Diseño Factorial Fraccionado

Ejercicio 8-6

Montgomery (2004) R.D.Snee (“Experimentación con un número grande de variables”, en Experiments in industry: Desegn, Analysis and Interpretation of Results, de R.D. Snee, L:.B. Hare y J.B. Trout, editores, ASQC) describe un experimento en el que se usó un diseño \(2^5-1\) con I=ABCDE para investigar los efectos de cinco factores sobre el color de un producto química. Los factores son A= solventes/reactivo, B=catalizador/reactivo, C=temperatura, D=pureza del reactivo y E= pH del reactivo. Los resultados obtenidos fueron los siguientes:

e=-0.63 d=6.79
a=2.51 ade=5.47
b=-2.68 bde=3.45
abe=1.66 adb=5.68
c=2.06 cde=5.22
ace=1.22 acd=4.38
bce=-2.09 bcd=4.30
abc=1.93 abcde=4.05

a) Construir una gráfica de probabilidad normal de los efectos. ¿Qué efectos parecen estar activos?

b) Calcular los residuales. Construir una gráfica de probabilidad normal de los residuales y graficar los residuales contra los valores ajustados. Comentar las gráficas.

c) Si algunos de los factores son insignificantes plegar el diseño \(2^5-1\) un diseño factorial completo en los factores activos. Comentar el diseño resultante e interpretar los resultados.

Solución

#-----Desarrollo del ejercicio---#
library(printr)
## Warning: package 'printr' was built under R version 4.0.5
datos=read.table("dataset5.txt",header = TRUE)
str(datos)
## 'data.frame':    16 obs. of  6 variables:
##  $ Solvente_Reactivo_A   : int  -1 1 -1 1 -1 1 -1 1 -1 1 ...
##  $ Catalizador_Reactivo_B: int  -1 -1 1 1 -1 -1 1 1 -1 -1 ...
##  $ Temperatura_C         : int  -1 -1 -1 -1 1 1 1 1 -1 -1 ...
##  $ Pureza_Reactivo_D     : int  -1 -1 -1 -1 -1 -1 -1 -1 -1 1 ...
##  $ PH_Reactivo_E         : int  1 -1 -1 1 -1 1 1 -1 1 1 ...
##  $ Resultados            : num  -0.63 2.51 -2.68 1.66 2.06 1.22 -2.09 1.93 6.79 5.47 ...
View(datos)

a) Construir una gráfica de probabilidad normal de los efectos. ¿Qué efectos parecen estar activos? Posteriormente se presenta la gráfica de Pareto y la gráfica de Daniel, en las cuales se dará evidencia de cuales son los efectos relevantes del experimento, con respecto al principio de escazes.

f_rA=factor('Solvente_Reactivo_A')
f_rB=factor('Catalizador_Reactivo_B')
f=rC=factor('Temperatura_C')
f_rD=factor('Pureza_Reactivo_D')
f_rE=factor('PH_Reactivo_E')
attach(datos)
head(datos,n=16L)
Solvente_Reactivo_A Catalizador_Reactivo_B Temperatura_C Pureza_Reactivo_D PH_Reactivo_E Resultados
-1 -1 -1 -1 1 -0.63
1 -1 -1 -1 -1 2.51
-1 1 -1 -1 -1 -2.68
1 1 -1 -1 1 1.66
-1 -1 1 -1 -1 2.06
1 -1 1 -1 1 1.22
-1 1 1 -1 1 -2.09
1 1 1 -1 -1 1.93
-1 -1 -1 -1 1 6.79
1 -1 -1 1 1 5.47
-1 1 -1 1 1 3.45
1 1 -1 1 -1 5.68
-1 -1 1 1 1 5.22
1 -1 1 1 -1 4.38
-1 1 1 1 -1 4.30
1 1 1 1 1 4.05
library(FrF2)
## Warning: package 'FrF2' was built under R version 4.0.5
Experimento= FrF2(nruns = 16, nfactors = 5, factor.names= list(Solvente_Reactivo_A=c(-1,1), Catalizador_Reactivo_B=c(-1,1), Temperatura_C=c(-1,1), Pureza_Reactivo_D=c(-1,1), PH_Reactivo_E=c(-1,1)), replications = 1, randomize = FALSE)
Experimento_respuesta=add.response(design = Experimento,response = Resultados)
halfnormal(Experimento_respuesta, xlab = "Efectos Activos")

