  146  147  148  150  152  154  159  161  165
##  [3137]  166  173  176  182  183  186  190  191  202  212  213  216  220  226
##  [3151]  227  232  236  242  247  249  252  253  257  263  276  281  284  290
##  [3165]  291  306  308  325  329  330  331  338  345  350  358  363 9998 9999
##  [3179]    0    1    2    3    4    5    6    7    9   10   11   12   14   18
##  [3193]   19   20   27   30   33   34   35   41   42   43   48   49   50   51
##  [3207]   54   57   59   60   62   64   67   69   70   71   73   74   75   77
##  [3221]   78   79   80   82   83   84   85   89   91   94   96   97   99  101
##  [3235]  103  105  106  109  110  113  114  116  120  127  128  129  130  131
##  [3249]  134  135  137  139  141  142  145  147  152  153  154  155  156  157
##  [3263]  161  162  163  164  165  166  168  169  170  171  172  173  174  175
##  [3277]  176  177  178  179  180  181 9998 9999    0    1    5    7    8    9
##  [3291]   10   11   13   16   21   22   24   25   26   27   28   30   32   33
##  [3305]   34   35   40   43   45   46   47   48   50   51   54   56   57   60
##  [3319]   63   65   71   72   76   77   78   79   80   81   83   84   88   89
##  [3333]   93   95   98   99  100  101  104  106  107  108  109  110  114  115
##  [3347]  116  117  119  120  121  122  123  124  126  127  130  131  132  135
##  [3361]  136  137  139  140  141  142  144  147  148  151  157  158  159  164
##  [3375]  165  169  174  179  181  186  199  203  205  206  207  208  210  211
##  [3389]  212  214  217  218  221  226  227  231  232  233  234  236  239  240
##  [3403]  241  242  250  253  255  258  264  265  266  268  272  273  274  278
##  [3417]  279  280  281  289  292  295  297  298  302  306  308  310  317  319
##  [3431]  320  327  330  333  337  341  344  345  346  347  351  352 9998 9999
##  [3445]    0    1    2    3    6    8   12   13   14   17   18   20   21   24
##  [3459]   25   26   27   28   29   31   32   34   35   37   38   41   42   45
##  [3473]   46   47   51   52   55   56   57   59   61   62   64   65   66   67
##  [3487]   68   69   70   71   72   74   76   78   80   81   87   88   91   92
##  [3501]   93   95   98  100  101  102  103  104  108  110  111  112  113  114
##  [3515]  115  116  117  118  120  121  122  123  130  133  136  139  142  143
##  [3529]  144  147  149  151  152  153  154  163  177  178  181  182  183  189
##  [3543]  192  193  194  195  198  199  203  206  207  210  213  217  223  224
##  [3557]  228  230  232  235  238  239  241  242  243  244  245  246  249  251
##  [3571]  252  253  254  255  256  257  258  259  260  261  262  265  266  268
##  [3585]  271  273  274  275  277  283  284  285  286  291  292  293  295  296
##  [3599]  297  298  299  300  301  302  303  304  307  309 9998 9999    0    1
##  [3613]    2    3    4    5    6    7   28   29   33   38   39   44   45   56
##  [3627]   57   58   61   63 9998 9999    0    1    3    4    6    7    9   11
##  [3641]   15   17   18   19   21   22   23   24   25   26   27   29   30   32
##  [3655]   33   34   37   38   39   40   42   44   46   48   49   50   52   53
##  [3669]   55   56   58   60   61   63   65   66   67   69   70   71   74   75
##  [3683]   76   77   79   80   82   83   84   86   87   89   90   93   96   97
##  [3697]   99  101  102  103  104  105  106  109  110  111  113  114  116  118
##  [3711]  120  121  122  124  126  128  129  132  133  134  136  137  138  139
##  [3725]  140  142  143  145  146  149  150  151  152  159  164  169  175  176
##  [3739]  180  181  183  187  192  202  203  204  205  206  207  214  215  217
##  [3753]  218  219  220  221  222  223  224  225  226  227  228  229  232  237
##  [3767]  238  239  243  245  249  250  251  254  256  259  260  263  264  265
##  [3781]  266  267  271  272  273  274  275  276  278  286  288  293  294  295
##  [3795]  296  297 9998 9999    0    1    5    6    8    9   11   14   15   19
##  [3809]   21   23   26   28   30   31   33   37   38   39   40   42   49   53
##  [3823]   55   58   62   64   69   73   78   79   86   87   88   89   90   91
##  [3837]   96   97   98   99  100  108  109  112  113  116  117  118  126  128
##  [3851]  130  131  134  136  137  139  140  148  153  154  157  159  163  165
##  [3865]  170  173  174  177  178  179  185  187  188  189  191  195  197  199
##  [3879]  200  210  219  220  221  222  226  227  230  235  245  248  250  253
##  [3893]  256  258  260  261  266  267  268  269  270  274  276  278  283  286
##  [3907]  289  291  294  304  306  307  308  310  312  313  314  317  318  321
##  [3921]  345  347  355  358  362  363  368  427  435  437  442  448  452  458
##  [3935]  461  464  466  467  474  475  476  479  480  481  483  485  496  497
##  [3949]  503  505  510  511  512  513 9998 9999    0    1    2    3    4    5
##  [3963]    7    8   10   11   12   13   14   15   16   17   19   20   21   22
##  [3977]   24   25   27   29   31   39   45   46   47   48   50   51   53   54
##  [3991]   57   66   70   71   76   77   78   79   80   89   90   91   98  101
##  [4005]  103  105  108  109 9998 9999    0    1    2    4    7    8    9   10
##  [4019]   11   13   14   15   16   17   19   21   24   27   28   29   30   31
##  [4033]   35   36   39   43   44   48 9998 9999    0    1    2    5    7    8
##  [4047]    9   12   14   18   23   25   28   32   33   35   43   51   56   57
##  [4061]   59   64   66 9998 9999    0    1    2    6    7   10   19   20   21
##  [4075]   22   24   25   26   27   28   30   31   32   34   35   36   37   38
##  [4089]   42   44   46   48   50   51   53   55   57   59   63   64   65   66
##  [4103]   67   69   70   71   72   75   76   77   79   81   82   84   85   86
##  [4117]   90   91   93   94   95   96   98   99  101  102  103  104  107  110
##  [4131]  113  115  117  118  119  120  121  122  124  125  127  129  131  132
##  [4145]  133  135  138  142  144  145  153  154  156  158  159  161  165  166
##  [4159]  167  168  171  176  177  178  179  183  184  185  188  189  190  193
##  [4173]  194  195  196  198  199  201  211  213  215  216  219  222  224  225
##  [4187]  228  230  233  234  237  240  241  242  245  246  248  249  250  255
##  [4201]  256  258  260  261  265  268  270  273  275  277  278  279  281  284
##  [4215]  287  291  292  293  299  301  307  308  309  310  311  313  317  322
##  [4229]  323  324  326  328  332  333  334  336  337  338  342  344  345  347
##  [4243]  348  351  360  361  363  365  367  369  375  378  386  387  388  390
##  [4257]  391  392  393  400  401  404  408  410  415  419  431  433  434  446
##  [4271]  458  461  464  467  468  473  474  475  476  478  479  483  484  488
##  [4285]  489  490  492  494  495  496  498  502  503  506  515  517  518  520
##  [4299]  521  525  527  530  531  532  537  540  541  545  551  557  559  560
##  [4313]  565  566  570  573  579  580  581  582  583  587  589  590  591  592
##  [4327]  594  600  604  605  606  613  617  619  622  623  624  625  626  627
##  [4341]  628  632  633  634  637  638  641  643  649  650  651  656  657  658
##  [4355]  659  663  665  667  668  671  672  675  677  680  683  684  686  687
##  [4369]  688  689  690  691  692  694  695  696  697  699  701  702  705  706
##  [4383]  707  709  710  711  712  713  715  716  718  721  722  