Os objetivos deste post são:
Apresentar um script inicial para uma análise de cluster para 63 bacias na bacia do rio São Francisco;
Variáveis consideradas: Coordenadas Geográficas, Média(w), Média (E0/P); Média (Q/P); Média(Q3[Q/P]-Q1[Q/P])
#Clean R memory
rm(list=ls(all=TRUE))
############################################
#Loading packages to deal with maps#
############################################
#install.packages(maps)
library(maps)
#install.packages(mapdata)
library(mapdata)
############################################
############################################
#Loading clustering packages#
############################################
#install.packages((cluster))
library(cluster)
##
## Attaching package: 'cluster'
## The following object is masked from 'package:maps':
##
## votes.repub
#install.packages(devtools)
library(devtools)
## Loading required package: usethis
devtools::install_github("kassambara/factoextra")
## Skipping install of 'factoextra' from a github remote, the SHA1 (1689fc74) has not changed since last install.
## Use `force = TRUE` to force installation
library("factoextra")
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
setwd("E:/GA_Dirceu/Felipe")
data.Set<-read.table(file="Tabela_RHSF.txt",header=T,sep="\t")
knitr::kable(data.Set, col.names = gsub("[.]", " ", names(data.Set)))
| Região por aproximação | Estação | Código da estação | Latitude | Longitude | MÃn w | Q1 w | Mediana w | Média w | Q3 w | Máx w | Q3 Q1 w | MÃn E0 P | Q1 E0 P | Mediana E0 P | Média E0 P | Q3 E0 P | Máx E0 P | Q3 Q1 E0 P | MÃn Q P | Q1 Q P | Mediana Q P | Média Q P | Q3 Q P | Máx Q P | Q3 Q1 Q P |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 1 | 40037000 | -20.2156 | -46.2322 | 1.514308 | 1.536707 | 1.579840 | 1.575616 | 1.607679 | 1.631433 | 0.0709723 | 0.9710513 | 0.9815990 | 0.9888933 | 0.9992123 | 1.015855 | 1.041346 | 0.0342563 | 0.5330215 | 0.5436427 | 0.5508239 | 0.5535076 | 0.5674175 | 0.5719827 | 0.0237748 |
| 5 | 2 | 40040000 | -20.0953 | -46.0622 | 1.619535 | 1.715655 | 1.741545 | 1.733955 | 1.754262 | 1.811112 | 0.0386071 | 1.0147138 | 1.0364808 | 1.0786599 | 1.0746477 | 1.103510 | 1.161930 | 0.0670288 | 0.4522004 | 0.4605616 | 0.4731951 | 0.4739446 | 0.4829042 | 0.5014871 | 0.0223427 |
| 5 | 3 | 40050000 | -20.1700 | -45.7158 | 1.705369 | 1.893871 | 1.953258 | 1.934295 | 2.000002 | 2.049997 | 0.1061315 | 0.9776253 | 1.0093356 | 1.0531283 | 1.0520865 | 1.073078 | 1.156257 | 0.0637420 | 0.3817590 | 0.3967063 | 0.4225908 | 0.4185116 | 0.4340151 | 0.4656242 | 0.0373088 |
| 5 | 4 | 40060001 | -19.8875 | -46.0169 | 1.989879 | 2.029046 | 2.313460 | 2.245233 | 2.406849 | 2.521074 | 0.3778029 | 0.8341509 | 0.8858713 | 0.9606404 | 0.9535782 | 1.019912 | 1.052831 | 0.1340403 | 0.3556270 | 0.3716833 | 0.3812388 | 0.3829062 | 0.3974917 | 0.4094330 | 0.0258084 |
| 5 | 5 | 40070000 | -19.7761 | -45.4792 | 1.910141 | 2.006979 | 2.066303 | 2.052491 | 2.093824 | 2.162296 | 0.0868446 | 0.9962446 | 1.0297097 | 1.0695675 | 1.0639161 | 1.083563 | 1.153334 | 0.0538529 | 0.3525980 | 0.3686143 | 0.3864845 | 0.3840770 | 0.4011784 | 0.4144422 | 0.0325641 |
| 5 | 6 | 40100000 | -19.2814 | -45.2753 | 1.982855 | 2.093417 | 2.150278 | 2.150088 | 2.217682 | 2.287789 | 0.1242646 | 1.0236328 | 1.0643297 | 1.1061220 | 1.1034485 | 1.127044 | 1.181647 | 0.0627146 | 0.3080925 | 0.3356518 | 0.3531145 | 0.3514682 | 0.3709236 | 0.3833278 | 0.0352718 |
| 5 | 7 | 40170000 | -20.2169 | -44.9181 | 2.095362 | 2.144747 | 2.290844 | 2.249889 | 2.335367 | 2.383232 | 0.1906203 | 1.0218082 | 1.0660717 | 1.1346429 | 1.1310330 | 1.183517 | 1.231119 | 0.1174454 | 0.2870190 | 0.2963476 | 0.3185987 | 0.3238982 | 0.3560507 | 0.3674961 | 0.0597032 |
| 5 | 8 | 40185000 | -20.1847 | -44.8933 | 2.101615 | 2.131448 | 2.315613 | 2.261954 | 2.370611 | 2.391608 | 0.2391628 | 1.0629806 | 1.1011511 | 1.1647353 | 1.1510392 | 1.191180 | 1.235631 | 0.0900285 | 0.2737914 | 0.2879834 | 0.2933297 | 0.3162593 | 0.3583206 | 0.3715590 | 0.0703372 |
| 5 | 9 | 40500000 | -19.3317 | -45.2214 | 2.434509 | 2.476277 | 2.516197 | 2.516847 | 2.542717 | 2.685808 | 0.0664392 | 1.1294491 | 1.1733024 | 1.2377641 | 1.2147470 | 1.245815 | 1.277073 | 0.0725126 | 0.2198984 | 0.2440026 | 0.2496291 | 0.2545899 | 0.2672528 | 0.2833291 | 0.0232503 |
