#Broad FG models

##Grass

TSF only: RB < NYB and 3yr

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: Grass
##                  Chisq Df Pr(>Chisq)    
## TSF            23.4592  3  3.239e-05 ***
## Management      0.2547  1     0.6138    
## TSF:Management  1.9236  3     0.5884    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean   SE    df lower.CL upper.CL
##  Recently Burned      34.4 1.90  15.5     30.3     38.4
##  Intermediate         39.3 1.86  14.0     35.3     43.3
##  3 Years Since Fire   45.7 3.25 110.3     39.2     52.1
##  Not Yet Burned       41.5 1.82  12.8     37.5     45.4
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate   SE  df t.ratio p.value
##  Recently Burned - Intermediate          -4.92 1.85 285  -2.657  0.0413
##  Recently Burned - 3 Years Since Fire   -11.31 3.24 293  -3.484  0.0032
##  Recently Burned - Not Yet Burned        -7.10 1.81 289  -3.912  0.0007
##  Intermediate - 3 Years Since Fire       -6.39 3.10 289  -2.062  0.1681
##  Intermediate - Not Yet Burned           -2.18 1.92 283  -1.135  0.6682
##  3 Years Since Fire - Not Yet Burned      4.21 3.39 288   1.242  0.6005
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean   SE    df lower.CL upper.CL
##  Recently Burned      34.4 1.90  15.5     30.3     38.4
##  Intermediate         39.3 1.86  14.0     35.3     43.3
##  3 Years Since Fire   45.7 3.25 110.3     39.2     52.1
##  Not Yet Burned       41.5 1.82  12.8     37.5     45.4
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate   SE  df lower.CL upper.CL
##  Recently Burned - Intermediate          -4.92 1.85 285    -9.70   -0.135
##  Recently Burned - 3 Years Since Fire   -11.31 3.24 293   -19.69   -2.922
##  Recently Burned - Not Yet Burned        -7.10 1.81 289   -11.79   -2.409
##  Intermediate - 3 Years Since Fire       -6.39 3.10 289   -14.40    1.617
##  Intermediate - Not Yet Burned           -2.18 1.92 283    -7.15    2.785
##  3 Years Since Fire - Not Yet Burned      4.21 3.39 288    -4.55   12.963
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

##Forb

TSF, Grazer, and interaction significant

Overall TSF: Intermediate > NYB

Overall Grazer: Cattle > Sheep

Interaction: No tsf differences in sheep. RB & Intermediate > NYB in cattle

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: log(Forb + 1)
##                  Chisq Df Pr(>Chisq)   
## TSF             9.8304  3    0.02006 * 
## Management      6.4838  1    0.01089 * 
## TSF:Management 14.9841  3    0.00183 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE   df lower.CL upper.CL
##  Recently Burned      1.40 0.187 12.4    0.996     1.81
##  Intermediate         1.52 0.186 11.9    1.113     1.92
##  3 Years Since Fire   1.47 0.232 36.7    1.002     1.94
##  Not Yet Burned       1.22 0.185 11.5    0.814     1.62
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate     SE  df t.ratio p.value
##  Recently Burned - Intermediate        -0.1159 0.0974 286  -1.190  0.6336
##  Recently Burned - 3 Years Since Fire  -0.0710 0.1702 291  -0.417  0.9755
##  Recently Burned - Not Yet Burned       0.1841 0.0953 289   1.931  0.2174
##  Intermediate - 3 Years Since Fire      0.0448 0.1629 289   0.275  0.9927
##  Intermediate - Not Yet Burned          0.3000 0.1002 265   2.995  0.0158
##  3 Years Since Fire - Not Yet Burned    0.2551 0.1768 273   1.443  0.4736
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE   df lower.CL upper.CL
##  Recently Burned      1.40 0.187 12.4    0.996     1.81
##  Intermediate         1.52 0.186 11.9    1.113     1.92
##  3 Years Since Fire   1.47 0.232 36.7    1.002     1.94
##  Not Yet Burned       1.22 0.185 11.5    0.814     1.62
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate     SE  df lower.CL upper.CL
##  Recently Burned - Intermediate        -0.1159 0.0974 286  -0.3675    0.136
##  Recently Burned - 3 Years Since Fire  -0.0710 0.1702 291  -0.5109    0.369
##  Recently Burned - Not Yet Burned       0.1841 0.0953 289  -0.0623    0.430
##  Intermediate - 3 Years Since Fire      0.0448 0.1629 289  -0.3761    0.466
##  Intermediate - Not Yet Burned          0.3000 0.1002 265   0.0410    0.559
##  3 Years Since Fire - Not Yet Burned    0.2551 0.1768 273  -0.2019    0.712
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Management emmean    SE   df lower.CL upper.CL
##  Cattle      1.823 0.254 9.81    1.257     2.39
##  Sheep       0.983 0.254 9.82    0.416     1.55
## 
## Results are averaged over the levels of: TSF 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast       estimate    SE   df t.ratio p.value
##  Cattle - Sheep     0.84 0.359 9.82   2.343  0.0416
## 
## Results are averaged over the levels of: TSF 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Management emmean    SE   df lower.CL upper.CL
##  Cattle      1.823 0.254 9.81    1.257     2.39
##  Sheep       0.983 0.254 9.82    0.416     1.55
## 
## Results are averaged over the levels of: TSF 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast       estimate    SE   df lower.CL upper.CL
##  Cattle - Sheep     0.84 0.359 9.82    0.039     1.64
## 
## Results are averaged over the levels of: TSF 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95
## $emmeans
## Management = Cattle:
##  TSF                emmean    SE   df lower.CL upper.CL
##  Recently Burned     1.909 0.264 12.4    1.335     2.48
##  Intermediate        1.973 0.262 11.9    1.401     2.55
##  3 Years Since Fire  2.021 0.329 36.7    1.355     2.69
##  Not Yet Burned      1.389 0.261 11.5    0.818     1.96
## 
## Management = Sheep:
##  TSF                emmean    SE   df lower.CL upper.CL
##  Recently Burned     0.895 0.264 12.4    0.321     1.47
##  Intermediate        1.063 0.263 12.0    0.490     1.64
##  3 Years Since Fire  0.925 0.329 36.7    0.259     1.59
##  Not Yet Burned      1.047 0.261 11.6    0.475     1.62
## 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
## Management = Cattle:
##  contrast                             estimate    SE  df t.ratio p.value
##  Recently Burned - Intermediate        -0.0638 0.137 286  -0.465  0.9666
##  Recently Burned - 3 Years Since Fire  -0.1121 0.241 291  -0.466  0.9664
##  Recently Burned - Not Yet Burned       0.5200 0.135 290   3.861  0.0008
##  Intermediate - 3 Years Since Fire     -0.0484 0.230 289  -0.210  0.9967
##  Intermediate - Not Yet Burned          0.5838 0.141 264   4.141  0.0003
##  3 Years Since Fire - Not Yet Burned    0.6321 0.250 273   2.530  0.0576
## 
## Management = Sheep:
##  contrast                             estimate    SE  df t.ratio p.value
##  Recently Burned - Intermediate        -0.1680 0.138 286  -1.215  0.6178
##  Recently Burned - 3 Years Since Fire  -0.0300 0.241 291  -0.124  0.9993
##  Recently Burned - Not Yet Burned      -0.1518 0.135 289  -1.125  0.6745
##  Intermediate - 3 Years Since Fire      0.1380 0.230 289   0.599  0.9323
##  Intermediate - Not Yet Burned          0.0162 0.142 266   0.114  0.9995
##  3 Years Since Fire - Not Yet Burned   -0.1219 0.250 273  -0.487  0.9619
## 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
## $emmeans
## Management = Cattle:
##  TSF                emmean    SE   df lower.CL upper.CL
##  Recently Burned     1.909 0.264 12.4    1.335     2.48
##  Intermediate        1.973 0.262 11.9    1.401     2.55
##  3 Years Since Fire  2.021 0.329 36.7    1.355     2.69
##  Not Yet Burned      1.389 0.261 11.5    0.818     1.96
## 
## Management = Sheep:
##  TSF                emmean    SE   df lower.CL upper.CL
##  Recently Burned     0.895 0.264 12.4    0.321     1.47
##  Intermediate        1.063 0.263 12.0    0.490     1.64
##  3 Years Since Fire  0.925 0.329 36.7    0.259     1.59
##  Not Yet Burned      1.047 0.261 11.6    0.475     1.62
## 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
## Management = Cattle:
##  contrast                             estimate    SE  df lower.CL upper.CL
##  Recently Burned - Intermediate        -0.0638 0.137 286  -0.4181    0.291
##  Recently Burned - 3 Years Since Fire  -0.1121 0.241 291  -0.7339    0.510
##  Recently Burned - Not Yet Burned       0.5200 0.135 290   0.1720    0.868
##  Intermediate - 3 Years Since Fire     -0.0484 0.230 289  -0.6435    0.547
##  Intermediate - Not Yet Burned          0.5838 0.141 264   0.2193    0.948
##  3 Years Since Fire - Not Yet Burned    0.6321 0.250 273  -0.0138    1.278
## 
## Management = Sheep:
##  contrast                             estimate    SE  df lower.CL upper.CL
##  Recently Burned - Intermediate        -0.1680 0.138 286  -0.5253    0.189
##  Recently Burned - 3 Years Since Fire  -0.0300 0.241 291  -0.6522    0.592
##  Recently Burned - Not Yet Burned      -0.1518 0.135 289  -0.5006    0.197
##  Intermediate - 3 Years Since Fire      0.1380 0.230 289  -0.4575    0.734
##  Intermediate - Not Yet Burned          0.0162 0.142 266  -0.3518    0.384
##  3 Years Since Fire - Not Yet Burned   -0.1219 0.250 273  -0.7685    0.525
## 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