723  724  726
##  [4397]  729  730  732  734  735  736  737  738  739  740  742  744  745  749
##  [4411]  750  751  752  754  755  757  759  763  765  766  767  768  771  772
##  [4425]  773  776  777  779  783  784  785  793  794  795  799  800  801  802
##  [4439]  805  806  807  808  811  812  813  814  815  816  817  818  819  820
##  [4453]  821  823  824  825  826  828  829  830  831  832  833  834  837  838
##  [4467]  840  841  842  843  845  846  847  849  852  857  859  861  862  863
##  [4481]  865  866  867  869  870  871  873  874  878  880  883  884  885  887
##  [4495]  888  891  893  895  896  898  900  901  903  904  907  908  909  910
##  [4509]  912  914  916  917  918  919  920  921  922  923  926  927  928  929
##  [4523]  931 9998 9999    0    1    2    3    4    5    6    7    8   10   43
##  [4537]   49 9998    0    1    2    3    4    6    7    8    9   10   15   21
##  [4551]   37   39   43   48   49   52   62   63 9998    0    1    2    3    5
##  [4565]    6   17   21   24   27   32   39   41   43   44   45   47   49   52
##  [4579]   54   55   59   66   69   70   71   78   82   87   89   92   95  106
##  [4593]  108  109  110  112  120  121  125  133  135  136  137  139  141  142
##  [4607]  144  145  146  147  163  171  175  177  192  196  197  199  204  208
##  [4621]  214  215  219  227  232  240  252  255  257 9998 9999    0    1    2
##  [4635]    3   12   13   14   16   18   24   38   40 9998 9999    0    1    2
##  [4649]    6    8   14   17   18   20   21   23   30   32   35   38   43   44
##  [4663]   47   48   49   52   55   56   59   60   64   66   67   68   69   72
##  [4677]   75   76   78   79   83   85   86   87   89   94   97  100  101  106
##  [4691]  112  113  114  116  117  119  120  122  125  126  127  131  133  134
##  [4705]  136  137  138  140  142  146  152  154  156  160  161  162  163  164
##  [4719]  165  166  168  169  174  178  182  187  190  192  193  194  195  196
##  [4733]  197  198  201  202  205  208  210  211  214  215  216  217  218  221
##  [4747]  224  225  226  231  234  241  242  249  251  252  253  257  258  260
##  [4761]  263  264  267  268  272  279  290  291  294  295  299  300  302  303
##  [4775]  304  305  306  308  309  315  316  319  323  324  328  329  330  333
##  [4789]  334  335  340  341  342  362  363  366  367  368  379  380  383 9998
##  [4803] 9999    0    1    6    7    8    9   12   13   15   16   17   22   23
##  [4817]   25   26   28   29   30   32   35   38   39   41   42   43   44   45
##  [4831]   47   48   53   55   56   58   65   68   69   71   72   74   76   77
##  [4845]   84   89   90   95   97   99  100  104  105  107  108  109  110  113
##  [4859]  114  115  116  118 9998 9999    0    1    2    8    9   11   12   13
##  [4873]   17   19   20   21   26   27   29   33   34   39   41   50   53   54
##  [4887]   56   57   58   60   63   65   71   74   78   79   95   97  100  103
##  [4901]  105  108  115  118  133  135  136  137  146  156  157  167  169  170
##  [4915] 9998 9999    0    1    3    5    6    8   11   13   15   24   25   27
##  [4929]   31   33   36   37   39   40   42   45   48   51   53   56   58   65
##  [4943]   66   67   77   80   82   87   88   91   95   98  100  104  105  109
##  [4957]  110  117  120  129  130  131  132  139  140  142  143  146  149  150
##  [4971]  151  152  158  163  164  165  166  168  177  178  186  187  190  191
##  [4985]  193  195  197  198  201  202  204  205  207  208  213  221  227  228
##  [4999]  229  230  235  236  238  240  241  245  248  251  259  268  293  294
##  [5013]  298  302  309  325  326  328  330  331  335  336  337  350  351  358
##  [5027]  363  365  367  373  374  376  377  380  384  385  388  393  394  402
##  [5041]  404  406  412  413  416  419  420  421  423  425  426  427  428  430
##  [5055]  432  434  435  441  442  444  446  448  451  454  455  457  458  462
##  [5069]  465  467  468  470  472  474  475  477  478  480  482  483  484  486
##  [5083]  488  489  490  491  492  493  494  495  499  500  503  506  508  510
##  [5097]  514  515  517  520  521  522  524  525  528  532  533  535  538  539
##  [5111]  540  541  542  544  545  547  548  552  555  556  557  560  563  564
##  [5125]  570  571  573  575  589  590  591  592  593  595  596  598  600  601
##  [5139]  603  605  606  608  609  610  611  615  617  618  619  621  622  626
##  [5153]  627  629  632  634  637  646  648  649  651  661  662  663  666  668
##  [5167]  679  684  703  704  705  731  737  745  749  760  763  765  768  773
##  [5181]  775  777  778  780  784  787  793  799  802  807  810  815  818  821
##  [5195]  822  824  831  835  839  844  848  850  851  854  855  857  858  859
##  [5209]  861  862  863  865  867  870  873  874  877  879  880  883  885  887
##  [5223]  891  892  895  902  906  908  913  917  920  922  923  926  927  929
##  [5237]  931  932  933  935  937  940  942  945  948  952  953  954  958  959
##  [5251]  960  961  963  966  967  968  971  974  976  981  983  984  985  990
##  [5265]  992  994  999 1000 1004 1006 1008 1014 1019 1024 1025 1026 1028 1029
##  [5279] 1031 1032 1034 1035 1036 1037 1039 1040 1041 1042 1044 1045 1046 1052
##  [5293] 1053 1055 1058 1059 1062 1063 1064 1067 1068 1069 1070 1073 1074 1078
##  [5307] 1079 1080 1082 1084 1087 1095 1096 1099 1100 1101 1102 1103 1104 1106
##  [5321] 1107 1108 1110 1111 1112 1115 1116 1124 1127 1128 1130 1145 1146 1147
##  [5335] 1148 1151 1153 1154 1155 1157 1158 1159 1160 1161 1162 1163 1164 1165
##  [5349] 1166 1167 1168 1170 1171 1172 1173 1174 1176 1178 1179 1181 1182 1183
##  [5363] 1185 1186 1188 1189 1193 1194 1196 1197 1199 1200 1203 1206 1208 1209
##  [5377] 1213 1214 1216 1217 1218 1220 1221 1222 1224 1225 1227 1229 1235 1236
##  [5391] 1238 1239 1242 1243 1244 1246 1248 1249 1251 1252 1253 1254 1256 1260
##  [5405] 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1273 1274 1275
##  [5419] 9998 9999    0    1    3    4    7    8   10   11   12   15   16   19
##  [5433]   21   22   23   24   25   27   30   33   34   36   43   54   66   73
##  [5447]   75   79   84   92   95   96   99  103  107  108  109 9998 9999    0
##  [5461]    1    9   10   11   12   14   16   17   18   19   21   22   23   24
##  [5475]   26   28   29   31   32   40   41   43   45   47   60   62   63   66
##  [5489]   69   72   75   77   80   81   82   90   92   98  100  102  106  109
##  [5503]  112  113  117  118  121  122  123  125  126 9998 9999    0    1    3
##  [5517]    7    9   15   17   19   20   21   24   25   26   28   29   32   33
##  [5531]   35   38   39   45   46   48   49   53   57   58   63   65   67   71
##  [5545]   72   90   92   96   97  105  108  114  117  120  123  127  128  130
##  [5559]  140  142  144  149  151  155  156  163  164  168  171  183  184 9998
##  [5573] 9999    0    1    3    5    9   11   18   19   20   21   24   25   31
##  [5587]   32   34   35   37   38   40   42   44   45   49   50   51   52   63
##  [5601]   65   66   67   69   70   72   73   74   75   81   83   84   86   87
##  [5615]   93   96   98  100  104  108  109  121  127  132  134  136  137  141
##  [5629]  144  147  148  149  151  153  154  156  161  162  164  175  187  195
##  [5643]  196  198  200  202  207  210  230  238  254  255  256  269  335  336
##  [5657]  346  349  