| 5 | 10 | 40549998 | -20.6039 | -43.9086 | 1.911675 | 1.996725 | 2.184255 | 2.124448 | 2.245055 | 2.305338 | 0.2483296 | 1.0253092 | 1.0383729 | 1.0779720 | 1.0789612 | 1.112337 | 1.153791 | 0.0739642 | 0.3334946 | 0.3506574 | 0.3554934 | 0.3659193 | 0.3821844 | 0.4070809 | 0.0315270 |
| 5 | 11 | 40680000 | -20.6611 | -44.0722 | 1.786904 | 1.859932 | 1.978891 | 1.983275 | 2.055923 | 2.258575 | 0.1959914 | 0.9924341 | 1.0348249 | 1.0582386 | 1.0609784 | 1.086108 | 1.131769 | 0.0512826 | 0.3379897 | 0.3804245 | 0.4045835 | 0.4042459 | 0.4292902 | 0.4533129 | 0.0488657 |
| 5 | 12 | 40810350 | -20.0942 | -44.4936 | 2.334176 | 2.398727 | 2.481705 | 2.457067 | 2.510566 | 2.530437 | 0.1118387 | 1.0621306 | 1.0867832 | 1.1335631 | 1.1221612 | 1.154005 | 1.170884 | 0.0672219 | 0.2663502 | 0.2716938 | 0.2920581 | 0.2886778 | 0.3083017 | 0.3144959 | 0.0366079 |
| 5 | 13 | 40810800 | -20.0869 | -44.4381 | 2.243752 | 2.363645 | 2.437707 | 2.415805 | 2.467561 | 2.610738 | 0.1039152 | 1.0461397 | 1.1289098 | 1.1654396 | 1.1726441 | 1.201111 | 1.341734 | 0.0722009 | 0.2121116 | 0.2670024 | 0.2803145 | 0.2825989 | 0.3006141 | 0.3476788 | 0.0336117 |
| 5 | 14 | 40811100 | -20.0475 | -44.4089 | 2.354257 | 2.474307 | 2.518941 | 2.512879 | 2.577612 | 2.614108 | 0.1033058 | 1.0619492 | 1.1256531 | 1.1516081 | 1.1546558 | 1.178896 | 1.288485 | 0.0532424 | 0.2221193 | 0.2535258 | 0.2725484 | 0.2712882 | 0.2839606 | 0.3205327 | 0.0304349 |
| 5 | 15 | 40822995 | -19.9850 | -44.4389 | 2.846258 | 3.006445 | 3.072213 | 3.066218 | 3.175168 | 3.215936 | 0.1687228 | 1.0702626 | 1.1484539 | 1.1585635 | 1.1551734 | 1.165646 | 1.220968 | 0.0171919 | 0.1938964 | 0.1980361 | 0.2038756 | 0.2037303 | 0.2085280 | 0.2154808 | 0.0104918 |
| 5 | 16 | 40823500 | -19.9614 | -44.3661 | 2.231958 | 2.336278 | 2.436758 | 2.416162 | 2.521894 | 2.546832 | 0.1856156 | 1.0699792 | 1.1442133 | 1.1607895 | 1.1576522 | 1.171804 | 1.258683 | 0.0275903 | 0.2700190 | 0.2744489 | 0.2887116 | 0.2865738 | 0.2951240 | 0.3062768 | 0.0206750 |
| 5 | 17 | 41250000 | -19.6875 | -43.9206 | 2.108892 | 2.248207 | 2.376563 | 2.378434 | 2.487944 | 2.737786 | 0.2397365 | 1.1482069 | 1.1770942 | 1.1979084 | 1.2037977 | 1.224238 | 1.294013 | 0.0471441 | 0.2178118 | 0.2640819 | 0.2827658 | 0.2818165 | 0.3061328 | 0.3405824 | 0.0420509 |
| 5 | 18 | 41300000 | -19.6536 | -43.6875 | 1.904650 | 1.983605 | 2.125109 | 2.117803 | 2.247171 | 2.331037 | 0.2635658 | 1.0287058 | 1.0606989 | 1.0877581 | 1.0973767 | 1.129544 | 1.219204 | 0.0688450 | 0.2994813 | 0.3351561 | 0.3501586 | 0.3618233 | 0.3865687 | 0.4242917 | 0.0514126 |
| 5 | 19 | 41380000 | -19.4619 | -43.9036 | 2.140815 | 2.216303 | 2.312072 | 2.292173 | 2.357744 | 2.426671 | 0.1414404 | 1.1614035 | 1.2017107 | 1.2135837 | 1.2394606 | 1.259778 | 1.418617 | 0.0580672 | 0.2402201 | 0.2708004 | 0.2830931 | 0.2878840 | 0.3098751 | 0.3319541 | 0.0390747 |
| 5 | 20 | 41410000 | -19.2311 | -44.0247 | 2.193326 | 2.311757 | 2.351549 | 2.361852 | 2.407354 | 2.590115 | 0.0955962 | 1.0665885 | 1.0979739 | 1.1123550 | 1.1104888 | 1.122044 | 1.155116 | 0.0240704 | 0.2629945 | 0.3005322 | 0.3086743 | 0.3081567 | 0.3180335 | 0.3408165 | 0.0175014 |
| 5 | 21 | 41440005 | -19.3714 | -44.1528 | 2.191811 | 2.230237 | 2.239777 | 2.241930 | 2.248766 | 2.300257 | 0.0185288 | 1.1559190 | 1.1765961 | 1.2116910 | 1.2275920 | 1.254925 | 1.372477 | 0.0783290 | 0.2563367 | 0.2958097 | 0.3066496 | 0.3000981 | 0.3118148 | 0.3168879 | 0.0160051 |
| 5 | 22 | 41600000 | -19.0111 | -44.0383 | 2.221909 | 2.323748 | 2.367452 | 2.358921 | 2.394833 | 2.513205 | 0.0710845 | 1.0496923 | 1.0953074 | 1.1288377 | 1.1273712 | 1.150964 | 1.239782 | 0.0556562 | 0.2649687 | 0.2922425 | 0.3032259 | 0.3039077 | 0.3154021 | 0.3353028 | 0.0231596 |
| 5 | 23 | 41650002 | -18.6728 | -44.1939 | 2.298975 | 2.341423 | 2.378975 | 2.382701 | 2.408906 | 2.575260 | 0.0674827 | 1.0625463 | 1.1856270 | 1.2066755 | 1.1937121 | 1.222784 | 1.263692 | 0.0371572 | 0.2631533 | 0.2733676 | 0.2809910 | 0.2821308 | 0.2922887 | 0.2998254 | 0.0189211 |
| 5 | 24 | 41685000 | -18.6042 | -44.2847 | 2.439105 | 2.576166 | 2.654052 | 2.744172 | 2.972386 | 3.155575 | 0.3962196 | 1.3846444 | 1.4750933 | 1.5605683 | 1.5449299 | 1.608389 | 1.681457 | 0.1332961 | 0.0971907 | 0.1339512 | 0.1535039 | 0.1601713 | 0.1930586 | 0.2115293 | 0.0591074 |