Interpretando la grafica se observa que los efectos activos del diseño experimental es el efecto de Factor de pureza y en las interacciones que se muestran sin letra son las interacciones sobrantes, por lo que, para poder confirmar la información que interpreta la tabla se verifica con la gráfica de Daniel:

#---Gráfica de Daniel---#
DanielPlot(Experimento_respuesta, main= "Gráfico de Daniel para el Alcohol Isoamílico")

En base al gráfico obtenido se logra confirmar la hipotesis anterior, por lo que se concluye que el efecto que es activo es el efecto principal del factor de Pureza Reactivo D, en base a esto se puede comprobar el Principio de jerarquia y el Principio de herencia, ya que puede observarse que solo estan activos algunos efectos principales y algunas interacciones solas y dobles y en base a los factores e interacciones dobles se puede ver que no estan activas, haciendo que tengan por lo menos factores que no sean activos en los principales.

b) Calcular los residuales. Construir una gráfica de probabilidad normal de los residuales y graficar los residuales contra los valores ajustados. Comentar las gráficas.

modelo=aov(Resultados ~ (Solvente_Reactivo_A*Catalizador_Reactivo_B*Temperatura_C*Pureza_Reactivo_D*PH_Reactivo_E))
summary(modelo)
##                                            Df Sum Sq Mean Sq F value Pr(>F)
## Solvente_Reactivo_A                         1   6.86    6.86   0.249  0.705
## Catalizador_Reactivo_B                      1   7.18    7.18   0.261  0.699
## Temperatura_C                               1   0.09    0.09   0.003  0.964
## Pureza_Reactivo_D                           1  49.95   49.95   1.815  0.407
## PH_Reactivo_E                               1   0.01    0.01   0.001  0.986
## Solvente_Reactivo_A:Catalizador_Reactivo_B  1  12.55   12.55   0.456  0.622
## Solvente_Reactivo_A:Temperatura_C           1   0.28    0.28   0.010  0.936
## Catalizador_Reactivo_B:Temperatura_C        1   1.96    1.96   0.071  0.834
## Solvente_Reactivo_A:Pureza_Reactivo_D       1   3.91    3.91   0.142  0.771
## Catalizador_Reactivo_B:Pureza_Reactivo_D    1   1.36    1.36   0.050  0.861
## Temperatura_C:Pureza_Reactivo_D             1   0.51    0.51   0.018  0.914
## Solvente_Reactivo_A:PH_Reactivo_E           1   0.00    0.00   0.000  0.996
## Catalizador_Reactivo_B:PH_Reactivo_E        1   0.01    0.01   0.000  0.990
## Temperatura_C:PH_Reactivo_E                 1   2.49    2.49   0.090  0.814
## Residuals                                   1  27.53   27.53

En base a la información que se obtuvo por la tabla ANOVA, la cual se evalua los 5 factores sobre el color de producto química, se puede observar que el factor D es un factor significativo

Normalidad=shapiro.test(resid(modelo))
print(Normalidad)
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(modelo)
## W = 0.51123, p-value = 2.63e-06
#---Gráfica de probabilidad normal---#
qqnorm(resid(modelo), main = "Gráfica de probabilidad para los Residuales del Modelo", xlab = "Cuantiles teoricos", ylab = "Cuantiles de muestra")
qqline(resid(modelo))

En base a los resultados que arroja el gráfico se observa que los puntos siguen un comportamiento lineal por lo que se concluye que siguen un comportamiento normal y corresponden al supuesto de normalidad.

homocedasticidad=bartlett.test(resid(modelo),Solvente_Reactivo_A, Catalizador_Reactivo_B, Temperatura_C, Pureza_Reactivo_D, PH_Reactivo_E,data=experimento_resp)
print(homocedasticidad)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  resid(modelo) and Solvente_Reactivo_A
## Bartlett's K-squared = 461.27, df = 1, p-value < 2.2e-16

En base a los resultados que se obtuvieron a partir del análisis de varianza se demuestra que estos son iguales y por consecuencia son normales y constantes, por lo que se concluye que el modelo de regresión si es el adecuado.

c) Si algunos de los factores son insignificantes plegar el diseño \(2^5-1\) un diseño factorial completo en los factores activos. Comentar el diseño resultante e interpretar los resultados.