354  366  373  379  394  396  398  401  406  407  408  416
##  [5671]  419  420  427  430  432  449  451  461 9998 9999    0    1    2    4
##  [5685]    6    7   10   11   13   15   16   17   19   20   21   22   25   26
##  [5699]   27   28   30   31   32   33   36   37   40   41   42   43   44   45
##  [5713]   48   51   52   54   56   57   58   59   60   62   67   75   76   79
##  [5727]   80   81   89   92   96  102  106  109  114  122  123  124  133  136
##  [5741]  142  145  147  152  153 9998 9999    0    1    4    7    8    9   11
##  [5755]   14   15   22   23   24   27   28   30   31   38   43   44   45   48
##  [5769]   49   50   52   57   58   59   61   66   68   73   77   78   85   86
##  [5783]  103  104  109  112  115  117  120  121  126  127  128  130  131  133
##  [5797]  134  141  142  148  156  157  158  162  164  166  167  168  169  173
##  [5811]  178  179  180  182  183  190  191  194  195  198  202  204  205  208
##  [5825]  222  227  231  232  235  239  240  242  244  245  246  247  248  249
##  [5839]  251  252  255  257  258  260  261  262  267  268 9998 9999    0    1
##  [5853]    2    5    8    9   10   21   23   25   27   30   32   39   40   42
##  [5867]   43   44   49   52   53   55   57   63   64   65   66   69   76   82
##  [5881]   84   87   91  100  101  105  107  115  116  119  123  130  131  132
##  [5895]  136  139  141  145  146  147  148  153  157  160  163  164  165  166
##  [5909]  167  168  169  170  172  173  174  175  178  180  182  185  186  190
##  [5923]  191  192  193  204  206  208  215  217  219  228  233  240  242  244
##  [5937]  245  254  255  256  266  269  270  274  429  437  447  449  451  471
##  [5951]  479  483  488  490  494  496  500  506  508  512  513  518  521  526
##  [5965]  527  530  534  540  542  544  545  549  551  558  571  573  574  580
##  [5979]  593  597  598  602  603  607  608  619 9998 9999    0    1    2    6
##  [5993]   10   13   18   20   23   24   28   30   31   33   40   41   43   44
##  [6007]   45   47   49   54   57   59   61   63   64   68   73   77   79   80
##  [6021]   82   83   86   87   88   90   91   92   95   97   98   99  101  106
##  [6035]  107  108  111  117  118  119  123  129  132  136  137  138  139  140
##  [6049]  142  143  145  148  149  151  153  154  155  156  161  163  164  165
##  [6063]  166  167  169  170  173  175  189  193  201  202  203  204  212  216
##  [6077]  217  220  221  222  224  228  232  237  239  240  243  245  257  263
##  [6091]  267  268  270  271  278  279 9998 9999    0    1    2    4    9   11
##  [6105]   12   13   14   20   21   26   27   34   35   43   44   51   61   64
##  [6119]   83   86   89   96  105  111  114  115  116  117  118  120  121  124
##  [6133]  125  126  127  128  129  130  131  132  133  134 9998 9999    0    1
##  [6147]    3    4   10   12   13   17   18   23   24   28   29   30   35   36
##  [6161]   42   44   45   49   50   54   56   60   61   66   67   69   71   73
##  [6175]   74   75   76   79   81   83   84   87   89   90   91   95   96   98
##  [6189]   99  109  112  115  117  118  121  162  167  168  170  178  179  180
##  [6203]  181  201  209  211  212  216  218  219  226  231  235  239  251  263
##  [6217]  267  269  272 9998 9999    0    1    2    5    6   11   12   14   15
##  [6231]   16   18   21   22   24   25   32   33   36   43   46   49   53   54
##  [6245]   56   57   63   64   69   74   75   76   78   79   81   82   83   86
##  [6259]   90   91   92   94   98  100  102  103  105  107  111  120  126  130
##  [6273]  131  147  148  151  153  154  155  156  161  162  166  167  168  197
##  [6287]  209  213  219  220  223  224  225  226  227  228  229  230  231  232
##  [6301]  234 9998 9999    0    1    2    3    4    6    7    8   10   11   12
##  [6315]   13   19   20   25   26   27   28   31   38   40   41   45   46   47
##  [6329]   48   49   51   52   53   55   56   57   58   59   64   65   66   67
##  [6343]   70   71   72   75   78   81   82   85   87   92   97  101  103  107
##  [6357]  108  111  112  113  115  116  117  118  120  121  122  124  127  128
##  [6371]  133  134  135  136  138  140  142  148  149  150  152  154  157  158
##  [6385]  160  161  162  165  166  167  170  173  174  178  179  180  181  182
##  [6399]  183  185  186  187  188  189  190  194  195  196  197  198  200  204
##  [6413]  206  208  209  210  212  214  215  216  218  219  220  221  223  224
##  [6427]  225  227  228  229  232  233  234  236  237  239  241  242  243  244
##  [6441]  246  247  251  252  253  254  256  258  260  264  268  269  270  271
##  [6455]  273  275  276  277  281  282  291  292  294  295  296  297  300  302
##  [6469]  303  304  305  311  313  314  316  317  319  321  323  329  332  333
##  [6483]  335  336  337  338  340  343  345  346  347  349  350  351  352  354
##  [6497]  356  357  358  360  362  363  364  365  366  367  368  369  371  372
##  [6511]  373  374  375  376  378  379  380  381  382  384  385  387  389  390
##  [6525]  391  392  393  394  395  396  398  399  401  402  403  404  405  408
##  [6539]  409  414  417  418  419  420  421  423  424  425  426  427  428  429
##  [6553]  430  431  432  433  434  435  437  438  439  440  441  445 9998 9999
##  [6567]    0    1    2    3    6    9   11   13   14   15   17   19   20   21
##  [6581]   22   25   30   31   32   34   36   38   39   41   42   43   44   45
##  [6595]   46   48   52   53   54   56   57   61   62   65   72   73   75   78
##  [6609]   90  103  109  114  117  122  123  127 9998 9999    0    1    3   12
##  [6623]   19   20   22   39   44   47   48   49   51   52   60   68   71   76
##  [6637]   82   86   88   90   93  112  195  196  197  198  199 9998 9999    0
##  [6651]    1    2    3    7   15   27   28   32   33   34   36   37   40   41
##  [6665]   47   57   64   67   73   74   83   85   86   92   93   96   97   98
##  [6679]   99  103  105  110  112  128  131  133  139  140  141  153  158  174
##  [6693]  185  188  190  191  202  207  210  214  220  227  229  236  237  241
##  [6707]  244  250  253  271  274  281  283  285  286  289 9998 9999    0    1
##  [6721]    2    3    4    5    6    7    9   10   11   12   13   14   15   16
##  [6735]   17   18   19   20   22   23   24   27   32   37   40   51   53   54
##  [6749]   63   64   65   66   74   75   83   84   86 9998 9999    0    1    3
##  [6763]    5    6    7    9   12   13   14   20   22   23   26   27   34   37
##  [6777]   39   41   45   46   47   49   51   54   55   56   57   58   59   60
##  [6791]   61   62   63   64   65   66   68   70   74   80   81   82   86   87
##  [6805]   88   93   95   96  100  103  104  105  108  112  115  117  120  121
##  [6819]  122  123  125  126  129  131  133  134  135  137  138  139  141  144
##  [6833]  146  148  153  155  157  158  164  165  167  170  173  175  176  178
##  [6847]  180  181  182  183  184  185  186  187  189  190  191  195  196  198
##  [6861]  202  203  204  216  217  218  220  224  225  226  227  228  233  240
##  [6875]  241  245  250  253  254  258  261  267  270  274  307  308  309  310
##  [6889]  313  317  320  324  327  328  330  333  336  338  339  346  350  352
##  [6903]  354  355  357  358  359  360  361  363  364  368  370  371  378 9998
##  [6917] 9999    0    1    8   11   13   14   26   