| 5 | 25 | 41780002 | -18.6450 | -44.0506 | 1.663712 | 1.681722 | 1.700028 | 1.706406 | 1.725361 | 1.775812 | 0.0436388 | 1.0839505 | 1.2180279 | 1.2444975 | 1.2228430 | 1.258712 | 1.285038 | 0.0406840 | 0.4153381 | 0.4423792 | 0.4557255 | 0.4521717 | 0.4604370 | 0.4745437 | 0.0180578 |
| 5 | 26 | 41818000 | -18.3061 | -44.2258 | 2.221549 | 2.289974 | 2.323969 | 2.354570 | 2.418759 | 2.569612 | 0.1287854 | 1.0913363 | 1.1420048 | 1.2431647 | 1.2179510 | 1.268611 | 1.340268 | 0.1266066 | 0.2483141 | 0.2699008 | 0.2831574 | 0.2821658 | 0.2959835 | 0.3127786 | 0.0260827 |
| 5 | 27 | 41890000 | -17.9964 | -44.1775 | 1.505173 | 1.528945 | 1.580741 | 1.587310 | 1.628781 | 1.729148 | 0.0998366 | 1.4156376 | 1.5847562 | 1.6807927 | 1.6439816 | 1.739251 | 1.816555 | 0.1544951 | 0.3649021 | 0.4176105 | 0.4562867 | 0.4403152 | 0.4626616 | 0.4767280 | 0.0450511 |
| 5 | 28 | 41940000 | -18.1908 | -44.5556 | 2.057468 | 2.118544 | 2.171723 | 2.175578 | 2.189515 | 2.381318 | 0.0709707 | 1.5517847 | 1.5856979 | 1.6537796 | 1.6475256 | 1.701286 | 1.763775 | 0.1155882 | 0.2047873 | 0.2281686 | 0.2366753 | 0.2369349 | 0.2497933 | 0.2581432 | 0.0216246 |
| 5 | 29 | 41990000 | -17.5961 | -44.7133 | 2.048901 | 2.109099 | 2.162380 | 2.164503 | 2.228694 | 2.286264 | 0.1195950 | 1.1825618 | 1.2359782 | 1.3448563 | 1.3143586 | 1.372180 | 1.420743 | 0.1362015 | 0.2563092 | 0.2753206 | 0.2936344 | 0.2978712 | 0.3197810 | 0.3414997 | 0.0444604 |
| 4 | 30 | 42187000 | -16.4669 | -44.3761 | 2.803549 | 2.960975 | 3.044053 | 3.165465 | 3.316517 | 3.824952 | 0.3555414 | 1.2109087 | 1.4208002 | 1.6877790 | 1.6144071 | 1.801279 | 1.901557 | 0.3804793 | 0.0959398 | 0.1007321 | 0.1094364 | 0.1117385 | 0.1212790 | 0.1354252 | 0.0205469 |
| 4 | 31 | 42250000 | -17.9150 | -47.0108 | 1.759705 | 1.871084 | 2.017787 | 1.965856 | 2.058259 | 2.151770 | 0.1871751 | 1.0744705 | 1.1637799 | 1.1887995 | 1.1784629 | 1.208097 | 1.225254 | 0.0443173 | 0.3221079 | 0.3506077 | 0.3600251 | 0.3785874 | 0.4101080 | 0.4461181 | 0.0595004 |
| 4 | 32 | 42290000 | -17.5025 | -46.5711 | 2.326172 | 2.386720 | 2.541326 | 3.520066 | 4.979696 | 5.624542 | 2.5929762 | 0.8056469 | 0.8576098 | 1.1769600 | 1.0606651 | 1.219680 | 1.251033 | 0.3620704 | 0.1941090 | 0.2287885 | 0.2574404 | 0.2501165 | 0.2732785 | 0.2965104 | 0.0444899 |
| 4 | 33 | 42395000 | -17.2550 | -46.4728 | 2.231987 | 2.382786 | 2.499358 | 2.820177 | 3.447484 | 3.676991 | 1.0646984 | 0.8851943 | 0.9495739 | 1.1734189 | 1.1037237 | 1.217928 | 1.255022 | 0.2683542 | 0.2131885 | 0.2546480 | 0.2606980 | 0.2641674 | 0.2748538 | 0.3169062 | 0.0202058 |
| 4 | 34 | 42545500 | -16.4925 | -46.6686 | 2.148108 | 2.269585 | 2.399757 | 2.364695 | 2.435824 | 2.574133 | 0.1662394 | 1.1625366 | 1.2488323 | 1.3155713 | 1.2918215 | 1.336506 | 1.368799 | 0.0876737 | 0.2216459 | 0.2401188 | 0.2473997 | 0.2626503 | 0.2924071 | 0.3257587 | 0.0522883 |
| 4 | 35 | 42850000 | -17.3506 | -45.5325 | 1.973935 | 2.057805 | 2.148697 | 2.175229 | 2.296376 | 2.414711 | 0.2385713 | 1.1938066 | 1.2785651 | 1.3444988 | 1.3244732 | 1.385358 | 1.423222 | 0.1067927 | 0.2518607 | 0.2596138 | 0.2844879 | 0.2950978 | 0.3279781 | 0.3498327 | 0.0683643 |
| 4 | 36 | 43429998 | -15.9178 | -46.1192 | 2.176111 | 2.330913 | 2.396716 | 2.370069 | 2.449352 | 2.488509 | 0.1184392 | 1.1924039 | 1.2711702 | 1.3039207 | 1.3194054 | 1.371878 | 1.466439 | 0.1007078 | 0.2180381 | 0.2388239 | 0.2447706 | 0.2557020 | 0.2590814 | 0.3207860 | 0.0202575 |
| 4 | 37 | 43670000 | -16.1331 | -45.7417 | 2.143220 | 2.174365 | 2.394377 | 2.321714 | 2.441309 | 2.515792 | 0.2669440 | 1.2454935 | 1.3151364 | 1.3647082 | 1.3743657 | 1.426116 | 1.547877 | 0.1109798 | 0.1969771 | 0.2174281 | 0.2397954 | 0.2541605 | 0.2950561 | 0.3064042 | 0.0776280 |
| 4 | 38 | 43880000 | -16.2811 | -45.4142 | 2.131742 | 2.169285 | 2.276555 | 2.271624 | 2.373923 | 2.464526 | 0.2046379 | 1.2739936 | 1.3373391 | 1.4150484 | 1.4106048 | 1.469587 | 1.560664 | 0.1322482 | 0.2073884 | 0.2239410 | 0.2519424 | 0.2564434 | 0.2912866 | 0.3046215 | 0.0673456 |
| 3 | 39 | 45131000 | -14.3136 | -44.4594 | 1.665513 | 1.790494 | 2.146191 | 2.142952 | 2.411206 | 2.688815 | 0.6207127 | 1.1935463 | 1.2565536 | 1.4915576 | 1.4905064 | 1.678819 | 1.876982 | 0.4222652 | 0.2324815 | 0.2401407 | 0.2531564 | 0.2892216 | 0.3583853 | 0.3812054 | 0.1182446 |