##Legume

TSF, Grazer, and interaction significant

Overall TSF: Intermediate < NYB

Overall Grazer: Cattle almost > Sheep

Interaction: No tsf differences in sheep. RB, NYB, 3yr > Intermediate

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: log(Legume + 1)
##                  Chisq Df Pr(>Chisq)   
## TSF            15.0395  3   0.001783 **
## Management      9.6675  1   0.001876 **
## TSF:Management 13.4867  3   0.003694 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## boundary (singular) fit: see ?isSingular
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE    df lower.CL upper.CL
##  Recently Burned      2.06 0.142  9.25     1.74     2.38
##  Intermediate         1.81 0.141  8.81     1.49     2.13
##  3 Years Since Fire   1.71 0.219 50.18     1.27     2.14
##  Not Yet Burned       2.25 0.139  8.37     1.93     2.57
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df t.ratio p.value
##  Recently Burned - Intermediate          0.246 0.115 281   2.136  0.1444
##  Recently Burned - 3 Years Since Fire    0.354 0.203 288   1.740  0.3048
##  Recently Burned - Not Yet Burned       -0.191 0.113 284  -1.685  0.3337
##  Intermediate - 3 Years Since Fire       0.108 0.193 283   0.557  0.9447
##  Intermediate - Not Yet Burned          -0.437 0.122 294  -3.587  0.0022
##  3 Years Since Fire - Not Yet Burned    -0.544 0.214 294  -2.541  0.0558
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
## boundary (singular) fit: see ?isSingular
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE    df lower.CL upper.CL
##  Recently Burned      2.06 0.142  9.25     1.74     2.38
##  Intermediate         1.81 0.141  8.81     1.49     2.13
##  3 Years Since Fire   1.71 0.219 50.18     1.27     2.14
##  Not Yet Burned       2.25 0.139  8.37     1.93     2.57
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df lower.CL upper.CL
##  Recently Burned - Intermediate          0.246 0.115 281  -0.0517  0.54383
##  Recently Burned - 3 Years Since Fire    0.354 0.203 288  -0.1715  0.87876
##  Recently Burned - Not Yet Burned       -0.191 0.113 284  -0.4835  0.10192
##  Intermediate - 3 Years Since Fire       0.108 0.193 283  -0.3918  0.60694
##  Intermediate - Not Yet Burned          -0.437 0.122 294  -0.7516 -0.12220
##  3 Years Since Fire - Not Yet Burned    -0.544 0.214 294  -1.0980  0.00914
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates
## boundary (singular) fit: see ?isSingular
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Management emmean    SE   df lower.CL upper.CL
##  Cattle       2.26 0.181 5.95     1.81      2.7
##  Sheep        1.66 0.182 5.97     1.21      2.1
## 
## Results are averaged over the levels of: TSF 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast       estimate    SE   df t.ratio p.value
##  Cattle - Sheep    0.602 0.257 5.96   2.347  0.0576
## 
## Results are averaged over the levels of: TSF 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale.
## boundary (singular) fit: see ?isSingular
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Management emmean    SE   df lower.CL upper.CL
##  Cattle       2.26 0.181 5.95     1.81      2.7
##  Sheep        1.66 0.182 5.97     1.21      2.1
## 
## Results are averaged over the levels of: TSF 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast       estimate    SE   df lower.CL upper.CL
##  Cattle - Sheep    0.602 0.257 5.96  -0.0268     1.23
## 
## Results are averaged over the levels of: TSF 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95
## boundary (singular) fit: see ?isSingular
## $emmeans
## Management = Cattle:
##  TSF                emmean    SE    df lower.CL upper.CL
##  Recently Burned      2.51 0.201  9.25     2.05     2.96
##  Intermediate         1.95 0.198  8.71     1.50     2.40
##  3 Years Since Fire   1.78 0.309 50.13     1.16     2.40
##  Not Yet Burned       2.79 0.197  8.35     2.34     3.24
## 
## Management = Sheep:
##  TSF                emmean    SE    df lower.CL upper.CL
##  Recently Burned      1.61 0.201  9.25     1.16     2.07
##  Intermediate         1.67 0.200  8.91     1.22     2.13
##  3 Years Since Fire   1.63 0.309 50.23     1.01     2.25
##  Not Yet Burned       1.71 0.197  8.39     1.26     2.16
## 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
## Management = Cattle:
##  contrast                             estimate    SE  df t.ratio p.value
##  Recently Burned - Intermediate         0.5530 0.162 281   3.408  0.0042
##  Recently Burned - 3 Years Since Fire   0.7231 0.287 288   2.517  0.0594
##  Recently Burned - Not Yet Burned      -0.2869 0.160 284  -1.793  0.2789
##  Intermediate - 3 Years Since Fire      0.1701 0.273 283   0.623  0.9248
##  Intermediate - Not Yet Burned         -0.8399 0.171 294  -4.899  <.0001
##  3 Years Since Fire - Not Yet Burned   -1.0100 0.303 294  -3.336  0.0053
## 
## Management = Sheep:
##  contrast                             estimate    SE  df t.ratio p.value
##  Recently Burned - Intermediate        -0.0609 0.164 281  -0.372  0.9824
##  Recently Burned - 3 Years Since Fire  -0.0159 0.288 288  -0.055  0.9999
##  Recently Burned - Not Yet Burned      -0.0947 0.160 284  -0.591  0.9349
##  Intermediate - 3 Years Since Fire      0.0450 0.273 283   0.165  0.9984
##  Intermediate - Not Yet Burned         -0.0338 0.173 294  -0.195  0.9974
##  3 Years Since Fire - Not Yet Burned   -0.0788 0.303 294  -0.260  0.9938
## 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
## boundary (singular) fit: see ?isSingular
## $emmeans
## Management = Cattle:
##  TSF                emmean    SE    df lower.CL upper.CL
##  Recently Burned      2.51 0.201  9.25     2.05     2.96
##  Intermediate         1.95 0.198  8.71     1.50     2.40
##  3 Years Since Fire   1.78 0.309 50.13     1.16     2.40
##  Not Yet Burned       2.79 0.197  8.35     2.34     3.24
## 
## Management = Sheep:
##  TSF                emmean    SE    df lower.CL upper.CL
##  Recently Burned      1.61 0.201  9.25     1.16     2.07
##  Intermediate         1.67 0.200  8.91     1.22     2.13
##  3 Years Since Fire   1.63 0.309 50.23     1.01     2.25
##  Not Yet Burned       1.71 0.197  8.39     1.26     2.16
## 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
## Management = Cattle:
##  contrast                             estimate    SE  df lower.CL upper.CL
##  Recently Burned - Intermediate         0.5530 0.162 281   0.1336    0.972
##  Recently Burned - 3 Years Since Fire   0.7231 0.287 288  -0.0192    1.465
##  Recently Burned - Not Yet Burned      -0.2869 0.160 284  -0.7005    0.127
##  Intermediate - 3 Years Since Fire      0.1701 0.273 283  -0.5359    0.876
##  Intermediate - Not Yet Burned         -0.8399 0.171 294  -1.2829   -0.397
##  3 Years Since Fire - Not Yet Burned   -1.0100 0.303 294  -1.7924   -0.228
## 
## Management = Sheep:
##  contrast                             estimate    SE  df lower.CL upper.CL
##  Recently Burned - Intermediate        -0.0609 0.164 281  -0.4837    0.362
##  Recently Burned - 3 Years Since Fire  -0.0159 0.288 288  -0.7588    0.727
##  Recently Burned - Not Yet Burned      -0.0947 0.160 284  -0.5091    0.320
##  Intermediate - 3 Years Since Fire      0.0450 0.273 283  -0.6614    0.751
##  Intermediate - Not Yet Burned         -0.0338 0.173 294  -0.4809    0.413
##  3 Years Since Fire - Not Yet Burned   -0.0788 0.303 294  -0.8623    0.705
## 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