Análisis de las interacciones mediante los gráficos correspondientes:

Grafica_interacciones=IAPlot(Experimento_respuesta)

head(Grafica_interacciones)
Solvente_Reactivo_A:Catalizador_Reactivo_B Solvente_Reactivo_A:Temperatura_C Solvente_Reactivo_A:Pureza_Reactivo_D Solvente_Reactivo_A:PH_Reactivo_E Catalizador_Reactivo_B:Temperatura_C Catalizador_Reactivo_B:Pureza_Reactivo_D Catalizador_Reactivo_B:PH_Reactivo_E Temperatura_C:Pureza_Reactivo_D Temperatura_C:PH_Reactivo_E Pureza_Reactivo_D:PH_Reactivo_E
-:- 3.360 1.7325 -0.835 2.6175 3.5350 1.290 3.9350 0.2150 3.0750 0.9550
+:- 3.395 3.8300 1.830 3.6250 2.0275 -0.295 2.3075 0.7800 3.1675 5.2875
-:+ 0.745 2.3725 4.940 1.4875 3.2200 5.465 2.8200 5.3475 2.4875 0.0400
+:+ 3.330 2.8950 4.895 3.1000 2.0475 4.370 1.7675 4.4875 2.1000 4.5475

Respecto a los resultados de la gráfica anterior se observa que existen interacciones fuertes entre los factores B:C, C:D, A:D, y D:C. Para poder afirmar que las interacciones son significativas se realiza la tabla anova del experimento solo considerando las interacciones dobles.