| 3 | 40 | 45170001 | -14.2642 | -44.5225 | 1.630359 | 1.676468 | 1.704239 | 1.709900 | 1.730446 | 1.812601 | 0.0539777 | 1.7015457 | 1.7890147 | 1.9075050 | 1.8800405 | 1.961924 | 2.043961 | 0.1729093 | 0.2982958 | 0.3329458 | 0.3606038 | 0.3518615 | 0.3764750 | 0.3856534 | 0.0435292 |
| 3 | 41 | 45210000 | -14.2808 | -44.4097 | 1.749905 | 2.032102 | 2.182336 | 2.130017 | 2.300389 | 2.405188 | 0.2682876 | 1.3602291 | 1.3866542 | 1.4891758 | 1.5148809 | 1.614925 | 1.807869 | 0.2282704 | 0.2356783 | 0.2404171 | 0.2477178 | 0.2745861 | 0.3042772 | 0.3590583 | 0.0638601 |
| 3 | 42 | 45220000 | -14.4236 | -44.4831 | 2.470860 | 2.520062 | 2.555629 | 2.585864 | 2.652946 | 2.785651 | 0.1328834 | 1.5032007 | 1.6130636 | 1.8084487 | 1.7836743 | 1.886252 | 2.128338 | 0.2731881 | 0.1054233 | 0.1193607 | 0.1485695 | 0.1477808 | 0.1714351 | 0.1836208 | 0.0520744 |
| 3 | 43 | 45260000 | -14.2600 | -44.1522 | 1.870270 | 2.007008 | 2.215748 | 2.183693 | 2.325764 | 2.451793 | 0.3187557 | 1.4311951 | 1.4855888 | 1.6197847 | 1.6281422 | 1.732055 | 1.973120 | 0.2464662 | 0.2018244 | 0.2106444 | 0.2214075 | 0.2428125 | 0.2839807 | 0.3033746 | 0.0733363 |
| 2 | 44 | 45590000 | -13.3406 | -44.6386 | 2.062743 | 2.113210 | 2.138692 | 2.160351 | 2.225355 | 2.258837 | 0.1121448 | 1.4794173 | 1.6387350 | 1.6753068 | 1.6653616 | 1.715467 | 1.800450 | 0.0767319 | 0.2067417 | 0.2249801 | 0.2420105 | 0.2374772 | 0.2511937 | 0.2561981 | 0.0262136 |
| 2 | 45 | 45740001 | -13.2853 | -44.5617 | 2.548385 | 2.600731 | 2.647221 | 2.652476 | 2.679858 | 2.796913 | 0.0791275 | 1.4782666 | 1.6789165 | 1.7392901 | 1.7268287 | 1.781976 | 1.897780 | 0.1030591 | 0.1246298 | 0.1306465 | 0.1438269 | 0.1439483 | 0.1546699 | 0.1648175 | 0.0240233 |
| 2 | 46 | 45770000 | -13.4528 | -44.5689 | 1.867213 | 1.899723 | 1.912138 | 1.949033 | 2.003188 | 2.106252 | 0.1034659 | 1.4572503 | 1.6227370 | 1.6631854 | 1.6511241 | 1.691433 | 1.788270 | 0.0686963 | 0.2542405 | 0.2922527 | 0.3016133 | 0.2955246 | 0.3106238 | 0.3149410 | 0.0183711 |
| 2 | 47 | 45880000 | -13.5586 | -44.3031 | 1.864548 | 1.951984 | 2.008306 | 2.018202 | 2.092430 | 2.180514 | 0.1404462 | 1.5741052 | 1.7804613 | 1.8134898 | 1.7980465 | 1.839954 | 1.897572 | 0.0594932 | 0.2079219 | 0.2307568 | 0.2528259 | 0.2560917 | 0.2801553 | 0.2992697 | 0.0493985 |
| 2 | 48 | 45910001 | -13.4006 | -44.1989 | 2.242687 | 2.272755 | 2.295826 | 2.319680 | 2.368401 | 2.435912 | 0.0956463 | 1.4678998 | 1.6476290 | 1.7135022 | 1.6969020 | 1.763616 | 1.820660 | 0.1159867 | 0.1694414 | 0.1865364 | 0.2018562 | 0.2000571 | 0.2129062 | 0.2220193 | 0.0263699 |
| 2 | 49 | 45960001 | -13.2914 | -43.9089 | 2.257944 | 2.289650 | 2.304721 | 2.322550 | 2.347601 | 2.431273 | 0.0579511 | 1.4821512 | 1.6503227 | 1.7096058 | 1.6975752 | 1.769214 | 1.831012 | 0.1188918 | 0.1732228 | 0.1903574 | 0.2027041 | 0.1992312 | 0.2103161 | 0.2172976 | 0.0199587 |
| 1 | 50 | 46415000 | -12.4306 | -45.0856 | 2.552323 | 2.596106 | 2.637630 | 2.637881 | 2.660604 | 2.768277 | 0.0644981 | 1.4050008 | 1.5027074 | 1.5699464 | 1.5659530 | 1.640529 | 1.713869 | 0.1378217 | 0.1402341 | 0.1529638 | 0.1708958 | 0.1679395 | 0.1803428 | 0.1915442 | 0.0273789 |
| 1 | 51 | 46455000 | -12.4106 | -45.1222 | 2.347953 | 2.404361 | 2.596561 | 2.560382 | 2.697988 | 2.789708 | 0.2936262 | 1.2968585 | 1.3642780 | 1.4516226 | 1.4963121 | 1.621840 | 1.760965 | 0.2575622 | 0.1847375 | 0.1912866 | 0.1927485 | 0.1930110 | 0.1945153 | 0.2011608 | 0.0032287 |
| 1 | 52 | 46490000 | -12.4044 | -44.9531 | 3.635151 | 3.657063 | 3.692556 | 3.738067 | 3.814939 | 3.924747 | 0.1578756 | 1.7550477 | 1.9205472 | 1.9496876 | 1.9306663 | 1.984343 | 2.028442 | 0.0637956 | 0.0356145 | 0.0397720 | 0.0436643 | 0.0432425 | 0.0468768 | 0.0501672 | 0.0071048 |
| 1 | 53 | 46543000 | -12.1358 | -45.1033 | 2.309944 | 2.372440 | 2.403785 | 2.410527 | 2.434284 | 2.646361 | 0.0618435 | 1.2617681 | 1.3994531 | 1.4786166 | 1.4611177 | 1.539156 | 1.641932 | 0.1397028 | 0.2031773 | 0.2144883 | 0.2241529 | 0.2207324 | 0.2260715 | 0.2318241 | 0.0115832 |