#Structure

##VOR

TSFsignificant

Overall TSF: RB < others; Intermediate & 3yr > NYB

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: log(VOR_Mean + 1)
##                  Chisq Df Pr(>Chisq)    
## TSF            77.8325  3     <2e-16 ***
## Management      0.9452  1     0.3310    
## TSF:Management  0.9507  3     0.8132    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean     SE  df asymp.LCL asymp.UCL
##  Recently Burned     0.738 0.0399 Inf     0.659     0.816
##  Intermediate        1.152 0.0371 Inf     1.080     1.225
##  3 Years Since Fire  1.236 0.0787 Inf     1.082     1.390
##  Not Yet Burned      0.984 0.0349 Inf     0.915     1.052
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate     SE  df z.ratio p.value
##  Recently Burned - Intermediate        -0.4147 0.0505 Inf  -8.221  <.0001
##  Recently Burned - 3 Years Since Fire  -0.4984 0.0858 Inf  -5.810  <.0001
##  Recently Burned - Not Yet Burned      -0.2460 0.0489 Inf  -5.033  <.0001
##  Intermediate - 3 Years Since Fire     -0.0837 0.0833 Inf  -1.005  0.7465
##  Intermediate - Not Yet Burned          0.1688 0.0482 Inf   3.503  0.0026
##  3 Years Since Fire - Not Yet Burned    0.2525 0.0855 Inf   2.953  0.0166
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Results are given on the log (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean     SE  df asymp.LCL asymp.UCL
##  Recently Burned     0.738 0.0399 Inf     0.659     0.816
##  Intermediate        1.152 0.0371 Inf     1.080     1.225
##  3 Years Since Fire  1.236 0.0787 Inf     1.082     1.390
##  Not Yet Burned      0.984 0.0349 Inf     0.915     1.052
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate     SE  df asymp.LCL asymp.UCL
##  Recently Burned - Intermediate        -0.4147 0.0505 Inf   -0.5443    -0.285
##  Recently Burned - 3 Years Since Fire  -0.4984 0.0858 Inf   -0.7188    -0.278
##  Recently Burned - Not Yet Burned      -0.2460 0.0489 Inf   -0.3715    -0.120
##  Intermediate - 3 Years Since Fire     -0.0837 0.0833 Inf   -0.2977     0.130
##  Intermediate - Not Yet Burned          0.1688 0.0482 Inf    0.0450     0.293
##  3 Years Since Fire - Not Yet Burned    0.2525 0.0855 Inf    0.0329     0.472
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

##MaxLive

TSFsignificant

Overall TSF: RB < Intermediate; Intermediate > NYB

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: MaxLive
##                  Chisq Df Pr(>Chisq)    
## TSF            32.8300  3  3.498e-07 ***
## Management      1.4061  1     0.2357    
## TSF:Management  2.0785  3     0.5563    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE  df asymp.LCL asymp.UCL
##  Recently Burned      5.12 0.222 Inf      4.69      5.56
##  Intermediate         6.74 0.204 Inf      6.34      7.14
##  3 Years Since Fire   6.16 0.443 Inf      5.29      7.03
##  Not Yet Burned       5.73 0.190 Inf      5.36      6.11
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df z.ratio p.value
##  Recently Burned - Intermediate         -1.621 0.288 Inf  -5.620  <.0001
##  Recently Burned - 3 Years Since Fire   -1.035 0.487 Inf  -2.124  0.1455
##  Recently Burned - Not Yet Burned       -0.609 0.279 Inf  -2.184  0.1276
##  Intermediate - 3 Years Since Fire       0.586 0.475 Inf   1.234  0.6053
##  Intermediate - Not Yet Burned           1.012 0.270 Inf   3.745  0.0010
##  3 Years Since Fire - Not Yet Burned     0.426 0.480 Inf   0.887  0.8119
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## P value adjustment: tukey method for comparing a family of 4 estimates
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE  df asymp.LCL asymp.UCL
##  Recently Burned      5.12 0.222 Inf      4.69      5.56
##  Intermediate         6.74 0.204 Inf      6.34      7.14
##  3 Years Since Fire   6.16 0.443 Inf      5.29      7.03
##  Not Yet Burned       5.73 0.190 Inf      5.36      6.11
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df asymp.LCL asymp.UCL
##  Recently Burned - Intermediate         -1.621 0.288 Inf    -2.361    -0.880
##  Recently Burned - 3 Years Since Fire   -1.035 0.487 Inf    -2.287     0.217
##  Recently Burned - Not Yet Burned       -0.609 0.279 Inf    -1.325     0.107
##  Intermediate - 3 Years Since Fire       0.586 0.475 Inf    -0.634     1.805
##  Intermediate - Not Yet Burned           1.012 0.270 Inf     0.318     1.705
##  3 Years Since Fire - Not Yet Burned     0.426 0.480 Inf    -0.808     1.660
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

##MaxDead

TSFsignificant

Overall TSF: RB < all patches, 3yr > NYB & Intermediate, Intermediate > NYB

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: MaxDead
##                   Chisq Df Pr(>Chisq)    
## TSF            266.5123  3     <2e-16 ***
## Management       1.9035  1     0.1677    
## TSF:Management   3.8931  3     0.2732    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE  df asymp.LCL asymp.UCL
##  Recently Burned      1.01 0.134 Inf     0.745      1.27
##  Intermediate         3.02 0.124 Inf     2.781      3.27
##  3 Years Since Fire   5.23 0.265 Inf     4.711      5.75
##  Not Yet Burned       2.13 0.117 Inf     1.899      2.36
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df z.ratio p.value
##  Recently Burned - Intermediate         -2.017 0.171 Inf -11.817  <.0001
##  Recently Burned - 3 Years Since Fire   -4.223 0.290 Inf -14.575  <.0001
##  Recently Burned - Not Yet Burned       -1.120 0.165 Inf  -6.781  <.0001
##  Intermediate - 3 Years Since Fire      -2.206 0.282 Inf  -7.832  <.0001
##  Intermediate - Not Yet Burned           0.897 0.162 Inf   5.530  <.0001
##  3 Years Since Fire - Not Yet Burned     3.102 0.288 Inf  10.776  <.0001
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## P value adjustment: tukey method for comparing a family of 4 estimates
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE  df asymp.LCL asymp.UCL
##  Recently Burned      1.01 0.134 Inf     0.745      1.27
##  Intermediate         3.02 0.124 Inf     2.781      3.27
##  3 Years Since Fire   5.23 0.265 Inf     4.711      5.75
##  Not Yet Burned       2.13 0.117 Inf     1.899      2.36
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df asymp.LCL asymp.UCL
##  Recently Burned - Intermediate         -2.017 0.171 Inf     -2.46    -1.579
##  Recently Burned - 3 Years Since Fire   -4.223 0.290 Inf     -4.97    -3.478
##  Recently Burned - Not Yet Burned       -1.120 0.165 Inf     -1.54    -0.696
##  Intermediate - 3 Years Since Fire      -2.206 0.282 Inf     -2.93    -1.482
##  Intermediate - Not Yet Burned           0.897 0.162 Inf      0.48     1.313
##  3 Years Since Fire - Not Yet Burned     3.102 0.288 Inf      2.36     3.842
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