modelo_Catalizador_Reactivo_B_Temperatura_C=lm(Resultados ~(Catalizador_Reactivo_B* Temperatura_C), data = datos)
summary(modelo_Catalizador_Reactivo_B_Temperatura_C)
## 
## Call:
## lm.default(formula = Resultados ~ (Catalizador_Reactivo_B * Temperatura_C), 
##     data = datos)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7075 -1.3700  0.5212  2.0006  3.6525 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                           2.70750    0.74758   3.622   0.0035 **
## Catalizador_Reactivo_B               -0.67000    0.74758  -0.896   0.3878   
## Temperatura_C                        -0.07375    0.74758  -0.099   0.9230   
## Catalizador_Reactivo_B:Temperatura_C  0.08375    0.74758   0.112   0.9127   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.99 on 12 degrees of freedom
## Multiple R-squared:  0.06436,    Adjusted R-squared:  -0.1695 
## F-statistic: 0.2752 on 3 and 12 DF,  p-value: 0.8422
anova_Catalizador_Reactivo_B_Temperatura_C=aov(modelo_Catalizador_Reactivo_B_Temperatura_C)
summary(anova_Catalizador_Reactivo_B_Temperatura_C)
##                                      Df Sum Sq Mean Sq F value Pr(>F)
## Catalizador_Reactivo_B                1   7.18   7.182   0.803  0.388
## Temperatura_C                         1   0.09   0.087   0.010  0.923
## Catalizador_Reactivo_B:Temperatura_C  1   0.11   0.112   0.013  0.913
## Residuals                            12 107.30   8.942
modelo_Temperatura_C_Pureza_Reactivo_D=lm(Resultados ~(Temperatura_C*Pureza_Reactivo_D),data = datos)
summary(modelo_Temperatura_C_Pureza_Reactivo_D)
## 
## Call:
## lm.default(formula = Resultados ~ (Temperatura_C * Pureza_Reactivo_D), 
##     data = datos)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2100 -0.6823  0.2850  0.8550  5.2600 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      2.91604    0.59705   4.884 0.000376 ***
## Temperatura_C                   -0.28229    0.59705  -0.473 0.644829    
## Pureza_Reactivo_D                1.76104    0.59705   2.950 0.012153 *  
## Temperatura_C:Pureza_Reactivo_D  0.09271    0.59705   0.155 0.879183    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.349 on 12 degrees of freedom
## Multiple R-squared:  0.4225, Adjusted R-squared:  0.2781 
## F-statistic: 2.926 on 3 and 12 DF,  p-value: 0.07714
anova_Catalizador_Reactivo_B_Temperatura_C=aov(modelo_Catalizador_Reactivo_B_Temperatura_C)
summary(anova_Catalizador_Reactivo_B_Temperatura_C)
##                                      Df Sum Sq Mean Sq F value Pr(>F)
## Catalizador_Reactivo_B                1   7.18   7.182   0.803  0.388
## Temperatura_C                         1   0.09   0.087   0.010  0.923
## Catalizador_Reactivo_B:Temperatura_C  1   0.11   0.112   0.013  0.913
## Residuals                            12 107.30   8.942
modelo_solvente_Reactivo_A_Pureza_Reactivo_D=lm(Resultados ~(Solvente_Reactivo_A*Pureza_Reactivo_D),data = datos)
summary(modelo_solvente_Reactivo_A_Pureza_Reactivo_D)
## 
## Call:
## lm.default(formula = Resultados ~ (Solvente_Reactivo_A * Pureza_Reactivo_D), 
##     data = datos)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3700 -0.8521 -0.0967  0.7062  6.1000 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             2.9346     0.5882   4.989 0.000315 ***
## Solvente_Reactivo_A                     0.4279     0.5882   0.728 0.480860    
## Pureza_Reactivo_D                       1.6746     0.5882   2.847 0.014703 *  
## Solvente_Reactivo_A:Pureza_Reactivo_D  -0.1421     0.5882  -0.242 0.813197    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.314 on 12 degrees of freedom
## Multiple R-squared:  0.4395, Adjusted R-squared:  0.2994 
## F-statistic: 3.137 on 3 and 12 DF,  p-value: 0.06541
anova_Solvente_Reactivo_A_Pureza_Reactivo_D=aov(modelo_solvente_Reactivo_A_Pureza_Reactivo_D)
summary(anova_Solvente_Reactivo_A_Pureza_Reactivo_D)
##                                       Df Sum Sq Mean Sq F value Pr(>F)  
## Solvente_Reactivo_A                    1   6.86    6.86   1.281 0.2797  
## Pureza_Reactivo_D                      1  43.23   43.23   8.070 0.0149 *
## Solvente_Reactivo_A:Pureza_Reactivo_D  1   0.31    0.31   0.058 0.8132  
## Residuals                             12  64.28    5.36                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelo_Pureza_Reactivo_D_PH_Reactivo_E=lm(Resultados ~(Pureza_Reactivo_D*PH_Reactivo_E),data = datos)
summary(modelo_Pureza_Reactivo_D_PH_Reactivo_E)
## 
## Call:
## lm.default(formula = Resultados ~ (Pureza_Reactivo_D * PH_Reactivo_E), 
##     data = datos)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6350 -0.6475  0.0500  0.9356  5.4000 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      2.91979    0.60144   4.855 0.000395 ***
## Pureza_Reactivo_D                1.74729    0.60144   2.905 0.013198 *  
## PH_Reactivo_E                    0.04896    0.60144   0.081 0.936464    
## Pureza_Reactivo_D:PH_Reactivo_E -0.16854    0.60144  -0.280 0.784072    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.367 on 12 degrees of freedom
## Multiple R-squared:  0.414,  Adjusted R-squared:  0.2674 
## F-statistic: 2.825 on 3 and 12 DF,  p-value: 0.0836
anova_Pureza_Reactivo_PH_Reactivo_E=aov(modelo_Pureza_Reactivo_D_PH_Reactivo_E)
summary(anova_Pureza_Reactivo_PH_Reactivo_E)
##                                 Df Sum Sq Mean Sq F value Pr(>F)  
## Pureza_Reactivo_D                1  46.96   46.96   8.384 0.0134 *
## PH_Reactivo_E                    1   0.08    0.08   0.014 0.9076  
## Pureza_Reactivo_D:PH_Reactivo_E  1   0.44    0.44   0.079 0.7841  
## Residuals                       12  67.21    5.60                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

En base a los resultados obtenidos a traves de los métodos de realización de las varianzas se puede observar e identificar el modelo en las reacciones e interacciones con los otros reactivos y midiendo la pureza del reactivo D se muestra que en cada una de ellas la de mayor significancia es del mismo reactivo D debido a que el reactivo con las interacciones b y c, a y d en la intervención del PH del reactivo E por lo que resultan también ser significativas por este modelo, mientras las otras intervenciones no tienen significación, en consecuencia se concluye que existe significancias entre la temperatura de los solventes y entre la pureza de los reactivos.

Bibliografía

Montgomery, D. C. (2004). Diseño y Análisis de Experimentos (2.ª ed.). Limusa Wiley.