| 1 | 54 | 46550000 | -12.1525 | -45.0094 | 2.964689 | 3.304702 | 3.353613 | 3.375623 | 3.451583 | 3.696462 | 0.1468815 | 1.3865526 | 1.4305749 | 1.5288948 | 1.5276515 | 1.610933 | 1.716522 | 0.1803580 | 0.0836955 | 0.0938716 | 0.1016092 | 0.1018720 | 0.1074592 | 0.1271868 | 0.0135876 |
| 1 | 55 | 46570000 | -11.8953 | -45.6081 | 3.448549 | 3.584449 | 3.712223 | 3.908116 | 4.193531 | 4.775177 | 0.6090821 | 1.1199757 | 1.2216202 | 1.3155380 | 1.2847388 | 1.358008 | 1.420500 | 0.1363879 | 0.1073133 | 0.1112881 | 0.1129394 | 0.1127737 | 0.1141148 | 0.1187805 | 0.0028267 |
| 1 | 56 | 46590000 | -11.8561 | -45.1200 | 2.497619 | 2.574294 | 2.620107 | 2.637440 | 2.684793 | 2.870494 | 0.1104987 | 1.3576027 | 1.4874201 | 1.5625869 | 1.5487977 | 1.624923 | 1.736735 | 0.1375034 | 0.1596200 | 0.1659452 | 0.1724848 | 0.1708757 | 0.1750351 | 0.1783061 | 0.0090899 |
| 1 | 57 | 46610000 | -11.9794 | -44.8772 | 2.656201 | 2.703562 | 2.733202 | 2.746495 | 2.765236 | 2.973240 | 0.0616740 | 1.4008771 | 1.5401697 | 1.5938861 | 1.5914007 | 1.672773 | 1.706997 | 0.1326032 | 0.1354397 | 0.1449634 | 0.1533130 | 0.1501381 | 0.1550218 | 0.1597645 | 0.0100585 |
| 1 | 58 | 46650000 | -11.7208 | -44.5022 | 2.707813 | 2.791443 | 2.852842 | 2.907103 | 3.021541 | 3.194093 | 0.2300988 | 1.4208014 | 1.4555698 | 1.5707097 | 1.5571878 | 1.644310 | 1.727508 | 0.1887401 | 0.1228230 | 0.1324660 | 0.1402007 | 0.1379248 | 0.1427256 | 0.1486539 | 0.0102596 |
| 1 | 59 | 46675000 | -11.6106 | -44.1567 | 2.782719 | 2.874605 | 2.934703 | 2.992835 | 3.131709 | 3.289594 | 0.2571034 | 1.4467090 | 1.4837984 | 1.6062790 | 1.5988230 | 1.687761 | 1.834545 | 0.2039629 | 0.1138691 | 0.1187160 | 0.1242287 | 0.1235812 | 0.1274820 | 0.1332269 | 0.0087661 |
| 1 | 60 | 46770000 | -10.9936 | -45.5278 | 2.219139 | 2.340967 | 2.492865 | 2.492633 | 2.540961 | 2.976663 | 0.1999939 | 1.6219831 | 1.7461938 | 1.8423587 | 1.8570552 | 1.990415 | 2.106780 | 0.2442210 | 0.1200686 | 0.1460980 | 0.1580429 | 0.1543102 | 0.1666259 | 0.1769410 | 0.0205279 |
| 1 | 61 | 46790000 | -11.0514 | -45.1969 | 1.942036 | 2.033424 | 2.124634 | 2.159790 | 2.184040 | 2.601803 | 0.1506161 | 1.6225127 | 1.7748936 | 1.8671018 | 1.8796119 | 2.020546 | 2.206691 | 0.2456526 | 0.1630395 | 0.2054144 | 0.2205263 | 0.2147308 | 0.2300581 | 0.2463092 | 0.0246437 |
| 1 | 62 | 46870000 | -11.2356 | -43.9494 | 2.265423 | 2.306601 | 2.392867 | 2.424634 | 2.497968 | 2.726866 | 0.1913664 | 1.7988364 | 1.8892153 | 1.9896523 | 1.9713547 | 2.049252 | 2.103254 | 0.1600365 | 0.1253737 | 0.1417972 | 0.1543022 | 0.1506524 | 0.1609103 | 0.1650709 | 0.0191131 |
| 1 | 63 | 46902000 | -11.3450 | -43.8261 | 2.790458 | 2.898036 | 2.981696 | 3.047905 | 3.200795 | 3.385257 | 0.3027596 | 1.4572261 | 1.4914865 | 1.6192059 | 1.6091154 | 1.703505 | 1.835663 | 0.2120181 | 0.1048976 | 0.1143988 | 0.1180859 | 0.1172190 | 0.1204625 | 0.1249270 | 0.0060637 |
############################################
#Plotting map of Brazil
############################################
map('worldHires','Brazil', xlim=c(-75.6,-33.6), ylim=c(-34.3,6), col='gray90', fill=TRUE)
############################################
#Plotting sites
############################################
coordinates<-cbind(data.Set$Longitude,data.Set$Latitude)
colnames(coordinates)<-c("long","lat")
coordinates<-as.data.frame(coordinates)
points(coordinates$long, coordinates$lat, pch=19, col="red", cex=0.5) #plot my sample sites
df.scaled<-cbind(data.Set$Longitude,data.Set$Latitude)
col1<-(df.scaled[,1]-min(df.scaled[,1]))/(max(df.scaled[,1])-min(df.scaled[,1]))
col2<-(df.scaled[,2]-min(df.scaled[,2]))/(max(df.scaled[,2])-min(df.scaled[,2]))
df.scaled[,1]=col1
df.scaled[,2]=col2
df.scaled<-as.data.frame(df.scaled)
colnames(df.scaled)<-c("long","lat")
head(df.scaled)
## long lat
## 1 0.2342852 0.04608223
## 2 0.2854392 0.05852599
## 3 0.3896729 0.05079907
## 4 0.2990702 0.08002069
## 5 0.4608672 0.09154383
## 6 0.5222219 0.14271528
df.scaled<-cbind(data.Set$Longitude,data.Set$Latitude)
col1<-(df.scaled[,1]-min(df.scaled[,1]))/(max(df.scaled[,1])-min(df.scaled[,1]))
col2<-(df.scaled[,2]-min(df.scaled[,2]))/(max(df.scaled[,2])-min(df.scaled[,2]))
df.scaled[,1]=col1
df.scaled[,2]=col2
df.scaled<-as.data.frame(df.scaled)
colnames(df.scaled)<-c("scaled.long","scaled.lat")
head(df.scaled)