##LitMean

TSFsignificant

Overall TSF: RB < others, 3yr > Intermediate & NYB

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: log(LitMean + 1)
##                   Chisq Df Pr(>Chisq)    
## TSF            113.6207  3     <2e-16 ***
## Management       0.9511  1     0.3294    
## TSF:Management   1.1601  3     0.7626    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean     SE  df asymp.LCL asymp.UCL
##  Recently Burned     0.548 0.0389 Inf     0.472     0.625
##  Intermediate        0.859 0.0347 Inf     0.791     0.927
##  3 Years Since Fire  1.370 0.0778 Inf     1.218     1.523
##  Not Yet Burned      0.943 0.0317 Inf     0.881     1.005
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate     SE  df z.ratio p.value
##  Recently Burned - Intermediate         -0.311 0.0521 Inf  -5.969  <.0001
##  Recently Burned - 3 Years Since Fire   -0.822 0.0869 Inf  -9.456  <.0001
##  Recently Burned - Not Yet Burned       -0.395 0.0502 Inf  -7.867  <.0001
##  Intermediate - 3 Years Since Fire      -0.511 0.0851 Inf  -6.004  <.0001
##  Intermediate - Not Yet Burned          -0.084 0.0470 Inf  -1.786  0.2799
##  3 Years Since Fire - Not Yet Burned     0.427 0.0840 Inf   5.087  <.0001
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Results are given on the log (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6328' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6328)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean     SE  df asymp.LCL asymp.UCL
##  Recently Burned     0.548 0.0389 Inf     0.472     0.625
##  Intermediate        0.859 0.0347 Inf     0.791     0.927
##  3 Years Since Fire  1.370 0.0778 Inf     1.218     1.523
##  Not Yet Burned      0.943 0.0317 Inf     0.881     1.005
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate     SE  df asymp.LCL asymp.UCL
##  Recently Burned - Intermediate         -0.311 0.0521 Inf    -0.445   -0.1771
##  Recently Burned - 3 Years Since Fire   -0.822 0.0869 Inf    -1.045   -0.5987
##  Recently Burned - Not Yet Burned       -0.395 0.0502 Inf    -0.524   -0.2659
##  Intermediate - 3 Years Since Fire      -0.511 0.0851 Inf    -0.730   -0.2925
##  Intermediate - Not Yet Burned          -0.084 0.0470 Inf    -0.205    0.0368
##  3 Years Since Fire - Not Yet Burned     0.427 0.0840 Inf     0.211    0.6431
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: asymptotic 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

##BGCover

TSF only: RB < others, intermediate < 3yr & NYB

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: log(BGCover + 1)
##                   Chisq Df Pr(>Chisq)    
## TSF            117.1671  3     <2e-16 ***
## Management       0.1240  1     0.7247    
## TSF:Management   1.9868  3     0.5752    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE    df lower.CL upper.CL
##  Recently Burned     2.450 0.117  14.9    2.201     2.70
##  Intermediate        1.805 0.114  13.5    1.559     2.05
##  3 Years Since Fire  0.945 0.200 106.6    0.548     1.34
##  Not Yet Burned      1.451 0.112  12.3    1.207     1.69
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df t.ratio p.value
##  Recently Burned - Intermediate          0.645 0.114 285   5.665  <.0001
##  Recently Burned - 3 Years Since Fire    1.505 0.200 293   7.537  <.0001
##  Recently Burned - Not Yet Burned        0.999 0.112 289   8.946  <.0001
##  Intermediate - 3 Years Since Fire       0.860 0.191 289   4.511  0.0001
##  Intermediate - Not Yet Burned           0.354 0.118 284   2.992  0.0159
##  3 Years Since Fire - Not Yet Burned    -0.506 0.209 288  -2.427  0.0743
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean    SE    df lower.CL upper.CL
##  Recently Burned     2.450 0.117  14.9    2.201     2.70
##  Intermediate        1.805 0.114  13.5    1.559     2.05
##  3 Years Since Fire  0.945 0.200 106.6    0.548     1.34
##  Not Yet Burned      1.451 0.112  12.3    1.207     1.69
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log(mu + 1) (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df lower.CL upper.CL
##  Recently Burned - Intermediate          0.645 0.114 285   0.3507   0.9392
##  Recently Burned - 3 Years Since Fire    1.505 0.200 293   0.9891   2.0210
##  Recently Burned - Not Yet Burned        0.999 0.112 289   0.7104   1.2874
##  Intermediate - 3 Years Since Fire       0.860 0.191 289   0.3674   1.3528
##  Intermediate - Not Yet Burned           0.354 0.118 284   0.0482   0.6597
##  3 Years Since Fire - Not Yet Burned    -0.506 0.209 288  -1.0451   0.0327
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

##GCover

TSF only: RB < others

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: GCover
##                  Chisq Df Pr(>Chisq)    
## TSF            55.3614  3  5.749e-12 ***
## Management      3.7464  1    0.05292 .  
## TSF:Management  4.3244  3    0.22850    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean   SE    df lower.CL upper.CL
##  Recently Burned     23.32 1.19  59.4    20.94     25.7
##  Intermediate        15.29 1.11  42.7    13.05     17.5
##  3 Years Since Fire   9.65 2.36 233.3     5.01     14.3
##  Not Yet Burned      14.49 1.05  32.8    12.35     16.6
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate   SE  df t.ratio p.value
##  Recently Burned - Intermediate          8.033 1.50 292   5.365  <.0001
##  Recently Burned - 3 Years Since Fire   13.673 2.56 279   5.338  <.0001
##  Recently Burned - Not Yet Burned        8.836 1.45 293   6.080  <.0001
##  Intermediate - 3 Years Since Fire       5.641 2.49 291   2.269  0.1078
##  Intermediate - Not Yet Burned           0.803 1.44 173   0.558  0.9442
##  3 Years Since Fire - Not Yet Burned    -4.838 2.56 195  -1.889  0.2363
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean   SE    df lower.CL upper.CL
##  Recently Burned     23.32 1.19  59.4    20.94     25.7
##  Intermediate        15.29 1.11  42.7    13.05     17.5
##  3 Years Since Fire   9.65 2.36 233.3     5.01     14.3
##  Not Yet Burned      14.49 1.05  32.8    12.35     16.6
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate   SE  df lower.CL upper.CL
##  Recently Burned - Intermediate          8.033 1.50 292    4.164    11.90
##  Recently Burned - 3 Years Since Fire   13.673 2.56 279    7.053    20.29
##  Recently Burned - Not Yet Burned        8.836 1.45 293    5.081    12.59
##  Intermediate - 3 Years Since Fire       5.641 2.49 291   -0.784    12.07
##  Intermediate - Not Yet Burned           0.803 1.44 173   -2.929     4.53
##  3 Years Since Fire - Not Yet Burned    -4.838 2.56 195  -11.475     1.80
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

