Casens 2006-2020 Tabla 27

Pueblos indígenas, ¿pertenece usted o es descendiente de alguno de ellos?

VE-CC-AJ

DataIntelligence
date: 14-10-2021

1 Introducción

El procedimiento de generación de tablas de contingencia trae problemas si se consideran varias tablas referidas por ejemplo a varios años, cuyas categorías de divergen.

casen_2006 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2006_c.rds")
casen_2006 <- mutate_if(casen_2006, is.factor, as.character)
casen_2009 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2009_c.rds")
casen_2009 <- mutate_if(casen_2009, is.factor, as.character)
casen_2011 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2011_c.rds")
casen_2011 <- mutate_if(casen_2011, is.factor, as.character)
casen_2013 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2013_c.rds")
casen_2013 <- mutate_if(casen_2013, is.factor, as.character)
casen_2015 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2015_c.rds")
casen_2015 <- mutate_if(casen_2015, is.factor, as.character)
casen_2017 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2017_c.rds")
casen_2017 <- mutate_if(casen_2017, is.factor, as.character)
casen_2020 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2020_c.rds")
casen_2020 <- mutate_if(casen_2020, is.factor, as.character)

cod_com <- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/codigos_comunales_2006-2020.rds") 
names(cod_com)[2] <- "comuna"
vv <- c("T4","T5","r6","r6","r3","r3","r3")
casen_2006 <- casen_2006[,c("EXPC", "COMUNA"          ,vv[1],            "T4","SEXO","E1")]
casen_2009 <- casen_2009[,c("EXPC", "COMUNA"          ,vv[2],            "T5","SEXO","E1")]
casen_2011 <- casen_2011[,c("expc_full", "comuna"     ,vv[3],            "r6","sexo","e1","r2p_cod")]
casen_2013 <- casen_2013[,c("expc", "comuna"          ,vv[4],            "r6","sexo","e1","r2_p_cod")]
casen_2015 <- casen_2015[,c("expc_todas", "comuna"    ,vv[5],            "r3","sexo","e1","r2espp_cod")]
casen_2017 <- casen_2017[,c("expc", "comuna"          ,vv[6],            "r3","sexo","e1","r2_p_cod")]
casen_2020 <- casen_2020[,c("expc", "comuna"          ,vv[7],            "r3","sexo","e1","r2_pais_esp")]

1.0.1 2006

ab <- casen_2006
 
c <- ab$T4 

cross_tab =  xtabs(ab$EXPC ~  unlist(c),aggregate(ab$EXPC ~   unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2006"
       
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2006 <- d

d_2006 <- mutate_if(d_2006, is.factor, as.character)

1.0.2 2009

Generamos las tablas de contingencia tal como acostumbramos:

ab <- casen_2009
 
c <- ab$T5 

cross_tab =  xtabs(ab$EXPC~    unlist(c),aggregate(ab$EXPC ~    unlist(c) ,ab,mean))

tabla <- as.data.frame(cross_tab)

d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2009"
 
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2009 <- d

1.0.3 2011

Generamos las tablas de contingencia tal como acostumbramos:

ab <- casen_2011
 
c <- ab$r6 

cross_tab =  xtabs(ab$expc_full ~   unlist(c),aggregate(ab$expc_full ~    unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2011"
       
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2011 <- d

1.0.4 2013

Generamos las tablas de contingencia tal como acostumbramos:

ab <- casen_2013
 
c <- ab$r6 

cross_tab =  xtabs(ab$expc ~    unlist(c),aggregate(ab$expc ~   unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2013"
       
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2013 <- d

1.0.5 2015

Generamos las tablas de contingencia tal como acostumbramos:

ab <- casen_2015
 
c <- ab$r3 

cross_tab =  xtabs(ab$expc_todas ~    unlist(c),aggregate(ab$expc_todas ~    unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2015"
       
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2015 <- d

1.0.6 2017

Generamos las tablas de contingencia tal como acostumbramos:

ab <- casen_2017
 
c <- ab$r3 

cross_tab =  xtabs(ab$expc ~     unlist(c),aggregate(ab$expc ~   unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
       
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2017 <- d

1.0.7 2020

Generamos las tablas de contingencia tal como acostumbramos:

ab <- casen_2020

b <- ab$comuna
c <- ab$r3
d <- ab$r3
e <- ab$sexo
f <- ab$e1

cross_tab =  xtabs(ab$expc ~    unlist(c),aggregate(ab$expc ~    unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2020"
       
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2020 <- d

Unimos y desplegamos la tabla corregida:

2 Tabla final etnia homologada

union_etnia <- rbind(d_2006,d_2009, d_2011, d_2013, d_2015, d_2017, d_2020)
union_etnia <- mutate_if(union_etnia, is.factor, as.character)
 

datatable( union_etnia, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla'),
          list(extend='pdf',
            filename= 'tabla')),
          text = 'Download')), scrollX = TRUE))
t1 <- union_etnia
p <- plot_ly(t1, width = 1200,  x = ~Año, y = ~Frecuencia , color  = ~variable, mode = 'markers') %>% add_lines()
p