## scaled.long scaled.lat
## 1 0.2342852 0.04608223
## 2 0.2854392 0.05852599
## 3 0.3896729 0.05079907
## 4 0.2990702 0.08002069
## 5 0.4608672 0.09154383
## 6 0.5222219 0.14271528
#Euclidean Distance
#################################################
dist.eucl<-dist(df.scaled,method="euclidean")
#Visualizing the distance matrices
fviz_dist(dist.eucl)
#Number of Clusters: Elbow method
fviz_nbclust(df.scaled,kmeans,method="wss")+geom_vline(xintercept=3,linetype=2)+labs(subtitle="Elbow method")
#Compute k-means k=3
km.res<-kmeans(df.scaled,3,nstart=15)
km.res
## K-means clustering with 3 clusters of sizes 15, 23, 25
##
## Cluster means:
## scaled.long scaled.lat
## 1 0.3135057 0.2504012
## 2 0.8242933 0.1460240
## 3 0.7104384 0.8251742
##
## Clustering vector:
## [1] 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
## [39] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##
## Within cluster sum of squares by cluster:
## [1] 0.7810200 0.4592320 0.8504986
## (between_SS / total_SS = 80.7 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
clusters<-km.res$cluster
fviz_cluster(km.res, data = df.scaled)
df.scaled.cluster<-cbind(clusters,coordinates$long, coordinates$lat)
colnames(df.scaled.cluster)<-c("clusters","long","lat")
df.scaled.cluster<-as.data.frame(df.scaled.cluster)
head(df.scaled.cluster)
## clusters long lat
## 1 1 -46.2322 -20.2156
## 2 1 -46.0622 -20.0953
## 3 1 -45.7158 -20.1700
## 4 1 -46.0169 -19.8875
## 5 1 -45.4792 -19.7761
## 6 1 -45.2753 -19.2814
points.cluster.1<-df.scaled.cluster[which(df.scaled.cluster$clusters==1),]
colnames(points.cluster.1)<-c("cluster","long","lat")
points.cluster.1<-as.data.frame(points.cluster.1)
points.cluster.2<-df.scaled.cluster[which(df.scaled.cluster$clusters==2),]
colnames(points.cluster.2)<-c("cluster","long","lat")
points.cluster.2<-as.data.frame(points.cluster.2)
points.cluster.3<-df.scaled.cluster[which(df.scaled.cluster$clusters==3),]
colnames(points.cluster.3)<-c("cluster","long","lat")
points.cluster.3<-as.data.frame(points.cluster.3)
map('worldHires','Brazil', xlim=c(-75.6,-33.6), ylim=c(-34.3,6), col='gray90', fill=TRUE)
points(points.cluster.1$long, points.cluster.1$lat, pch=19, col="blue", cex=0.5) #plot my sample sites
points(points.cluster.2$long, points.cluster.2$lat, pch=21, col="red", cex=0.5) #plot my sample sites
points(points.cluster.3$long, points.cluster.3$lat, pch=22, col="green", cex=0.5) #plot my sample sites
#Configurando a legenda
legend("topright", c("Cluster 1", "Cluster 2","Cluster 3"), col = c("blue","red","green"),
pch = c(19,21,22))
#Compute k-means k=2
km.res<-kmeans(df.scaled,2,nstart=15)
km.res
## K-means clustering with 2 clusters of sizes 25, 38
##
## Cluster means:
## scaled.long scaled.lat
## 1 0.7104384 0.8251742
## 2 0.6226666 0.1872255
##
## Clustering vector:
## [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [39] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##
## Within cluster sum of squares by cluster:
## [1] 0.8504986 3.7078972
## (between_SS / total_SS = 57.8 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
clusters<-km.res$cluster
fviz_cluster(km.res, data = df.scaled)
df.scaled.cluster<-cbind(clusters,coordinates$long, coordinates$lat)
colnames(df.scaled.cluster)<-c("clusters","long","lat")
df.scaled.cluster<-as.data.frame(df.scaled.cluster)
head(df.scaled.cluster)
## clusters long lat
## 1 2 -46.2322 -20.2156
## 2 2 -46.0622 -20.0953
## 3 2 -45.7158 -20.1700
## 4 2 -46.0169 -19.8875
## 5 2 -45.4792 -19.7761
## 6 2 -45.2753 -19.2814
points.cluster.1<-df.scaled.cluster[which(df.scaled.cluster$clusters==1),]
colnames(points.cluster.1)<-c("cluster","long","lat")
points.cluster.1<-as.data.frame(points.cluster.1)
points.cluster.2<-df.scaled.cluster[which(df.scaled.cluster$clusters==2),]
colnames(points.cluster.2)<-c("cluster","long","lat")
points.cluster.2<-as.data.frame(points.cluster.2)
map('worldHires','Brazil', xlim=c(-75.6,-33.6), ylim=c(-34.3,6), col='gray90', fill=TRUE)
points(points.cluster.1$long, points.cluster.1$lat, pch=19, col="blue", cex=0.5) #plot my sample sites
points(points.cluster.2$long, points.cluster.2$lat, pch=21, col="red", cex=0.5) #plot my sample sites
#Configurando a legenda
legend("topright", c("Cluster 1", "Cluster 2"), col = c("blue","red"),
pch = c(19,21))
subs.set<-cbind(data.Set$Média..w.,data.Set$Média..E0.P.,data.Set$Média..Q.P.)