##LitCover

TSF only: RB < others, 3yr > interediate and NYB

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: LitCover
##                   Chisq Df Pr(>Chisq)    
## TSF            160.0804  3     <2e-16 ***
## Management       0.5545  1     0.4565    
## TSF:Management   4.3092  3     0.2300    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## boundary (singular) fit: see ?isSingular
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean   SE    df lower.CL upper.CL
##  Recently Burned      6.38 1.23  15.6     3.76     8.99
##  Intermediate        16.65 1.20  13.9    14.07    19.23
##  3 Years Since Fire  28.57 2.19 118.0    24.23    32.91
##  Not Yet Burned      17.92 1.18  12.5    15.37    20.47
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate   SE  df t.ratio p.value
##  Recently Burned - Intermediate         -10.27 1.28 286  -8.052  <.0001
##  Recently Burned - 3 Years Since Fire   -22.19 2.23 294  -9.938  <.0001
##  Recently Burned - Not Yet Burned       -11.55 1.25 291  -9.238  <.0001
##  Intermediate - 3 Years Since Fire      -11.92 2.14 290  -5.583  <.0001
##  Intermediate - Not Yet Burned           -1.27 1.32 278  -0.967  0.7682
##  3 Years Since Fire - Not Yet Burned     10.65 2.32 284   4.580  <.0001
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates
## boundary (singular) fit: see ?isSingular
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  TSF                emmean   SE    df lower.CL upper.CL
##  Recently Burned      6.38 1.23  15.6     3.76     8.99
##  Intermediate        16.65 1.20  13.9    14.07    19.23
##  3 Years Since Fire  28.57 2.19 118.0    24.23    32.91
##  Not Yet Burned      17.92 1.18  12.5    15.37    20.47
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate   SE  df lower.CL upper.CL
##  Recently Burned - Intermediate         -10.27 1.28 286   -13.57    -6.98
##  Recently Burned - 3 Years Since Fire   -22.19 2.23 294   -27.97   -16.42
##  Recently Burned - Not Yet Burned       -11.55 1.25 291   -14.78    -8.32
##  Intermediate - 3 Years Since Fire      -11.92 2.14 290   -17.44    -6.40
##  Intermediate - Not Yet Burned           -1.27 1.32 278    -4.68     2.13
##  3 Years Since Fire - Not Yet Burned     10.65 2.32 284     4.64    16.65
## 
## Results are averaged over the levels of: Management 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

#Ordinations ## Species Ordination1

Setup1

## 
## Call:
## metaMDS(comm = SpHRECProp10, distance = "euclidean", k = 3, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(SpHRECProp10) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.09811844 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(SpHRECProp10)'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       3.24            3.08            1.17
## Proportion Explained             0.32            0.30            0.11
## Cumulative Proportion            0.32            0.62            0.73
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.83            0.76            0.51
## Proportion Explained             0.08            0.07            0.05
## Cumulative Proportion            0.81            0.89            0.94
##                       importance.MDS7 importance.MDS8
## Eigenvalue                       0.40            0.26
## Proportion Explained             0.04            0.03
## Cumulative Proportion            0.97            1.00

Env Fit

## 
## ***VECTORS
## 
##             NMDS1    NMDS2    NMDS3     r2 Pr(>r)
## BGCover   0.54513 -0.30006  0.78281 0.0533  0.188
## GCover   -0.41302 -0.73730  0.53460 0.0215  0.512
## LitCover -0.46591  0.76106  0.45136 0.0048  0.812
## LitMean  -0.11823 -0.67049  0.73244 0.0018  0.924
## MaxDead   0.63739 -0.41995  0.64605 0.0530  0.538
## MaxLive  -0.18196 -0.32032  0.92967 0.0527  0.370
## VOR_Mean -0.62569 -0.49066  0.60644 0.0611  0.100
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## TSFRB            -0.0122  0.0066  0.0166
## TSF1yr2yr         0.0747 -0.0211 -0.0102
## TSF2yr3yr         0.1042 -0.0653 -0.0327
## TSF3yr4yr         0.0768 -0.0672 -0.0430
## TSFUnburned      -0.0767  0.0391  0.0121
## ManagementCattle -0.0082  0.0758 -0.0385
## ManagementSheep   0.0082 -0.0758  0.0385
## 
## Goodness of fit:
##                r2 Pr(>r)  
## TSF        0.0814  0.096 .
## Management 0.0861  1.000  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##               NMDS1   NMDS2   NMDS3
## TSFRB       -0.0122  0.0066  0.0166
## TSF1yr2yr    0.0747 -0.0211 -0.0102
## TSF2yr3yr    0.1042 -0.0653 -0.0327
## TSF3yr4yr    0.0768 -0.0672 -0.0430
## TSFUnburned -0.0767  0.0391  0.0121
## 
## Goodness of fit:
##         r2 Pr(>r)
## TSF 0.0814  0.108
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Species Ordination2

Setup2

## 
## Call:
## metaMDS(comm = SpHRECProp10Int, distance = "euclidean", k = 3,      trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(SpHRECProp10Int) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.09811844 
## Stress type 1, weak ties
## Two convergent solutions found after 28 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(SpHRECProp10Int)'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       3.24            3.08            1.17
## Proportion Explained             0.32            0.30            0.11
## Cumulative Proportion            0.32            0.62            0.73
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.83            0.76            0.51
## Proportion Explained             0.08            0.07            0.05
## Cumulative Proportion            0.81            0.89            0.94
##                       importance.MDS7 importance.MDS8
## Eigenvalue                       0.40            0.26
## Proportion Explained             0.04            0.03
## Cumulative Proportion            0.97            1.00

Env Fit2

## 
## ***VECTORS
## 
##             NMDS1    NMDS2    NMDS3     r2 Pr(>r)
## BGCover   0.54478 -0.30021  0.78300 0.0534  0.184
## GCover   -0.41347 -0.73712  0.53451 0.0215  0.538
## LitCover -0.46560  0.76105  0.45168 0.0048  0.868
## LitMean  -0.11877 -0.66960  0.73317 0.0018  0.932
## MaxDead   0.63701 -0.42027  0.64622 0.0530  0.538
## MaxLive  -0.18223 -0.32040  0.92959 0.0526  0.352
## VOR_Mean -0.62621 -0.49055  0.60599 0.0611  0.106
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned    -0.0122  0.0066  0.0166
## TSFIntermediate        0.0865 -0.0388 -0.0192
## TSF3 Years Since Fire  0.0767 -0.0672 -0.0430
## TSFNot Yet Burned     -0.0767  0.0392  0.0122
## ManagementCattle      -0.0082  0.0758 -0.0385
## ManagementSheep        0.0082 -0.0758  0.0385
## 
## Goodness of fit:
##                r2 Pr(>r)
## TSF        0.0784  0.102
## Management 0.0861  1.000
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned    -0.0122  0.0066  0.0166
## TSFIntermediate        0.0865 -0.0388 -0.0192
## TSF3 Years Since Fire  0.0767 -0.0672 -0.0430
## TSFNot Yet Burned     -0.0767  0.0392  0.0122
## 
## Goodness of fit:
##         r2 Pr(>r)  
## TSF 0.0784  0.092 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Functional Group Ordination1

Setup

## 
## Call:
## metaMDS(comm = FGFineHREC, distance = "euclidean", k = 3, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(sqrt(FGFineHREC)) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.06718037 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(sqrt(FGFineHREC))'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       3.07            1.18            0.87
## Proportion Explained             0.51            0.20            0.15
## Cumulative Proportion            0.51            0.70            0.85
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.47            0.24            0.19
## Proportion Explained             0.08            0.04            0.03
## Cumulative Proportion            0.93            0.97            1.00

