In this part of the book, you’ll learn about data wrangling, the art of getting your data into R in a useful form for visualisation and modelling. Data wrangling is very important: without it you can’t work with your own data! There are three main parts to data wrangling:

Import -> Tidy -> Transform

This part of the book proceeds as follows:

*In tibbles, you’ll learn about the variant of the data frame that we use in this book: the tibble. You’ll learn what makes them different from regular data frames, and how you can construct them “by hand”.

Data wrangling also encompasses data transformation, which you’ve already learned a little about. Now we’ll focus on new skills for three specific types of data you will frequently encounter in practice:

LS0tCnRpdGxlOiAiQ2ggOSAtIEludHJvZHVjdGlvbiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKSW4gdGhpcyBwYXJ0IG9mIHRoZSBib29rLCB5b3UnbGwgbGVhcm4gYWJvdXQgZGF0YSB3cmFuZ2xpbmcsIHRoZSBhcnQgb2YgZ2V0dGluZyB5b3VyIGRhdGEgaW50byBSIGluIGEgdXNlZnVsIGZvcm0gZm9yIHZpc3VhbGlzYXRpb24gYW5kIG1vZGVsbGluZy4gRGF0YSB3cmFuZ2xpbmcgaXMgdmVyeSBpbXBvcnRhbnQ6IHdpdGhvdXQgaXQgeW91IGNhbid0IHdvcmsgd2l0aCB5b3VyIG93biBkYXRhISBUaGVyZSBhcmUgdGhyZWUgbWFpbiBwYXJ0cyB0byBkYXRhIHdyYW5nbGluZzoKCkltcG9ydCAtPiBUaWR5IC0+IFRyYW5zZm9ybQoKVGhpcyBwYXJ0IG9mIHRoZSBib29rIHByb2NlZWRzIGFzIGZvbGxvd3M6CgoqSW4gdGliYmxlcywgeW91J2xsIGxlYXJuIGFib3V0IHRoZSB2YXJpYW50IG9mIHRoZSBkYXRhIGZyYW1lIHRoYXQgd2UgdXNlIGluIHRoaXMgYm9vazogdGhlIF9fdGliYmxlX18uIFlvdSdsbCBsZWFybiB3aGF0IG1ha2VzIHRoZW0gZGlmZmVyZW50IGZyb20gcmVndWxhciBkYXRhIGZyYW1lcywgYW5kIGhvdyB5b3UgY2FuIGNvbnN0cnVjdCB0aGVtICJieSBoYW5kIi4gCgoqIEluIGRhdGEgaW1wb3J0LCB5b3UnbGwgbGVhcm4gaG93IHRvIGdldCB5b3VyIGRhdGEgZnJvbSBkaXNrIGFuZCBpbnRvIFIuIFdlJ2xsIGZvY3VzIG9uIHBsYWluLXRldCByZWN0YW5ndWxhciBmb3JtYXRzLCBidXQgd2lsbCBnaXZlIHlvdSBwb2ludGVycyB0byBwYWNrYWdlcyB0aGF0IGhlbHAgd2l0aCBvdGhlciB0eXBlcyBvZiBkYXRhLiAKCiogSW4gdGlkeSBkYXRhLCB5b3UnbGwgbGVhciBhYm91dCB0aWR5IGRhdGEsIGEgY29uc2lzdGVudCB3YXkgb2Ygc3RvcmluZyB5b3VyIGRhdGEgdGhhdCBtYWtlcyB0cmFuc2Zvcm1hdGlvbiwgdmlzdWFsaXNhdGlvbiwgYW5kIG1vZGVsbGluZyBlYXNpZXIuIFlvdSdsbCBsZWFybiB0aGUgdW5kZXJseWluZyBwcmluY2lwbGVzLCBhbmQgaG93IHRvIGdldCB5b3VyIGRhdGEgaW50byBhIHRpZHkgZm9ybS4KCkRhdGEgd3JhbmdsaW5nIGFsc28gZW5jb21wYXNzZXMgZGF0YSB0cmFuc2Zvcm1hdGlvbiwgd2hpY2ggeW91J3ZlIGFscmVhZHkgbGVhcm5lZCBhIGxpdHRsZSBhYm91dC4gTm93IHdlJ2xsIGZvY3VzIG9uIG5ldyBza2lsbHMgZm9yIHRocmVlIHNwZWNpZmljIHR5cGVzIG9mIGRhdGEgeW91IHdpbGwgZnJlcXVlbnRseSBlbmNvdW50ZXIgaW4gcHJhY3RpY2U6CgoqIFJlbGF0aW9uYWwgZGF0YSB3aWxsIGdpdmUgeW91IHRvb2xzIGZvciB3b3JraW5nIHdpdGggbXVsdGlwbGUgaW50ZXJyZWxhdGVkIGRhdGFzZXRzLgoKKiBTdHJpbmdzIHdpbGwgaW50cm9kdWNlIHJlZ3VsYXIgZXhwcmVzc2lvbnMsIGEgcG93ZXJmdWwgdG9vbCBmb3IgbWFuaXB1bGF0aW5nIHN0cmluZ3MuCgoqIEZhY3RvcnMgYXJlIGhvdyBSIHN0b3JlcyBjYXRlZ29yaWNhbCBkYXRhLiBUaGV5IGFyZSB1c2VkIHdoZW4gYSB2YXJpYWJsZSBoYXMgYSBmaXhlZCBzZXQgb2YgcG9zc2libGUgdmFsdWVzLCBvciB3aGVuIHlvdSB3YW50IHRvIHVzZSBhIG5vbi1hbHBoYWJldGljYWwgb3JkZXJpbmcgb2YgYSBzdHJpbmcuCgoqIERhdGVzIGFuZCB0aW1lcyB3aWxsIGdpdmUgeW91IHRoZSBrZXkgdG9vbHMgZm9yIHdvcmtpbmcgd2l0aCBkYXRlcyBhbmQgZGF0ZS10aW1lcy4KCg==