df.scaled<-0
df.scaled<-subs.set
col1=col2=col3=0
col1<-(df.scaled[,1]-min(df.scaled[,1]))/(max(df.scaled[,1])-min(df.scaled[,1]))
col2<-(df.scaled[,2]-min(df.scaled[,2]))/(max(df.scaled[,2])-min(df.scaled[,2]))
col3<-(df.scaled[,3]-min(df.scaled[,3]))/(max(df.scaled[,3])-min(df.scaled[,3]))
df.scaled[,1]=col1
df.scaled[,2]=col2
df.scaled[,3]=col3
colnames(df.scaled)<-c("w","E0/P","Q0/P")
head(df.scaled)
## w E0/P Q0/P
## [1,] 0.00000000 0.04483707 1.0000000
## [2,] 0.06788383 0.11895490 0.8440751
## [3,] 0.15377450 0.09678773 0.7354396
## [4,] 0.28708123 0.00000000 0.6656613
## [5,] 0.20444814 0.10841078 0.6679557
## [6,] 0.24629062 0.14725268 0.6040502
#Euclidean Distance
#################################################
dist.eucl<-dist(df.scaled,method="euclidean")
#Visualizing the distance matrices
fviz_dist(dist.eucl)
#Number of Clusters: Elbow method
fviz_nbclust(df.scaled,kmeans,method="wss")+geom_vline(xintercept=3,linetype=2)+labs(subtitle="Elbow method")
#Compute k-means k=3
km.res<-kmeans(df.scaled,3,nstart=15)
km.res
## K-means clustering with 3 clusters of sizes 15, 34, 14
##
## Cluster means:
## w E0/P Q0/P
## 1 0.2444478 0.7322860 0.4070958
## 2 0.3063365 0.2093014 0.5456739
## 3 0.6014762 0.6337619 0.1787336
##
## Clustering vector:
## [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 1 1 2 3 2 2 2 2 2 2 2 2
## [39] 1 1 1 3 1 1 3 1 1 1 1 3 3 3 1 3 3 3 3 3 3 1 1 1 3
##
## Within cluster sum of squares by cluster:
## [1] 0.7720936 1.8391153 0.7871033
## (between_SS / total_SS = 64.1 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
clusters<-km.res$cluster
fviz_cluster(km.res, data = df.scaled)
df.scaled.cluster<-cbind(clusters,coordinates$long, coordinates$lat)
colnames(df.scaled.cluster)<-c("clusters","long","lat")
df.scaled.cluster<-as.data.frame(df.scaled.cluster)
head(df.scaled.cluster)
## clusters long lat
## 1 2 -46.2322 -20.2156
## 2 2 -46.0622 -20.0953
## 3 2 -45.7158 -20.1700
## 4 2 -46.0169 -19.8875
## 5 2 -45.4792 -19.7761
## 6 2 -45.2753 -19.2814
points.cluster.1<-df.scaled.cluster[which(df.scaled.cluster$clusters==1),]
colnames(points.cluster.1)<-c("cluster","long","lat")
points.cluster.1<-as.data.frame(points.cluster.1)
points.cluster.2<-df.scaled.cluster[which(df.scaled.cluster$clusters==2),]
colnames(points.cluster.2)<-c("cluster","long","lat")
points.cluster.2<-as.data.frame(points.cluster.2)
points.cluster.3<-df.scaled.cluster[which(df.scaled.cluster$clusters==3),]
colnames(points.cluster.3)<-c("cluster","long","lat")
points.cluster.3<-as.data.frame(points.cluster.3)
map('worldHires','Brazil', xlim=c(-75.6,-33.6), ylim=c(-34.3,6), col='gray90', fill=TRUE)
points(points.cluster.1$long, points.cluster.1$lat, pch=19, col="blue", cex=0.5) #plot my sample sites
points(points.cluster.2$long, points.cluster.2$lat, pch=21, col="red", cex=0.5) #plot my sample sites
points(points.cluster.3$long, points.cluster.3$lat, pch=22, col="green", cex=0.5) #plot my sample sites
#Configurando a legenda
legend("topright", c("Cluster 1", "Cluster 2","Cluster 3"), col = c("blue","red","green"),
pch = c(19,21,22))
#Compute k-means k=2
km.res<-kmeans(df.scaled,2,nstart=15)
km.res
## K-means clustering with 2 clusters of sizes 27, 36
##
## Cluster means:
## w E0/P Q0/P
## 1 0.4384866 0.6907801 0.2721658
## 2 0.2962135 0.2311706 0.5503650
##
## Clustering vector:
## [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2
## [39] 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##
## Within cluster sum of squares by cluster:
## [1] 2.409625 2.291579
## (between_SS / total_SS = 50.3 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
clusters<-km.res$cluster
fviz_cluster(km.res, data = df.scaled)
df.scaled.cluster<-cbind(clusters,coordinates$long, coordinates$lat)
colnames(df.scaled.cluster)<-c("clusters","long","lat")
df.scaled.cluster<-as.data.frame(df.scaled.cluster)
head(df.scaled.cluster)
## clusters long lat
## 1 2 -46.2322 -20.2156
## 2 2 -46.0622 -20.0953
## 3 2 -45.7158 -20.1700
## 4 2 -46.0169 -19.8875
## 5 2 -45.4792 -19.7761
## 6 2 -45.2753 -19.2814
points.cluster.1<-df.scaled.cluster[which(df.scaled.cluster$clusters==1),]
colnames(points.cluster.1)<-c("cluster","long","lat")
points.cluster.1<-as.data.frame(points.cluster.1)
points.cluster.2<-df.scaled.cluster[which(df.scaled.cluster$clusters==2),]
colnames(points.cluster.2)<-c("cluster","long","lat")
points.cluster.2<-as.data.frame(points.cluster.2)
map('worldHires','Brazil', xlim=c(-75.6,-33.6), ylim=c(-34.3,6), col='gray90', fill=TRUE)
points(points.cluster.1$long, points.cluster.1$lat, pch=19, col="blue", cex=0.5) #plot my sample sites
points(points.cluster.2$long, points.cluster.2$lat, pch=21, col="red", cex=0.5) #plot my sample sites
#Configurando a legenda
legend("topright", c("Cluster 1", "Cluster 2"), col = c("blue","red"),
pch = c(19,21))
subs.set<-cbind(data.Set$Média..w.,data.Set$Média..E0.P.,data.Set$Média..Q.P.,data.Set$Q3.Q1..Q.P.)