Env Fit

## 
## ***VECTORS
## 
##             NMDS1    NMDS2    NMDS3     r2 Pr(>r)  
## BGCover   0.61000 -0.72931 -0.30984 0.0276  0.530  
## GCover   -0.96481 -0.02108 -0.26212 0.0385  0.690  
## LitCover  0.00500  0.71266 -0.70149 0.0874  0.098 .
## LitMean  -0.18004  0.59741 -0.78147 0.0980  0.126  
## MaxDead   0.10795  0.23781 -0.96529 0.0950  0.076 .
## MaxLive   0.20291 -0.92067  0.33347 0.1217  0.984  
## VOR_Mean -0.05783 -0.94684  0.31646 0.0657  0.972  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## TSFRB             0.0178 -0.0059  0.0133
## TSF1yr2yr         0.0234 -0.0397  0.0007
## TSF2yr3yr         0.0650 -0.0342 -0.0210
## TSF3yr4yr        -0.1017 -0.0501 -0.0550
## TSFUnburned      -0.0283  0.0435  0.0070
## ManagementCattle  0.0408 -0.0008  0.0461
## ManagementSheep  -0.0408  0.0008 -0.0461
## 
## Goodness of fit:
##                r2 Pr(>r)
## TSF        0.0643    0.2
## Management 0.0745    1.0
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Functional Group Ordination2

Setup2

## 
## Call:
## metaMDS(comm = FGFineHRECInt, distance = "euclidean", k = 3,      trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(sqrt(FGFineHRECInt)) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.06718037 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(sqrt(FGFineHRECInt))'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       3.07            1.18            0.87
## Proportion Explained             0.51            0.20            0.15
## Cumulative Proportion            0.51            0.70            0.85
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.47            0.24            0.19
## Proportion Explained             0.08            0.04            0.03
## Cumulative Proportion            0.93            0.97            1.00

Env Fit2

## 
## ***VECTORS
## 
##             NMDS1    NMDS2    NMDS3     r2 Pr(>r)  
## BGCover   0.50199 -0.86190 -0.07164 0.0266  0.542  
## GCover   -0.72232  0.54896 -0.42059 0.0350  0.750  
## LitCover  0.00162  0.71865 -0.69537 0.0877  0.094 .
## LitMean  -0.16832  0.64783 -0.74296 0.0991  0.132  
## MaxDead   0.11750  0.21458 -0.96961 0.0900  0.070 .
## MaxLive   0.19963 -0.93053  0.30701 0.1234  0.988  
## VOR_Mean -0.00510 -0.96600  0.25848 0.0576  0.988  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned     0.0178 -0.0059  0.0133
## TSFIntermediate        0.0400 -0.0375 -0.0080
## TSF3 Years Since Fire -0.1017 -0.0501 -0.0550
## TSFNot Yet Burned     -0.0283  0.0435  0.0070
## ManagementCattle       0.0408 -0.0008  0.0461
## ManagementSheep       -0.0408  0.0008 -0.0461
## 
## Goodness of fit:
##                r2 Pr(>r)  
## TSF        0.0610   0.09 .
## Management 0.0745   1.00  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Structure Ordination 1

Setup

## 
## Call:
## metaMDS(comm = StrSpeHREC, distance = "euclidean", k = 3, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(StrSpeHREC) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.04695268 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(StrSpeHREC)'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       2.07            0.72            0.50
## Proportion Explained             0.58            0.20            0.14
## Cumulative Proportion            0.58            0.78            0.92
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.17            0.07            0.04
## Proportion Explained             0.05            0.02            0.01
## Cumulative Proportion            0.97            0.99            1.00

Env Fit

## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## TSFRB            -0.1822 -0.0164 -0.0123
## TSF1yr2yr         0.0173 -0.0309  0.0142
## TSF2yr3yr         0.0803 -0.0040  0.0075
## TSF3yr4yr         0.1736  0.0727  0.0531
## TSFUnburned       0.0571  0.0157 -0.0102
## ManagementCattle  0.0040 -0.0147  0.0042
## ManagementSheep  -0.0040  0.0147 -0.0042
## 
## Goodness of fit:
##                r2 Pr(>r)   
## TSF        0.3879  0.002 **
## Management 0.0073  1.000   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## ManagementCattle  0.0040 -0.0147  0.0042
## ManagementSheep  -0.0040  0.0147 -0.0042
## 
## Goodness of fit:
##                r2 Pr(>r)
## Management 0.0073      1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##               NMDS1   NMDS2   NMDS3
## TSFRB       -0.1822 -0.0164 -0.0123
## TSF1yr2yr    0.0173 -0.0309  0.0142
## TSF2yr3yr    0.0803 -0.0040  0.0075
## TSF3yr4yr    0.1736  0.0727  0.0531
## TSFUnburned  0.0571  0.0157 -0.0102
## 
## Goodness of fit:
##         r2 Pr(>r)   
## TSF 0.3879  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  StSp.MDSe by EnvPatchHREC2$TSF
## 999 permutations 
## 
##          RB    1yr2yr 2yr3yr 3yr4yr
## 1yr2yr   0.002 -      -      -     
## 2yr3yr   0.002 0.213  -      -     
## 3yr4yr   0.002 0.002  0.104  -     
## Unburned 0.002 0.054  0.549  0.010 
## 
## P value adjustment method: fdr
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  StSp.MDSe by EnvPatchHREC2$Management
## 999 permutations 
## 
##       Cattle
## Sheep 0.43  
## 
## P value adjustment method: fdr

Structure Ordination 2

Setup2

## 
## Call:
## metaMDS(comm = StrSpeHRECInt, distance = "euclidean", k = 3,      trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(StrSpeHRECInt) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.04695262 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(StrSpeHRECInt)'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       2.07            0.72            0.50
## Proportion Explained             0.58            0.20            0.14
## Cumulative Proportion            0.58            0.78            0.92
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.17            0.07            0.04
## Proportion Explained             0.05            0.02            0.01
## Cumulative Proportion            0.97            0.99            1.00

Env Fit2

## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned    -0.1822 -0.0164 -0.0123
## TSFIntermediate        0.0425 -0.0202  0.0115
## TSF3 Years Since Fire  0.1736  0.0727  0.0531
## TSFNot Yet Burned      0.0571  0.0157 -0.0102
## ManagementCattle       0.0040 -0.0147  0.0042
## ManagementSheep       -0.0040  0.0147 -0.0042
## 
## Goodness of fit:
##                r2 Pr(>r)   
## TSF        0.3775  0.002 **
## Management 0.0073  1.000   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## ManagementCattle  0.0040 -0.0147  0.0042
## ManagementSheep  -0.0040  0.0147 -0.0042
## 
## Goodness of fit:
##                r2 Pr(>r)
## Management 0.0073      1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned    -0.1822 -0.0164 -0.0123
## TSFIntermediate        0.0425 -0.0202  0.0115
## TSF3 Years Since Fire  0.1736  0.0727  0.0531
## TSFNot Yet Burned      0.0571  0.0157 -0.0102
## 
## Goodness of fit:
##         r2 Pr(>r)   
## TSF 0.3775  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  StSp.MDSeInt by EnvPatchHRECOrdi2$TSF
## 999 permutations 
## 
##                    Recently Burned Intermediate 3 Years Since Fire
## Intermediate       0.002           -            -                 
## 3 Years Since Fire 0.002           0.006        -                 
## Not Yet Burned     0.002           0.220        0.003             
## 
## P value adjustment method: fdr
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  StSp.MDSeInt by EnvPatchHRECOrdi2$Management
## 999 permutations 
## 
##       Cattle
## Sheep 0.44  
## 
## P value adjustment method: fdr

#Graphs

##Community Composition

##FG Stack Graph

cowplot::plot_grid( GrassPlot,ForbPlot,LegumePlot, nrow = 3)

##Structure Stack1

cowplot::plot_grid( VorPlot,MaxLivePlot,MaxDeadPlot,LitMeanPlot, nrow = 4)

##Structure Stack2

cowplot::plot_grid( BarePlot, GroundPlot,LitterPlot, nrow = 3)