Homologación de etnia

variable_etnia <- function(dataset){
  
  variable <- switch(i,"T4","T5","r6","r6","r3","r3","r3")
  
  
dataset[,variable][dataset[,variable] == "Aimara" ]  <- "Aymara"
dataset[,variable][dataset[,variable] == "No pertenece a ninguno de estos pueblos indígenas" ]  <-  "No pertenece a ningún pueblo indígena" 
dataset[,variable][dataset[,variable] == "Mapuche"]  <- "Mapuche"
dataset[,variable][dataset[,variable] == "Diaguita"]  <- "Diaguita"
dataset[,variable][dataset[,variable] == "Atacameño (Likan-Antai)" ]  <- "Atacameño"
dataset[,variable][dataset[,variable] == "Atacameño (Likán Antai)" ]  <- "Atacameño"
dataset[,variable][dataset[,variable] == "Atacameño (Likán-Antai)" ]  <- "Atacameño"
dataset[,variable][dataset[,variable] == "Yámana o Yagán" ]  <- "Yagán"
dataset[,variable][dataset[,variable] == "Yagan" ]  <- "Yagán"
dataset[,variable][dataset[,variable] == "Yagán (Yámana)" ]  <- "Yagán"
dataset[,variable][dataset[,variable] == "Rapa-Nui o Pascuenses"]  <- "Pascuense"
dataset[,variable][dataset[,variable] == "Rapa-Nui"]  <- "Pascuense"
dataset[,variable][dataset[,variable] == "Rapa Nui (Pascuense)"]  <- "Pascuense"
dataset[,variable][dataset[,variable] == "Collas"]  <- "Coya"
dataset[,variable][dataset[,variable] == "Kawashkar o Alacalufes" ]  <- "Alacalufe"
dataset[,variable][dataset[,variable] == "Kawashkar" ]  <- "Alacalufe"
dataset[,variable][dataset[,variable] == "Kawésqar (Alacalufes)" ]  <- "Alacalufe"
dataset[,variable][dataset[,variable] == "Kawésqar" ]  <- "Alacalufe"
dataset[,variable][dataset[,variable] == "Kawaskar" ]  <- "Alacalufe"
dataset[,variable][dataset[,variable] ==  "Sin dato"]  <- NA
dataset[,variable][dataset[,variable] ==  "NS/NR"   ]  <- NA
dataset[,variable][dataset[,variable] == "No sabe/no responde" ]  <- NA 
# df <<- dataset

  
    switch(i,
        case =  casen_2006 <<- dataset,
        case =  casen_2009 <<- dataset,
        case =  casen_2011 <<- dataset,
        case =  casen_2013 <<- dataset,
        case =  casen_2015 <<- dataset,
        case =  casen_2017 <<- dataset,
        case =  casen_2020 <<- dataset 
)
}

for (i in 1:7) {
  
  switch(i,
        case = casen <- casen_2006,
        case = casen <- casen_2009,
        case = casen <- casen_2011,
        case = casen <- casen_2013,
        case = casen <- casen_2015,
        case = casen <- casen_2017,
        case = casen <- casen_2020
)
  
  variable_etnia(casen)
  
}

2.0.1 2006

ab <- casen_2006
 
c <- ab$T4 

cross_tab =  xtabs(ab$EXPC ~  unlist(c),aggregate(ab$EXPC ~   unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2006"
       
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2006 <- d

d_2006 <- mutate_if(d_2006, is.factor, as.character)

2.0.2 2009

Generamos las tablas de contingencia tal como acostumbramos:

ab <- casen_2009
 
c <- ab$T5 

cross_tab =  xtabs(ab$EXPC~    unlist(c),aggregate(ab$EXPC ~    unlist(c) ,ab,mean))

tabla <- as.data.frame(cross_tab)

d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2009"
 
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2009 <- d

2.0.3 2011

Generamos las tablas de contingencia tal como acostumbramos:

ab <- casen_2011
 
c <- ab$r6 

cross_tab =  xtabs(ab$expc_full ~   unlist(c),aggregate(ab$expc_full ~   unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2011"
 
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2011 <- d

2.0.4 2013

ab <- casen_2013
 
c <- ab$r6 

cross_tab =  xtabs(ab$expc ~   unlist(c),aggregate(ab$expc ~    unlist(c) ,ab,mean)) 
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2013"
 
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"
d_2013 <- d

2.0.5 2015

 ab <- casen_2015
 
c <- ab$r3 

 cross_tab =  xtabs(ab$expc_todas ~  unlist(c),aggregate(ab$expc_todas ~   unlist(c) ,ab,mean))
 tabla <- as.data.frame(cross_tab)
 d <-tabla[!(tabla$Freq == 0),] 
 d$anio <- "2015"
 
 names(d)[1] <- "variable"  
 names(d)[2] <- "Frecuencia" 
 names(d)[3] <- "Año" 

 d_2015 <- d 

2.0.6 2017

ab <- casen_2017
 
c <- ab$r3 

cross_tab =  xtabs(ab$expc~   unlist(c),aggregate(ab$expc ~   unlist(c) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
 
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"

d_2017 <- d

2.0.7 2020

ab <- casen_2020
 
c <- ab$r3  

cross_tab =  xtabs(ab$expc ~   unlist(c),aggregate(ab$expc ~    unlist(c),ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2020"
 
names(d)[1] <- "variable" 
names(d)[2] <- "Frecuencia"
names(d)[3] <- "Año"


d_2020 <- d

Unimos y desplegamos la tabla corregida:

3 Tabla final inmigración homologada

union_etnia <- rbind(d_2006,d_2009,d_2011, d_2013, d_2015, d_2017, d_2020)
union_etnia  <- mutate_if(union_etnia, is.factor, as.character)
 
datatable(union_etnia, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla'),
          list(extend='pdf',
            filename= 'tabla')),
          text = 'Download')), scrollX = TRUE))

Con homologación

t2 <- union_etnia
p <- plot_ly(t2, width = 1200,  x = ~Año, y = ~Frecuencia , color  = ~variable, mode = 'markers') %>% add_lines()
p

Sin homologación

p <- plot_ly(t1, width = 1200,  x = ~Año, y = ~Frecuencia , color  = ~variable, mode = 'markers') %>% add_lines()
p