29   30   32   65   73   87
##  [6931] 9998    0    1    5   14   15   16   19   20   21   28   31   32   33
##  [6945]   34   35   37   40   41   45   61   62   65   67   68   69   70   71
##  [6959]   79   82   84   85   86   87   92   95  101  103  104  108  111  112
##  [6973]  114  115  120  122  124  127  129  137  141  146  148  150  156  157
##  [6987]  161  167  170  171  172  180  181  185  191  198  200  215  227  229
##  [7001] 9998 9999    0    1    2    3    6    7    8    9   11   12   14   16
##  [7015]   22   23   26   27   28   30   34   38   46   54   56 9999    0    1
##  [7029]    3    4   10   20   25   26   31   41   46   49   55   62   65   67
##  [7043]   73   78   80   86  102  114  116  117  134  136  146  151  159 9998
##  [7057] 9999    0    1    2    4    5    7    8    9   10   11   12   13   14
##  [7071]   15   16   17   18   24   25   26   33   34   35   39   43   49   54
##  [7085]   75   82   85   92  104  107  110  112  117  118  119  123  125  128
##  [7099]  130  132  134  138  141  142  144  153  154  156  159  163  166  168
##  [7113]  176  177  179  180  181  182  188  191  192  198  205  207  209  210
##  [7127]  212  213  215  217  219  220  221  222  228  229  236  240  248  249
##  [7141]  252  253  255 9998 9999    0    1    2    3    4    6    7    8   10
##  [7155]   15   24   26   28   29   30   33   38   41   44   45   50   53   54
##  [7169]   63   66   70   72   77   79   81   82   83   84   86   90   98  100
##  [7183]  103  106  111  113  115  119  120  129  131  134  136  144  146  151
##  [7197]  155  156  160  163  167  169  172  174  175  181  183  188  191  204
##  [7211]  206  209  215  217  218  223  224  227  228  233  234  235  237  241
##  [7225]  247  249  251  252  257  264  266  268  269  270  271  272  276  277
##  [7239]  278  279  280  284  285  287  288  289  292  299  300  305  311  406
##  [7253]  410  411  417  429  430  442  452  453  454  455  460  464  476  488
##  [7267]  502  504  505  513  517  519  523  524  527  541  549  551  553  554
##  [7281]  555  556  561  566  568  575  589  592  594  596  760  766  767 9998
##  [7295] 9999    0    1    2    5    6   10   11   13   20   24   25   31   32
##  [7309]   33   34   35   37   38   40   42   50   51   52   53   58   60   61
##  [7323]   63   66   71   72   76   77   80   83   84   87   88   89   90   94
##  [7337]   95   96   98  103  104  105  106  111  112  116  118  120  123  124
##  [7351]  126  128  129  131  133  135  137  140  141  142  146  148  152  153
##  [7365]  154  155  156  157  161  163  164  170  172  173  174  179  183  184
##  [7379]  188  189  190  195  205  222  229  230  231  232  235  239  242  248
##  [7393]  251  252  259  260  261  264  266  272  275  276  288  302  304  310
##  [7407]  315  319  322  323  324  332  335  339  345  346  352  357  361  385
##  [7421]  391  398  400  412  418  422  423  432  433  435  442  443  444  447
##  [7435]  449  453  455  458  460  461  462  463  464  466  467  468  469  470
##  [7449]  473  477 9998 9999    0    1    3    4    5    6    7    9   10   12
##  [7463]   15   16   17   19   20   24   25   26   30   31   32   33   34   35
##  [7477]   36   38   40   42   43   44   47   50   51   52   59   62   75   87
##  [7491]   89   92   93   94   97   98  102  105  111  113  115  119  125  127
##  [7505]  130  132  135  137  140  143  147  148  150  151  152  154  156  157
##  [7519]  161  162  164  167  169  172  180  185  194  195  196  197  198  201
##  [7533]  202  206  207  209  210  211  215  223  229  230  232  233  234  239
##  [7547]  240 9998 9999    0    1    8    9   15   17   27   31   32   43   47
##  [7561]   50   70   72   84   87   89   95   96  100  102  103  107  108  111
##  [7575]  116  132  144  145  148  149  155  156  160  161  169  172  177  178
##  [7589]  180  182  185  190  198  207  209  210  212  213  220  227  233  238
##  [7603]  239  242  244  246  250  251  253  256  261  262  272  273  274  280
##  [7617]  287  289  290  291  296  298  301  303  304  308  316  324  357  362
##  [7631]  363  379  386  389  398  412  425  447  449  454  474  481  483  490
##  [7645]  492  493  494  500  504  505  508  509  516  519  531  532  541  544
##  [7659]  545  549  553  556  557  560  561  562  566  568  569  571  575  576
##  [7673]  578  580  581  582  584  585  590  593  594  602  603  604  605  607
##  [7687]  608  609  611  613  614  615  617  619  620  623 9998 9999    0    1
##  [7701]    3    4    5    6    7   10   12   13   14   16   18   21   22   23
##  [7715]   25   26   30   31   32   35   36   41   44   47   48   51   53   58
##  [7729]   78   91   96  107  112  121  130  132  138 9998 9999    0    1    3
##  [7743]    4    8   13   17   18   23   27   30   35   38   41 9998 9999    0
##  [7757]    1    7    8    9   11   12   13   14   17   19   27   29   32   38
##  [7771]   44   54   55   87 9998    0    1    8    9   11   12   14   15   16
##  [7785]   19   21   22   24   25   27   29   30   33   37   39   44   46   47
##  [7799]   48   50   52   53   57   58   59   60   64   69   70   71   73   81
##  [7813]   85   92   94   95   96  101  104  105  107  111  112  113  115  116
##  [7827]  120  121  122  125  129  130  131  132  135  136  137  138  140  141
##  [7841]  143  144  150  151  153  155  159  160  165  167  173  178  182  185
##  [7855]  187  193  198  199  202  204  209  213  215  217  218  221  222  223
##  [7869]  224  226  231  232  237  240  244  246  248  250  252  253  255  262
##  [7883]  269  272  282  289  290  295  298  299  301  302  303  304  308  310
##  [7897]  313  318  320  324  327  331  332  333  336  337  338  344  346  347
##  [7911]  348  351  353  355  359  360  361  364  367  373  374  375  376  378
##  [7925]  381 9998 9999    0    1    2    3    4    6    8    9   10   11   12
##  [7939]   14   15   16   17   18   19   20   21   22   23   24   25   26   27
##  [7953]   34   35   37   41   42   43   44   46   48 9998 9999    0    1    2
##  [7967]    4    5    8    9   12   18   24   29   32   38   39   41   42   44
##  [7981]   47   49   51   53   54   58   59   62   63   68   69   70   71   73
##  [7995]   74   75   79   82   87   89   95   99  100  103  104  105  109  110
##  [8009]  112  113  115  117  119  122  128  129  130  131  134  135  136  137
##  [8023]  138  140  149  151  152  153  154  155  157  158  162  167  169  171
##  [8037]  174  176  177  178  180  181  182  183  185  186  187  188  189  190
##  [8051]  193  196  197  198  199  200  202  203  204  205  208  209  210  211
##  [8065]  214  216  218  219  220  223  224  226  227  230  241  242  244  250
##  [8079]  255  257  258  264  265  266  267  268  270  271  273  276  277  278
##  [8093]  282  285  287  290  291  292  293  295  296  297  298  299  300  302
##  [8107]  303  305  307  310  311  312  315  316  318  320  322  324  325  326
##  [8121]  327  328  329  330  332  333  334  337  339  340  341  344  345  348
##  [8135]  358  360  365  371  374  376  377  378  382  384  385  387  388  389
##  [8149]  391  392  394  395  396  399  400  402  403  404  405  406  408  412
##  [8163]  413  414  418  419  424  425  427  428  429  430  431  432  433  435
##  [8177]  436  447  461  462  463  464  465  468  475  476  481  483  484  485
##  [8191]  487  488  489  665  666  667  673  676  678  680  683  685  694  695
##  [8205]  700  702  703  706  707  708  710  715  716  717  718  721  722  723
##  [8219]  726  730  731  732  733  734  736  739  740  741  744  745  746  748
##  [8233]  749  751  752  755  757  758  759  760  761  762  764  765  766  768
##  [8247]  769  770  771  774  775  777  779  783  784  785  786  787  788  789
##  [8261]  790  791  793  794  798  800  801  803  805  807  808  811  812  813
##  [8275]  814  815  816  826  828  831  839  841  844  845  848  853  854  857
##  [8289]  858  859  860  861  862  863  864  866  867  868  869  870 9998 9999
##  [8303]    0    1    3    5   12   13   16   17   18   19   22   26   27   33
##  [8317]   35   39   40   41   45   48   56   58   62   63   66   68   69   71
##  [8331]   77   79   86   88   93   94   95   96  102  109  110  118  119  124
##  [8345]  127  128  129  133  134  136  138  140  141  144  145  152  164  166
##  [8359]  169  177  180  182  185  188  191  193  197  200  213  219  220  221
##  [8373]  223  224  227  231  232  233  234  235  236  237  252  254  256  265
##  [8387]  270  272  280  282  284  285  292  295  296  301  303  311  317  417
##  [8401]  440  447  453  591  596  597  600  605  607  612  618  621  623  625
##  [8415]  627  634  635  641  642  643  646  647  650  651  652  653  656  661
##  [8429]  670  673  684  686  690  692  694  695  696  700  703  712  717  720
##  [8443]  722  726  728  729  736  738  741  743  746  750  751  754  765  766
##  [8457]  767  768  769 9998 9999    0    1    2    3    4    5    6    7   11
##  [8471]   15   26   28   29   38   39   48   54   57   58   61 9998 9999    0
##  [8485]    1    3    4    5    6    8    9   10   11   13   14   15   16   17
##  [8499]   18   23   26   27   29   33   35   43   49   50 9998 9999    0    1
##  [8513]    3    4    5    6    8    9   11   13   14   15   19   20   21   23
##  [8527]   24   25   26   28   31   32   33   34   35   37   38   39   41   42
##  [8541]   43   45   46   48   50   51   55   60   75   87   89   93  103  105
##  [8555]  106  107  110  115  117  119  122  125  140  166  169  172  174  177
##  [8569]  180  186  200  235  237  242  244  325  333  349  372  383  394  397
##  [8583]  402  403  424  435  439  441  459  461  464  466  473  474  487  500
##  [8597]  501  502  510  519  529  535  538  540  552  560  561  563  569  573
##  [8611]  575  583  591  606  611  613  617  622  624  626  629  632  633  636
##  [8625]  637  647  657  658  659  666  672  674  676  682  694  695  698  699
##  [8639]  701  710  714  720  725  729  734  737  738  743  745  750  754  756
##  [8653]  760  762  763  765  766  767  768  769  771  772  773  774  775  777
##  [8667]  783  784  787  789  790  791  792  793  795  798  799  800  801  802
##  [8681]  803  806  807  808  809  811  813  814  818  819  822  823  827  831
##  [8695]  832  833  835  836  837  838  842  843  844  845  846  848  852  853
##  [8709]  854  856  857  858  859  860  861  862  863  864  866  869  870  871
##  [8723]  872  874  875  877  878  879  880  881  882  883  884  890  891  894
##  [8737]  895  897  901  902  903  904  905 9998 9999    0    1    3   14   17
##  [8751]   29   39   49   70   81   83   91   92   95  105  108  113  124  126
##  [8765]  128  130  131  132  133  134  135 9998 9999    0    1    2    3    6
##  [8779]    7    8   10   11   12   14   15   17   18   19   20   21   23   25
##  [8793]   27   29   31   32   36   42   43   44   45   58   61   64   71   73
##  [8807]   74   77   85   86   87   88   89 9998 9999    0    1    5    9   12
##  [8821]   13   18   20   21   23   25   26   29   30   33   34   38   39   45
##  [8835]   46   47   48   50   51   53   54   57   58   59   65   67   69   70
##  [8849]   73   75   76   78   79   80   81   82   86   87   91   92   95   96
##  [8863]   98  100  101  105  109  110  112  113  115  116  120  122  123  125
##  [8877]  132  137  138  143  145  147  149  152  153  156  157  159  161  165
##  [8891]  167  168  171  172  180  189  215  217  218  219  220  221  230  235
##  [8905]  237  242  244  249  250  252  261  263  266  267  269  270  271  272
##  [8919]  273  275  276  280  285  286  287  288  290  292  293  296  302  303
##  [8933]  306  308  313  314  320  329  338  341  343  345  348  351  354  357
##  [8947]  358  361  362  363  366  367  368  372  374  379  382  383  387  388
##  [8961]  391  392  393  402  403  406  408  414  418  424  427  432  438  452
##  [8975]  460  463  473  476  477  479  480  482  484  488  490  493  499  509
##  [8989]  511  516  520  522 9998 9999    0    1    2    9   12   22   23   25
##  [9003]   26   27   31   34   38   50   51   56   61   73  101  105  109  111
##  [9017]  112  114  123  125  126  130  133  135  136  154  156  157  164  165
##  [9031]  169  174  184  188  189  190  192  193  194  195  196  197  199  200
##  [9045]  204  205 9998 9999    0    1    2    3    9   10   13   15   16   19
##  [9059]   22   23   25   26   27   28   34   35   37   43   44   47   73 9998
##  [9073] 9999    0    1    6    7    9   10   11   15   16   19   33   44   48
##  [9087]   54   64   65   67   68   69 9998    0    1    2    3    4    5    6
##  [9101]   11   13   14   15   16   20   21   23   27   31   34   35   37   47
##  [9115]   50   52   55   56   61   62   63   68   70   71   72   74   75   76
##  [9129]   77   78   79   82   84   89  104  110  119  135  146  156  157  160
##  [9143]  161  181  198 9998 9999    0    1    2    5    6    7    8    9   10
##  [9157]   11   12   13   15   16   17   18   21   27   29   31   32   34   35
##  [9171]   37   38   39   40   41   44   45   46   47   49   50   53   54   58
##  [9185]   61   62   63   65   67   68   70   74   75   76  105  106  107  113
##  [9199]  114  115  116  117  118  119  120  127  131  134  136  138  140  141
##  [9213]  144  148  149  154  155  160  162  165  166  170  176  180  181  183
##  [9227]  184  185  187  191  194  196  199  201  202  206  207  212  215  216
##  [9241]  222  226  230  232 9998 9999    0    1    3    6    7    8   10   11
##  [9255]   13   14   16   19   20   21   22   23   24   25   33   36   39   42
##  [9269]   46 9998 9999    0    1    2    3    4    5    6    7    8    9   10
##  [9283]   14   19   20   22   24   40   42   45   47   48 9998 9999    0    1
##  [9297]    3    5    6    7   10   12   14   22   24   26   28   29   31   32
##  [9311]   34   37   38   41   42   46   47   48   50   51   53   56   58   59
##  [9325]   62   65   66   72   86   93  101  109  111  112  122  125  126  127
##  [9339]  131  132  134  136  260  262  270  271  276  280  285  288  290  293
##  [9353]  294  295  297  298  300  301  303  306  309  312  315  324  327  331
##  [9367]  333  334  338  340  345  346  349  355  359  362 9998 9999    0    1
##  [9381]    2    5    6    8   11   14   15   17   20   22   23   27   30   32
##  [9395]   36   37   44   45   46   47   49   50   60   61   66   71   72   74
##  [9409]   75   76   81   82   84   86   88   89   91   92   94   98  100  101
##  [9423]  102  106  107  108  109  110  111  112  117  118  120  121  125  126
##  [9437]  128  129  130  140  144  146  151  152  153  154  157  158  161  167
##  [9451]  168  170  176  183  238  