#Heterogeneity Over Time

Setup

## `summarise()` has grouped output by 'Year', 'Variable'. You can override using the `.groups` argument.

Tests

VOR

##             Df  Sum Sq Mean Sq F value Pr(>F)  
## Year         1 0.03568 0.03568   10.56 0.0314 *
## Residuals    4 0.01351 0.00338                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.158 0.0336  4   0.0651    0.251
##  2020  0.313 0.0336  4   0.2193    0.406
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate     SE df t.ratio p.value
##  2017 - 2020   -0.154 0.0475  4  -3.250  0.0314
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.158 0.0336  4   0.0651    0.251
##  2020  0.313 0.0336  4   0.2193    0.406
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate     SE df lower.CL upper.CL
##  2017 - 2020   -0.154 0.0475  4   -0.286  -0.0225
## 
## Confidence level used: 0.95
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 7.017e-11 7.017e-11   1.326  0.314
## Residuals    4 2.117e-10 5.293e-11
## $emmeans
##  Year   emmean      SE df  lower.CL upper.CL
##  2017 7.34e-07 4.2e-06  4 -1.09e-05 1.24e-05
##  2020 7.57e-06 4.2e-06  4 -4.09e-06 1.92e-05
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate       SE df t.ratio p.value
##  2017 - 2020 -6.84e-06 5.94e-06  4  -1.151  0.3137
## $emmeans
##  Year   emmean      SE df  lower.CL upper.CL
##  2017 7.34e-07 4.2e-06  4 -1.09e-05 1.24e-05
##  2020 7.57e-06 4.2e-06  4 -4.09e-06 1.92e-05
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate       SE df  lower.CL upper.CL
##  2017 - 2020 -6.84e-06 5.94e-06  4 -2.33e-05 9.65e-06
## 
## Confidence level used: 0.95

Max Live

##             Df Sum Sq Mean Sq F value Pr(>F)  
## Year         1 1.4380  1.4380   19.63 0.0114 *
## Residuals    4 0.2931  0.0733                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.256 0.156  4   -0.178     0.69
##  2020  1.235 0.156  4    0.801     1.67
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020   -0.979 0.221  4  -4.430  0.0114
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.256 0.156  4   -0.178     0.69
##  2020  1.235 0.156  4    0.801     1.67
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020   -0.979 0.221  4    -1.59   -0.365
## 
## Confidence level used: 0.95
##             Df  Sum Sq Mean Sq F value Pr(>F)
## Year         1 0.02013 0.02013       1  0.374
## Residuals    4 0.08051 0.02013
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.116 0.0819  4   -0.112    0.343
##  2020  0.000 0.0819  4   -0.227    0.227
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020    0.116 0.116  4   1.000  0.3739
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.116 0.0819  4   -0.112    0.343
##  2020  0.000 0.0819  4   -0.227    0.227
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020    0.116 0.116  4   -0.206    0.437
## 
## Confidence level used: 0.95

Max Dead

##             Df  Sum Sq Mean Sq F value  Pr(>F)    
## Year         1 0.07551 0.07551   174.5 0.00019 ***
## Residuals    4 0.00173 0.00043                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.271 0.012  4    0.237    0.304
##  2020  0.495 0.012  4    0.462    0.528
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020   -0.224 0.017  4 -13.210  0.0002
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.271 0.012  4    0.237    0.304
##  2020  0.495 0.012  4    0.462    0.528
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020   -0.224 0.017  4   -0.272   -0.177
## 
## Confidence level used: 0.95
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 1.098e-11 1.098e-11   3.488  0.135
## Residuals    4 1.259e-11 3.148e-12
## $emmeans
##  Year   emmean       SE df  lower.CL upper.CL
##  2017 2.71e-06 1.02e-06  4 -1.39e-07 5.55e-06
##  2020 0.00e+00 1.02e-06  4 -2.84e-06 2.84e-06
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate       SE df t.ratio p.value
##  2017 - 2020 2.71e-06 1.45e-06  4   1.868  0.1352
## $emmeans
##  Year   emmean       SE df  lower.CL upper.CL
##  2017 2.71e-06 1.02e-06  4 -1.39e-07 5.55e-06
##  2020 0.00e+00 1.02e-06  4 -2.84e-06 2.84e-06
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate       SE df  lower.CL upper.CL
##  2017 - 2020 2.71e-06 1.45e-06  4 -1.32e-06 6.73e-06
## 
## Confidence level used: 0.95

Litter Depth

##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## Year         1 0.19293 0.19293    58.8 0.00155 **
## Residuals    4 0.01312 0.00328                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.101 0.0331  4  0.00914    0.193
##  2020  0.460 0.0331  4  0.36778    0.551
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate     SE df t.ratio p.value
##  2017 - 2020   -0.359 0.0468  4  -7.668  0.0016
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.101 0.0331  4  0.00914    0.193
##  2020  0.460 0.0331  4  0.36778    0.551
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate     SE df lower.CL upper.CL
##  2017 - 2020   -0.359 0.0468  4   -0.488   -0.229
## 
## Confidence level used: 0.95
##             Df   Sum Sq   Mean Sq F value Pr(>F)
## Year         1 0.000539 0.0005392   0.197   0.68
## Residuals    4 0.010922 0.0027306
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017 0.0222 0.0302  4  -0.0615    0.106
##  2020 0.0412 0.0302  4  -0.0426    0.125
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate     SE df t.ratio p.value
##  2017 - 2020   -0.019 0.0427  4  -0.444  0.6798
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017 0.0222 0.0302  4  -0.0615    0.106
##  2020 0.0412 0.0302  4  -0.0426    0.125
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate     SE df lower.CL upper.CL
##  2017 - 2020   -0.019 0.0427  4   -0.137   0.0995
## 
## Confidence level used: 0.95

Bare Ground Cover

##             Df Sum Sq Mean Sq F value Pr(>F)  
## Year         1 0.3431  0.3431   16.89 0.0147 *
## Residuals    4 0.0812  0.0203                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.366 0.0823  4    0.137    0.594
##  2020  0.844 0.0823  4    0.615    1.072
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020   -0.478 0.116  4  -4.110  0.0147
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.366 0.0823  4    0.137    0.594
##  2020  0.844 0.0823  4    0.615    1.072
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020   -0.478 0.116  4   -0.801   -0.155
## 
## Confidence level used: 0.95
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 1.373e-09 1.373e-09   2.692  0.176
## Residuals    4 2.040e-09 5.101e-10
## $emmeans
##  Year   emmean      SE df  lower.CL upper.CL
##  2017 4.20e-11 1.3e-05  4 -3.62e-05 3.62e-05
##  2020 3.03e-05 1.3e-05  4 -5.95e-06 6.65e-05
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate       SE df t.ratio p.value
##  2017 - 2020 -3.03e-05 1.84e-05  4  -1.641  0.1762
## $emmeans
##  Year   emmean      SE df  lower.CL upper.CL
##  2017 4.20e-11 1.3e-05  4 -3.62e-05 3.62e-05
##  2020 3.03e-05 1.3e-05  4 -5.95e-06 6.65e-05
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate       SE df  lower.CL upper.CL
##  2017 - 2020 -3.03e-05 1.84e-05  4 -8.15e-05 2.09e-05
## 
## Confidence level used: 0.95

Ground Litter

##             Df Sum Sq Mean Sq F value Pr(>F)  
## Year         1 25.899  25.899   19.17 0.0119 *
## Residuals    4  5.405   1.351                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017   4.76 0.671  4     2.89     6.62
##  2020   8.91 0.671  4     7.05    10.78
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020    -4.16 0.949  4  -4.378  0.0119
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017   4.76 0.671  4     2.89     6.62
##  2020   8.91 0.671  4     7.05    10.78
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020    -4.16 0.949  4    -6.79    -1.52
## 
## Confidence level used: 0.95
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 4.980e-08 4.976e-08   0.497   0.52
## Residuals    4 4.004e-07 1.001e-07
## $emmeans
##  Year   emmean       SE df  lower.CL upper.CL
##  2017 7.32e-05 0.000183  4 -0.000434 0.000580
##  2020 2.55e-04 0.000183  4 -0.000252 0.000762
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate       SE df t.ratio p.value
##  2017 - 2020 -0.000182 0.000258  4  -0.705  0.5197
## $emmeans
##  Year   emmean       SE df  lower.CL upper.CL
##  2017 7.32e-05 0.000183  4 -0.000434 0.000580
##  2020 2.55e-04 0.000183  4 -0.000252 0.000762
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate       SE df  lower.CL upper.CL
##  2017 - 2020 -0.000182 0.000258  4 -0.000899 0.000535
## 
## Confidence level used: 0.95