df.scaled<-0
df.scaled<-subs.set
col1=col2=col3=0
col1<-(df.scaled[,1]-min(df.scaled[,1]))/(max(df.scaled[,1])-min(df.scaled[,1]))
col2<-(df.scaled[,2]-min(df.scaled[,2]))/(max(df.scaled[,2])-min(df.scaled[,2]))
col3<-(df.scaled[,3]-min(df.scaled[,3]))/(max(df.scaled[,3])-min(df.scaled[,3]))
col4<-(df.scaled[,4]-min(df.scaled[,4]))/(max(df.scaled[,4])-min(df.scaled[,4]))
df.scaled[,1]=col1
df.scaled[,2]=col2
df.scaled[,3]=col3
df.scaled[,4]=col4
colnames(df.scaled)<-c("w","E0/P","Q0/P","Q3-Q1")
head(df.scaled)
## w E0/P Q0/P Q3-Q1
## [1,] 0.00000000 0.04483707 1.0000000 0.1814977
## [2,] 0.06788383 0.11895490 0.8440751 0.1690895
## [3,] 0.15377450 0.09678773 0.7354396 0.2987587
## [4,] 0.28708123 0.00000000 0.6656613 0.1991175
## [5,] 0.20444814 0.10841078 0.6679557 0.2576499
## [6,] 0.24629062 0.14725268 0.6040502 0.2811095
#Euclidean Distance
#################################################
dist.eucl<-dist(df.scaled,method="euclidean")
#Visualizing the distance matrices
fviz_dist(dist.eucl)
#Number of Clusters: Elbow method
fviz_nbclust(df.scaled,kmeans,method="wss")+geom_vline(xintercept=3,linetype=2)+labs(subtitle="Elbow method")
#Compute k-means k=3
km.res<-kmeans(df.scaled,3,nstart=15)
km.res
## K-means clustering with 3 clusters of sizes 10, 31, 22
##
## Cluster means:
## w E0/P Q0/P Q3-Q1
## 1 0.2029375 0.6072437 0.4945840 0.5171310
## 2 0.3077453 0.1899790 0.5557471 0.2650719
## 3 0.4969702 0.6823372 0.2267099 0.1425506
##
## Clustering vector:
## [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 1 3 2 3 2 2 2 2 1 2 1 1
## [39] 1 1 1 3 1 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##
## Within cluster sum of squares by cluster:
## [1] 0.9770914 2.1588440 1.9312151
## (between_SS / total_SS = 56.8 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
clusters<-km.res$cluster
fviz_cluster(km.res, data = df.scaled)
df.scaled.cluster<-cbind(clusters,coordinates$long, coordinates$lat)
colnames(df.scaled.cluster)<-c("clusters","long","lat")
df.scaled.cluster<-as.data.frame(df.scaled.cluster)
head(df.scaled.cluster)
## clusters long lat
## 1 2 -46.2322 -20.2156
## 2 2 -46.0622 -20.0953
## 3 2 -45.7158 -20.1700
## 4 2 -46.0169 -19.8875
## 5 2 -45.4792 -19.7761
## 6 2 -45.2753 -19.2814
points.cluster.1<-df.scaled.cluster[which(df.scaled.cluster$clusters==1),]
colnames(points.cluster.1)<-c("cluster","long","lat")
points.cluster.1<-as.data.frame(points.cluster.1)
points.cluster.2<-df.scaled.cluster[which(df.scaled.cluster$clusters==2),]
colnames(points.cluster.2)<-c("cluster","long","lat")
points.cluster.2<-as.data.frame(points.cluster.2)
points.cluster.3<-df.scaled.cluster[which(df.scaled.cluster$clusters==3),]
colnames(points.cluster.3)<-c("cluster","long","lat")
points.cluster.3<-as.data.frame(points.cluster.3)
map('worldHires','Brazil', xlim=c(-75.6,-33.6), ylim=c(-34.3,6), col='gray90', fill=TRUE)
points(points.cluster.1$long, points.cluster.1$lat, pch=19, col="blue", cex=0.5) #plot my sample sites
points(points.cluster.2$long, points.cluster.2$lat, pch=21, col="red", cex=0.5) #plot my sample sites
points(points.cluster.3$long, points.cluster.3$lat, pch=22, col="green", cex=0.5) #plot my sample sites
#Configurando a legenda
legend("topright", c("Cluster 1", "Cluster 2","Cluster 3"), col = c("blue","red","green"),
pch = c(19,21,22))
#Compute k-means k=2
km.res<-kmeans(df.scaled,2,nstart=15)
km.res
## K-means clustering with 2 clusters of sizes 26, 37
##
## Cluster means:
## w E0/P Q0/P Q3-Q1
## 1 0.4462097 0.6961370 0.2651960 0.1783792
## 2 0.2946316 0.2398282 0.5477438 0.3212647
##
## Clustering vector:
## [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2
## [39] 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##
## Within cluster sum of squares by cluster:
## [1] 2.927807 3.728618
## (between_SS / total_SS = 43.2 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
clusters<-km.res$cluster
fviz_cluster(km.res, data = df.scaled)
df.scaled.cluster<-cbind(clusters,coordinates$long, coordinates$lat)
colnames(df.scaled.cluster)<-c("clusters","long","lat")
df.scaled.cluster<-as.data.frame(df.scaled.cluster)
head(df.scaled.cluster)
## clusters long lat
## 1 2 -46.2322 -20.2156
## 2 2 -46.0622 -20.0953
## 3 2 -45.7158 -20.1700
## 4 2 -46.0169 -19.8875
## 5 2 -45.4792 -19.7761
## 6 2 -45.2753 -19.2814
points.cluster.1<-df.scaled.cluster[which(df.scaled.cluster$clusters==1),]
colnames(points.cluster.1)<-c("cluster","long","lat")
points.cluster.1<-as.data.frame(points.cluster.1)
points.cluster.2<-df.scaled.cluster[which(df.scaled.cluster$clusters==2),]
colnames(points.cluster.2)<-c("cluster","long","lat")
points.cluster.2<-as.data.frame(points.cluster.2)
map('worldHires','Brazil', xlim=c(-75.6,-33.6), ylim=c(-34.3,6), col='gray90', fill=TRUE)
points(points.cluster.1$long, points.cluster.1$lat, pch=19, col="blue", cex=0.5) #plot my sample sites
points(points.cluster.2$long, points.cluster.2$lat, pch=21, col="red", cex=0.5) #plot my sample sites
#Configurando a legenda
legend("topright", c("Cluster 1", "Cluster 2"), col = c("blue","red"),
pch = c(19,21))
```