244  245  246  247  249  255  256  265  267
##  [9465]  270  271  278  344  362  378  380  382  385  392  394  395  399  400
##  [9479]  402  403  404  405  407  409  412  417  419  420  423  427  429  431
##  [9493]  432  434  435  438  440  441  443  444  446  448  451  452  453  455
##  [9507]  458  461  462  463  464  466  467  469  471  472 9998 9999    0    1
##  [9521]    3    6    8   14   21   22   27   32   34   36   38   39   40   41
##  [9535]   42   44   45   47   48   49   50   58   60   64   66   68   73   86
##  [9549]   89   91  110  125  135  138  143  155  156 9998 9999    0    1    5
##  [9563]    8    9   11   12   14   16   17   18   19   20   22   29   35   36
##  [9577]   39   40   47   48   54   55   57   60   62   64   65   67   70   71
##  [9591]   72   75   76   78   80   81   85   86   91   92  101  104  105  106
##  [9605]  107  125  132  135  147  149  150  152  155  156  157  160  162  163
##  [9619]  164  165  167  168  169  170  173  174  176  177  178  182  183 9998
##  [9633] 9999    0    1    2    5    6    9   12   13   14   21   26   28   29
##  [9647]   30   31   32   33   35   36   37   41   43   45   46   53   54   55
##  [9661]   56   57   63   64   67   71   72   77   78   79   80 9998 9999    0
##  [9675]    1    2    3    4    6    9   10   11   12   13   18   20   21   23
##  [9689]   24   26   27   28   29   30   33   34   40   41   42   43   46   47
##  [9703]   51   52   53   55   58   59   60   61   62   64   66   68   80   81
##  [9717]   84   92   93   96   97  104  115  116  119  124  125  126  137  138
##  [9731]  141  143  151  173  178  187  189 9998 9999    0    1    2    3    4
##  [9745]    5    6    8    9   17   18   19   20   22   24   25   26   28   29
##  [9759]   30   32   33   36   37   40   41   43   44   47   50 9998 9999    0
##  [9773]    1    3    8    9   11   13   15   18   21   28   33   35   40   41
##  [9787]   42   45   46   48   58   60   61   66   69   70   80   83   84   86
##  [9801]   88   90   94   97   99  116  130  136  149  150  152  156  163  164
##  [9815]  165  170  208  231  234  260  270  275  276 9998 9999    0    1    2
##  [9829]    4    6   12   13   16   18   19   20   23   24   25   27   28   31
##  [9843]   32   36   44   45   46   48   52   55   67   74   85   86   91   93
##  [9857]   94   97   99  102  103  104  107  109  110  112  113  119  121  123
##  [9871]  124  129  130  131 9998 9999    0    1    2    3    4    7   13   15
##  [9885]   20   21   23   26   27   32   41   47   51   52   53   54   57   58
##  [9899]   62   63   64   65   66   67   73   74   75   76   80   89   92  101
##  [9913]  102  109  116  120  124  130  132  133  135  136 9998 9999    0    1
##  [9927]    2    5    6    9   10   12   13   19   21   24   25   26   27   28
##  [9941]   31   32   36   46   47   49   52   56   58   59   61   62   66   68
##  [9955]   69   71   74   75   76   77   79   81   83   84   87   88   91   95
##  [9969]   97   98  101  103  105  108  110  112  114  118  120  121  122  124
##  [9983]  125  128  130  131  133  135  137  140  141  143  147  153  154  164
##  [9997]  165  169  172  177  180  183  186  187  189  193  195  199  209  210
## [10011]  213  222  224  225  229  230  232  233  235  236  239  240  244  247
## [10025]  248  249  250  252  253  254  255  257  260  264  267  271  273  278
## [10039]  280  282  283  286  289  291  309  310  314  317  318  321  322  324
## [10053]  331  332  333  334  335  340  345  346  347  348  350 9998 9999    0
## [10067]    1    2    3    4    5    6    7    8    9   10   11   12   13   14
## [10081]   15   16   17   18   22   24   25   26   27   35   36   42   43   44
## [10095]   57   59   60 9998 9999    0    1    4    6   18   20   22   27   29
## [10109]   33   38   47   50   56   57   62   64   70   78   89   95   97   99
## [10123]  111  124  129  133  134  139  143  151  153  168  183  190  194  198
## [10137]  201  202  206  210  213  214  218  227  230  231  232  235  242  243
## [10151]  249  250  253  255  258  259  263  264  268  270  271  272  273  274
## [10165]  276  277  279  280  286  288  297  300  302  312  313  314  315  317
## [10179]  318  319  324  329  334  342  343  350  355  356  360  369  376  377
## [10193]  378  380  391  396  405  407  415  417  430  435  440  444  449  450
## [10207]  451  452  453  458  460  463  464  468  470  471  476  486  511  512
## [10221]  513  516  522  526  528  529  535  536  537  539  540  542  544  547
## [10235]  550  560  565  566  568  572  573  574  575  577  583  587  588  591
## [10249]  592  593  594  595  596  597  600  605  608  610  611  613  615  620
## [10263]  621  622  626  632  660  668  683  684  690  697  703  706  708  709
## [10277]  712  714  715  718  721  722  724  726  727  728  735  737  738  739
## [10291]  741  747  748  749  750  752  753  754  755  756  757  758  760  761
## [10305]  763  764  766  767  770  771 9998 9999    0    1    5    9   10   11
## [10319]   12   13   18   20   21   22   23   24   25   29   31   37   52   53
## [10333]   57   59   67   71   72   74   84   86 9998 9999    0    1    9   10
## [10347]   11   14   16   17   18   19   20   21   23   25   27   28   29   31
## [10361]   33   34   35   36   37   38   39   40   41   42   46   47   49   53
## [10375]   54   68   69   71   72   81   82   83   84 9998 9999    0    1    2
## [10389]    3    5    8    9   11   14   15   16   18   19   20   24   26   27
## [10403]   28   29   30   31   34   36   37   38   39   41   42   43   44   45
## [10417]   46   47   51   52   53   69   70   71   77   79   83   84   85   86
## [10431]   87   90   96  112  118  127  132  134  141  144  150  151  152  153
## [10445] 9998 9999    0    1    3    4    6    7    9   10   15   16   17   18
## [10459]   19   20   25   26   27   30   31   34   36   39   42   43   44   45
## [10473]   46   47   49   50   51   52   54   55   58   59   60   61   62   63
## [10487]   64   67   68   70   71   73   75   81   82   86   88   89   92   93
## [10501]   94   95   96   97  100  102  104  105  107  109  114  115  116  117
## [10515]  120  122  124  125  127  129  131  133  134  135  139  143  147  149
## [10529]  154  155  156  158  161  162  163  167  168  174  175  176  179  180
## [10543]  181  182  184  185  187  189  191  192  195  196  197  198  199  200
## [10557]  201  203  205  209  210  212  214  216  217  218  221  223  226  228
## [10571]  233  235  237  240  244  246  247  248  250  251  253  255  258  260
## [10585]  271  272  273  276  277  284  286  288  289  290  291  293  295  297
## [10599]  302  303  307  310  312  314  317  318  322  325  326  327  331  332
## [10613]  333  337  338  340  342  343  344  346  348  349  350  351  352  355
## [10627]  357  358  359  360  361  362  365 9998 9999    0    1    3    4    6
## [10641]    7    9   10   11   12   13   14   15   16   18   19   20   22   23
## [10655]   24   25   26   27   28   29   30   31   32   33   34   35   36   37
## [10669]   39   40   41   42   43   44   45   47   50   51   52   53   55   56
## [10683]   57   58   59   60   62   63   64   66   67   68   69   70   72   73
## [10697]   74   75   76   77   78   79   80   81   82   83   85   86   87   88
## [10711]   89   90   91 9998 9999
########## ARREGLAR LA BASE CSV