Standing Litter

##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Year         1 30.343  30.343   38.81 0.00338 **
## Residuals    4  3.128   0.782                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017   5.88 0.511  4     4.46     7.29
##  2020  10.37 0.511  4     8.96    11.79
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020     -4.5 0.722  4  -6.229  0.0034
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017   5.88 0.511  4     4.46     7.29
##  2020  10.37 0.511  4     8.96    11.79
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020     -4.5 0.722  4     -6.5    -2.49
## 
## Confidence level used: 0.95
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 1.399e-14 1.399e-14       1  0.374
## Residuals    4 5.596e-14 1.399e-14
## $emmeans
##  Year   emmean       SE df lower.CL upper.CL
##  2017 0.00e+00 6.83e-08  4 -1.9e-07 1.90e-07
##  2020 9.66e-08 6.83e-08  4 -9.3e-08 2.86e-07
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate       SE df t.ratio p.value
##  2017 - 2020 -9.66e-08 9.66e-08  4  -1.000  0.3739
## $emmeans
##  Year   emmean       SE df lower.CL upper.CL
##  2017 0.00e+00 6.83e-08  4 -1.9e-07 1.90e-07
##  2020 9.66e-08 6.83e-08  4 -9.3e-08 2.86e-07
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate       SE df  lower.CL upper.CL
##  2017 - 2020 -9.66e-08 9.66e-08  4 -3.65e-07 1.72e-07
## 
## Confidence level used: 0.95

Forb

##             Df  Sum Sq Mean Sq F value Pr(>F)
## Year         1 0.08002 0.08002   1.168  0.341
## Residuals    4 0.27409 0.06852
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.485 0.151  4   0.0657    0.905
##  2020  0.254 0.151  4  -0.1652    0.674
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020    0.231 0.214  4   1.081  0.3406
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.485 0.151  4   0.0657    0.905
##  2020  0.254 0.151  4  -0.1652    0.674
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020    0.231 0.214  4   -0.362    0.824
## 
## Confidence level used: 0.95
##             Df  Sum Sq Mean Sq F value Pr(>F)
## Year         1 0.04715 0.04715   1.413    0.3
## Residuals    4 0.13348 0.03337
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.223 0.105  4  -0.0702    0.516
##  2020  0.400 0.105  4   0.1071    0.693
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020   -0.177 0.149  4  -1.189  0.3003
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.223 0.105  4  -0.0702    0.516
##  2020  0.400 0.105  4   0.1071    0.693
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020   -0.177 0.149  4   -0.591    0.237
## 
## Confidence level used: 0.95

Legume

##             Df Sum Sq Mean Sq F value Pr(>F)
## Year         1 0.0188 0.01885   0.097  0.771
## Residuals    4 0.7755 0.19388
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.349 0.254  4   -0.357     1.05
##  2020  0.461 0.254  4   -0.245     1.17
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate   SE df t.ratio p.value
##  2017 - 2020   -0.112 0.36  4  -0.312  0.7708
## $emmeans
##  Year emmean    SE df lower.CL upper.CL
##  2017  0.349 0.254  4   -0.357     1.05
##  2020  0.461 0.254  4   -0.245     1.17
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate   SE df lower.CL upper.CL
##  2017 - 2020   -0.112 0.36  4    -1.11    0.886
## 
## Confidence level used: 0.95
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Year         1 0.3206  0.3206   11.22 0.0286 *
## Residuals    4 0.1143  0.0286                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.106 0.0976  4   -0.165    0.377
##  2020  0.568 0.0976  4    0.297    0.839
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df t.ratio p.value
##  2017 - 2020   -0.462 0.138  4  -3.350  0.0286
## $emmeans
##  Year emmean     SE df lower.CL upper.CL
##  2017  0.106 0.0976  4   -0.165    0.377
##  2020  0.568 0.0976  4    0.297    0.839
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate    SE df lower.CL upper.CL
##  2017 - 2020   -0.462 0.138  4   -0.846  -0.0792
## 
## Confidence level used: 0.95

Grass

##             Df Sum Sq Mean Sq F value Pr(>F)
## Year         1   0.18    0.18   0.005  0.946
## Residuals    4 143.61   35.90
## $emmeans
##  Year emmean   SE df lower.CL upper.CL
##  2017   7.50 3.46  4    -2.10     17.1
##  2020   7.15 3.46  4    -2.45     16.8
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate   SE df t.ratio p.value
##  2017 - 2020    0.351 4.89  4   0.072  0.9463
## $emmeans
##  Year emmean   SE df lower.CL upper.CL
##  2017   7.50 3.46  4    -2.10     17.1
##  2020   7.15 3.46  4    -2.45     16.8
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate   SE df lower.CL upper.CL
##  2017 - 2020    0.351 4.89  4    -13.2     13.9
## 
## Confidence level used: 0.95
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 1.654e-05 1.654e-05       1  0.374
## Residuals    4 6.617e-05 1.654e-05
## $emmeans
##  Year  emmean      SE df lower.CL upper.CL
##  2017 0.00332 0.00235  4 -0.00320  0.00984
##  2020 0.00000 0.00235  4 -0.00652  0.00652
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate      SE df t.ratio p.value
##  2017 - 2020  0.00332 0.00332  4   1.000  0.3739
## $emmeans
##  Year  emmean      SE df lower.CL upper.CL
##  2017 0.00332 0.00235  4 -0.00320  0.00984
##  2020 0.00000 0.00235  4 -0.00652  0.00652
## 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast    estimate      SE df lower.CL upper.CL
##  2017 - 2020  0.00332 0.00332  4  -0.0059   0.0125
## 
## Confidence level used: 0.95

Stacked graphs

cowplot::plot_grid( VORvp,MLvp,MDvp, LDvp, nrow = 4)

cowplot::plot_grid( BGvp,GCvp,LCvp, nrow = 3)

cowplot::plot_grid( GRvp,FBvp,LGvp, nrow = 3)

Use Comparison

## `summarise()` has grouped output by 'Year', 'Variable', 'Use'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'Variable', 'Use'. You can override using the `.groups` argument.
## Warning in write.csv(VPUSESummaryGraph, file = "D:/R/data/
## VPUSESummaryGraph.csv", : attempt to set 'col.names' ignored
## Warning in write.csv(VPUSESummaryGraph2, file = "D:/R/data/
## VPUSESummaryGraph2.csv", : attempt to set 'col.names' ignored

cowplot::plot_grid( UP1,UP2, nrow = 2)

## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: sdcor
##      Chisq Df Pr(>Chisq)    
## Use 19.211  1   1.17e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
##  Use           emmean     SE    df lower.CL upper.CL
##  Heterogeneous 0.1945 0.0262 17.82  0.13951    0.250
##  Homogeneous   0.0564 0.0221  7.85  0.00518    0.108
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                    estimate     SE   df t.ratio p.value
##  Heterogeneous - Homogeneous    0.138 0.0325 46.3   4.251  0.0001
## 
## Degrees-of-freedom method: kenward-roger
## $emmeans
##  Use           emmean     SE    df lower.CL upper.CL
##  Heterogeneous 0.1945 0.0262 17.82  0.13951    0.250
##  Homogeneous   0.0564 0.0221  7.85  0.00518    0.108
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                    estimate     SE   df lower.CL upper.CL
##  Heterogeneous - Homogeneous    0.138 0.0325 46.3   0.0728    0.204
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95