library(stringr)
datos_inegi_jal2$LOC<-str_pad(datos_inegi_jal$LOC,3,side="left",pad="0")

#Datos en xlsx, cortar el texto
datos_inegi_jal$LOC<-substr(datos_inegi_jal$LOC,2,4)

        
#which(datos_inegi_jal$LOC=="000")

posis_mun<-which(datos_inegi_jal$NOM_LOC=="Total del Municipio")
datos_inegi_jal_mun<-datos_inegi_jal[posis_mun,]
dim(datos_inegi_jal_mun)
## [1] 125 232
######################

# ¿% personas con  discapacidad en cada municipio?
# ¿% personas con 65 o más años de cada municipio?

datos_inegi_jal_mun$Prop_disc<-as.numeric(datos_inegi_jal_mun$PCON_DISC)/as.numeric(datos_inegi_jal_mun$POBTOT)
datos_inegi_jal_mun$Prop_adulto<-as.numeric(datos_inegi_jal_mun$POB65_MAS)/as.numeric(datos_inegi_jal_mun$POBTOT)

red_jal_mun<-datos_inegi_jal_mun[,c(3,233,234)]

mapa_jalisco@data
##     CVEGEO CVE_ENT CVE_MUN                           NOMGEO
## 0    14073      14     073            San Juan de los Lagos
## 1    14074      14     074                      San Julián
## 2    14075      14     075                       San Marcos
## 3    14076      14     076          San Martín de Bolaños
## 4    14077      14     077              San Martín Hidalgo
## 5    14078      14     078               San Miguel el Alto
## 6    14079      14     079                   Gómez Farías
## 7    14080      14     080         San Sebastián del Oeste
## 8    14081      14     081     Santa María de los Ã\201ngeles
## 9    14082      14     082                           Sayula
## 10   14083      14     083                             Tala
## 11   14084      14     084                 Talpa de Allende
## 12   14085      14     085             Tamazula de Gordiano
## 13   14086      14     086                          Tapalpa
## 14   14087      14     087                      Tecalitlán
## 15   14006      14     006                            Ameca
## 16   14007      14     007          San Juanito de Escobedo
## 17   14008      14     008                          Arandas
## 18   14009      14     009                        El Arenal
## 19   14010      14     010             Atemajac de Brizuela
## 20   14011      14     011                           Atengo
## 21   14012      14     012                       Atenguillo
## 22   14013      14     013               Atotonilco el Alto
## 23   14014      14     014                           Atoyac
## 24   14015      14     015               Autlán de Navarro
## 25   14016      14     016                         Ayotlán
## 26   14017      14     017                           Ayutla
## 27   14018      14     018                         La Barca
## 28   14019      14     019                         Bolaños
## 29   14020      14     020                  Cabo Corrientes
## 30   14021      14     021                Casimiro Castillo
## 31   14022      14     022                       Cihuatlán
## 32   14023      14     023              Zapotlán el Grande
## 33   14024      14     024                           Cocula
## 34   14025      14     025                        Colotlán
## 35   14026      14     026      Concepción de Buenos Aires
## 36   14027      14     027 Cuautitlán de García Barragán
## 37   14028      14     028                          Cuautla
## 38   14029      14     029                          Cuquío
## 39   14030      14     030                          Chapala
## 40   14031      14     031                     Chimaltitán
## 41   14032      14     032                   Chiquilistlán
## 42   14033      14     033                        Degollado
## 43   14034      14     034                           Ejutla
## 44   14035      14     035            Encarnación de Díaz
## 45   14036      14     036                        Etzatlán
## 46   14037      14     037                        El Grullo
## 47   14038      14     038                      Guachinango
## 48   14039      14     039                      Guadalajara
## 49   14040      14     040                  Hostotipaquillo
## 50   14041      14     041                        Huejúcar
## 51   14042      14     042              Huejuquilla el Alto
## 52   14043      14     043                        La Huerta
## 53   14044      14     044   Ixtlahuacán de los Membrillos
## 54   14045      14     045            Ixtlahuacán del Río
## 55   14046      14     046                   Jalostotitlán
## 56   14047      14     047                            Jamay
## 57   14048      14     048                    Jesús María
## 58   14049      14     049         Jilotlán de los Dolores
## 59   14050      14     050                        Jocotepec
## 60   14051      14     051                     Juanacatlán
## 61   14052      14     052                       Juchitlán
## 62   14053      14     053                  Lagos de Moreno
## 63   14054      14     054                        El Limón
## 64   14055      14     055                        Magdalena
## 65   14056      14     056             Santa María del Oro
## 66   14057      14     057          La Manzanilla de la Paz
## 67   14058      14     058                          Mascota
## 68   14059      14     059                        Mazamitla
## 69   14060      14     060                      Mexticacán
## 70   14061      14     061                        Mezquitic
## 71   14062      14     062                         Mixtlán
## 72   14063      14     063                         Ocotlán
## 73   14064      14     064               Ojuelos de Jalisco
## 74   14065      14     065                          Pihuamo
## 75   14066      14     066                       Poncitlán
## 76   14067      14     067                  Puerto Vallarta
## 77   14068      14     068              Villa Purificación
## 78   14069      14     069                         Quitupan
## 79   14070      14     070                         El Salto
## 80   14071      14     071    San Cristóbal de la Barranca
## 81   14072      14     072         San Diego de Alejandría
## 82   14088      14     088                      Tecolotlán
## 83   14089      14     089          Techaluta de Montenegro
## 84   14090      14     090                     Tenamaxtlán
## 85   14091      14     091                      Teocaltiche
## 86   14092      14     092          Teocuitatlán de Corona
## 87   14093      14     093           Tepatitlán de Morelos
## 88   14094      14     094                          Tequila
## 89   14095      14     095                      Teuchitlán
## 90   14096      14     096                 Tizapán el Alto
## 91   14097      14     097           Tlajomulco de Zúñiga
## 92   14098      14     098            San Pedro Tlaquepaque
## 93   14099      14     099                         Tolimán
## 94   14100      14     100                        Tomatlán
## 95   14101      14     101                          Tonalá
## 96   14102      14     102                           Tonaya
## 97   14103      14     103                           Tonila
## 98   14104      14     104                        Totatiche
## 99   14105      14     105                        Tototlán
## 100  14106      14     106                      Tuxcacuesco
## 101  14107      14     107                         Tuxcueca
## 102  14108      14     108                           Tuxpan
## 103  14109      14     109            Unión de San Antonio
## 104  14110      14     110                   Unión de Tula
## 105  14111      14     111               Valle de Guadalupe
## 106  14112      14     112                 Valle de Juárez
## 107  14113      14     113                      San Gabriel
## 108  14114      14     114                     Villa Corona
## 109  14115      14     115                   Villa Guerrero
## 110  14116      14     116                    Villa Hidalgo
## 111  14117      14     117             Cañadas de Obregón
## 112  14118      14     118     Yahualica de González Gallo
## 113  14119      14     119               Zacoalco de Torres
## 114  14120      14     120                          Zapopan
## 115  14121      14     121                       Zapotiltic
## 116  14122      14     122           Zapotitlán de Vadillo
## 117  14123      14     123                Zapotlán del Rey
## 118  14124      14     124                      Zapotlanejo
## 119  14001      14     001                           Acatic
## 120  14002      14     002              Acatlán de Juárez
## 121  14003      14     003             Ahualulco de Mercado
## 122  14004      14     004                         Amacueca
## 123  14005      14     005                        Amatitán
## 124  14125      14     125          San Ignacio Cerro Gordo
tabla11<-merge(x=mapa_jalisco@data,y=red_jal_mun,by.x="CVE_MUN",by.y="MUN",sort=FALSE)

mapa_jalisco@data$Discapa<-tabla11$Prop_disc
mapa_jalisco@data$Adultos<-tabla11$Prop_adulto


#################### Termina clase martes 16.11.21 ######

CLASE 23 NOVIEMBRE

Mapas interactivos

#Generar Mapa "estático"
plot(mapa_jalisco)

summary(mapa_jalisco@data$Discapa)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.03390 0.04715 0.05497 0.05867 0.06842 0.11590
cut(mapa_jalisco@data$Discapa,4)
##   [1] (0.0338,0.0544] (0.0749,0.0954] (0.0749,0.0954] (0.0749,0.0954]
##   [5] (0.0544,0.0749] (0.0544,0.0749] (0.0338,0.0544] (0.0544,0.0749]
##   [9] (0.0749,0.0954] (0.0338,0.0544] (0.0338,0.0544] (0.0544,0.0749]
##  [13] (0.0544,0.0749] (0.0338,0.0544] (0.0338,0.0544] (0.0544,0.0749]
##  [17] (0.0338,0.0544] (0.0338,0.0544] (0.0338,0.0544] (0.0338,0.0544]
##  [21] (0.0544,0.0749] (0.0544,0.0749] (0.0338,0.0544] (0.0544,0.0749]
##  [25] (0.0338,0.0544] (0.0544,0.0749] (0.0544,0.0749] (0.0544,0.0749]
##  [29] (0.0544,0.0749] (0.0338,0.0544] (0.0544,0.0749] (0.0338,0.0544]
##  [33] (0.0338,0.0544] (0.0544,0.0749] (0.0544,0.0749] (0.0338,0.0544]
##  [37] (0.0338,0.0544] (0.0749,0.0954] (0.0544,0.0749] (0.0338,0.0544]
##  [41] (0.0954,0.116]  (0.0338,0.0544] (0.0338,0.0544] (0.0749,0.0954]
##  [45] (0.0544,0.0749] (0.0338,0.0544] (0.0544,0.0749] (0.0544,0.0749]
##  [49] (0.0338,0.0544] (0.0338,0.0544] (0.0749,0.0954] (0.0544,0.0749]
##  [53] (0.0749,0.0954] (0.0338,0.0544] (0.0544,0.0749] (0.0338,0.0544]
##  [57] (0.0544,0.0749] (0.0749,0.0954] (0.0544,0.0749] (0.0338,0.0544]
##  [61] (0.0338,0.0544] (0.0338,0.0544] (0.0338,0.0544] (0.0954,0.116] 
##  [65] (0.0338,0.0544] (0.0749,0.0954] (0.0544,0.0749] (0.0749,0.0954]
##  [69] (0.0338,0.0544] (0.0749,0.0954] (0.0544,0.0749] (0.0544,0.0749]
##  [73] (0.0544,0.0749] (0.0338,0.0544] (0.0544,0.0749] (0.0338,0.0544]
##  [77] (0.0338,0.0544] (0.0544,0.0749] (0.0544,0.0749] (0.0338,0.0544]
##  [81] (0.0749,0.0954] (0.0338,0.0544] (0.0338,0.0544] (0.0338,0.0544]
##  [85] (0.0749,0.0954] (0.0544,0.0749] (0.0749,0.0954] (0.0338,0.0544]
##  [89] (0.0338,0.0544] (0.0544,0.0749] (0.0544,0.0749] (0.0338,0.0544]
##  [93] (0.0338,0.0544] (0.0338,0.0544] (0.0544,0.0749] (0.0338,0.0544]
##  [97] (0.0338,0.0544] (0.0338,0.0544] (0.0338,0.0544] (0.0544,0.0749]
## [101] (0.0544,0.0749] (0.0338,0.0544] (0.0338,0.0544] (0.0544,0.0749]
## [105] (0.0544,0.0749] (0.0338,0.0544] (0.0544,0.0749] (0.0544,0.0749]
## [109] (0.0544,0.0749] (0.0749,0.0954] (0.0338,0.0544] (0.0954,0.116] 
## [113] (0.0544,0.0749] (0.0338,0.0544] (0.0338,0.0544] (0.0338,0.0544]
## [117] (0.0338,0.0544] (0.0544,0.0749] (0.0544,0.0749] (0.0338,0.0544]
## [121] (0.0338,0.0544] (0.0544,0.0749] (0.0338,0.0544] (0.0544,0.0749]
## [125] (0.0338,0.0544]
## Levels: (0.0338,0.0544] (0.0544,0.0749] (0.0749,0.0954] (0.0954,0.116]
library(RColorBrewer)

my_colors <- brewer.pal(5, "PuBuGn") 
my_colors <- colorRampPalette(my_colors)(4)

cuantil <- cut(mapa_jalisco@data$Discapa, 4)
my_colors <- my_colors[as.numeric(cuantil)]
plot(mapa_jalisco , col=my_colors ,  bg = "white")

intermedio <-rep(NA,125)

intermedio[which(as.numeric(cuantil)==1)]<-"#AE017E"
intermedio[which(as.numeric(cuantil)==2)]<-"#F768A1"
intermedio[which(as.numeric(cuantil)==3)]<-"#FBB4B9"
intermedio[which(as.numeric(cuantil)==4)]<-"#FEEBE2"

#my_colors <- my_colors[as.numeric(cuantil)]
plot(mapa_jalisco , col=intermedio ,  bg = "white")

#### Variable "Adulto", 5 cortes, Jalisco también... ¿paleta? la que quieran


summary(mapa_jalisco@data$Adultos)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.03587 0.08596 0.10427 0.10725 0.12842 0.19182
cut(mapa_jalisco@data$Adultos,5)
##   [1] (0.0671,0.0983] (0.0983,0.129]  (0.0983,0.129]  (0.0983,0.129] 
##   [5] (0.129,0.161]   (0.0671,0.0983] (0.0671,0.0983] (0.129,0.161]  
##   [9] (0.161,0.192]   (0.0671,0.0983] (0.0671,0.0983] (0.0983,0.129] 
##  [13] (0.0983,0.129]  (0.0357,0.0671] (0.0983,0.129]  (0.0983,0.129] 
##  [17] (0.0983,0.129]  (0.0671,0.0983] (0.0671,0.0983] (0.0671,0.0983]
##  [21] (0.129,0.161]   (0.129,0.161]   (0.0671,0.0983] (0.129,0.161]  
##  [25] (0.0671,0.0983] (0.0671,0.0983] (0.0983,0.129]  (0.0671,0.0983]
##  [29] (0.0357,0.0671] (0.0983,0.129]  (0.0983,0.129]  (0.0671,0.0983]
##  [33] (0.0671,0.0983] (0.0983,0.129]  (0.0983,0.129]  (0.0983,0.129] 
##  [37] (0.0983,0.129]  (0.129,0.161]   (0.0983,0.129]  (0.129,0.161]  
##  [41] (0.0983,0.129]  (0.0671,0.0983] (0.0983,0.129]  (0.161,0.192]  
##  [45] (0.0671,0.0983] (0.0983,0.129]  (0.0983,0.129]  (0.129,0.161]  
##  [49] (0.0983,0.129]  (0.0983,0.129]  (0.161,0.192]   (0.0983,0.129] 
##  [53] (0.0983,0.129]  (0.0357,0.0671] (0.0983,0.129]  (0.0671,0.0983]
##  [57] (0.0671,0.0983] (0.0983,0.129]  (0.0671,0.0983] (0.0671,0.0983]
##  [61] (0.0357,0.0671] (0.129,0.161]   (0.0671,0.0983] (0.161,0.192]  
##  [65] (0.0671,0.0983] (0.129,0.161]   (0.0983,0.129]  (0.129,0.161]  
##  [69] (0.0671,0.0983] (0.129,0.161]   (0.0357,0.0671] (0.129,0.161]  
##  [73] (0.0671,0.0983] (0.0671,0.0983] (0.129,0.161]   (0.0671,0.0983]
##  [77] (0.0357,0.0671] (0.129,0.161]   (0.161,0.192]   (0.0357,0.0671]
##  [81] (0.0983,0.129]  (0.0671,0.0983] (0.129,0.161]   (0.0983,0.129] 
##  [85] (0.129,0.161]   (0.0983,0.129]  (0.129,0.161]   (0.0671,0.0983]
##  [89] (0.0671,0.0983] (0.0983,0.129]  (0.0983,0.129]  (0.0357,0.0671]
##  [93] (0.0357,0.0671] (0.0983,0.129]  (0.0983,0.129]  (0.0357,0.0671]
##  [97] (0.129,0.161]   (0.0983,0.129]  (0.161,0.192]   (0.0671,0.0983]
## [101] (0.0983,0.129]  (0.0983,0.129]  (0.0983,0.129]  (0.0671,0.0983]
## [105] (0.129,0.161]   (0.0983,0.129]  (0.129,0.161]   (0.0983,0.129] 
## [109] (0.0983,0.129]  (0.129,0.161]   (0.0671,0.0983] (0.129,0.161]  
## [113] (0.129,0.161]   (0.0983,0.129]  (0.0671,0.0983] (0.0671,0.0983]
## [117] (0.0983,0.129]  (0.0671,0.0983] (0.0671,0.0983] (0.0671,0.0983]
## [121] (0.0671,0.0983] (0.0983,0.129]  (0.0983,0.129]  (0.0671,0.0983]
## [125] (0.0671,0.0983]
## 5 Levels: (0.0357,0.0671] (0.0671,0.0983] (0.0983,0.129] ... (0.161,0.192]
my_colors <- brewer.pal(5, "BuGn") 
my_colors <- colorRampPalette(my_colors)(5)

cuantil <- cut(mapa_jalisco@data$Adultos, 5)
my_colors <- my_colors[as.numeric(cuantil)]
plot(mapa_jalisco , col=my_colors ,  bg = "yellow")
legend("topright",levels(cut(mapa_jalisco@data$Adultos, 5)),
       cex = 0.6)

# imagen

#jpeg(filename = "mapa_jalisco1222.jpg",
#width = 480, height = 480, units = "px", pointsize = 12,
#quality = 100,
#bg = "white", res = NA, family = "", restoreConsole = TRUE,
#type = c("windows", "cairo"))

#plot(mapa_jalisco , col=my_colors ,  bg = "white")
#legend("topleft",texto5,cex = 1.2,bty = "n",
 #      col = c("#FEE5D9","#FCBBA1","#FC9272","#FB6A4A","#DE2D26"),pch = "@")

#dev.off()





library(leaflet)
## Warning: package 'leaflet' was built under R version 4.1.2
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
leaflet(data=mapa_jalisco) %>% addTiles() %>% addPolygons()
#####

cortess <- c(0,0.0280,0.0566,0.0849,Inf)
colores <- colorBin( palette="Reds", domain=mapa_jalisco$Discapa, na.color="transparent", bins=cortess)


leaflet(data=mapa_jalisco) %>%
addTiles() %>%
addPolygons(fillColor = colores(mapa_jalisco$Discapa),
            fillOpacity = 0.9)  
library(htmltools)
textoss <- paste(
  "Municipio : ",mapa_jalisco$NOMGEO,"<br/>",
  "% Discapacidad: ", round(mapa_jalisco$Discapa*100,2),"<br/>", 
  "% Ancianos: ", round(mapa_jalisco$Adultos*100,2) )  %>% lapply(htmltools::HTML)

leaflet(data=mapa_jalisco) %>% 
  addTiles() %>% 
  addPolygons(label = textoss,fillColor = colores(mapa_jalisco$Discapa),
              fillOpacity = 0.9)