Prepare Data to answer the following questions then visual will explain clearly about how the employee are valuable to the organization.
Wonderful article written by Josh Bersin, who is Global Industry Analyst, study all aspects of HR, business leadership, corporate L&D, recruiting, and HR technology
## # A tibble: 1,470 x 5
## EmployeeNumber Department JobRole PerformanceRati~ Attrition
## <dbl> <chr> <chr> <dbl> <chr>
## 1 1 Sales Sales Executive 3 Yes
## 2 2 Research & Devel~ Research Scienti~ 4 No
## 3 4 Research & Devel~ Laboratory Techn~ 3 Yes
## 4 5 Research & Devel~ Research Scienti~ 3 No
## 5 7 Research & Devel~ Laboratory Techn~ 3 No
## 6 8 Research & Devel~ Laboratory Techn~ 3 No
## 7 10 Research & Devel~ Laboratory Techn~ 4 No
## 8 11 Research & Devel~ Laboratory Techn~ 4 No
## 9 12 Research & Devel~ Manufacturing Di~ 4 No
## 10 13 Research & Devel~ Healthcare Repre~ 3 No
## # ... with 1,460 more rows
## # A tibble: 10 x 7
## Department JobRole Attrition n pct above_industry_~ cost_of_attriti~
## <chr> <chr> <chr> <int> <dbl> <chr> <dbl>
## 1 Sales Sales R~ Yes 33 0.398 Yes 2589950
## 2 Research &~ Laborat~ Yes 62 0.239 Yes 4865967.
## 3 Human Reso~ Human R~ Yes 12 0.231 Yes 941800
## 4 Sales Sales E~ Yes 57 0.175 Yes 4473550
## 5 Research &~ Researc~ Yes 47 0.161 Yes 3688717.
## 6 Research &~ Manufac~ Yes 10 0.0690 No 784833.
## 7 Research &~ Healthc~ Yes 9 0.0687 No 706350
## 8 Research &~ Manager Yes 3 0.0556 No 235450
## 9 Sales Manager Yes 2 0.0541 No 156967.
## 10 Research &~ Researc~ Yes 2 0.025 No 156967.
A caption
## # A tibble: 1,470 x 35
## Age Attrition BusinessTravel DailyRate Department DistanceFromHome
## <dbl> <fct> <fct> <dbl> <fct> <dbl>
## 1 41 Yes Travel_Rarely 1102 Sales 1
## 2 49 No Travel_Frequent~ 279 Research & Devel~ 8
## 3 37 Yes Travel_Rarely 1373 Research & Devel~ 2
## 4 33 No Travel_Frequent~ 1392 Research & Devel~ 3
## 5 27 No Travel_Rarely 591 Research & Devel~ 2
## 6 32 No Travel_Frequent~ 1005 Research & Devel~ 2
## 7 59 No Travel_Rarely 1324 Research & Devel~ 3
## 8 30 No Travel_Rarely 1358 Research & Devel~ 24
## 9 38 No Travel_Frequent~ 216 Research & Devel~ 23
## 10 36 No Travel_Rarely 1299 Research & Devel~ 27
## # ... with 1,460 more rows, and 29 more variables: Education <fct>,
## # EducationField <fct>, EmployeeCount <dbl>, EmployeeNumber <dbl>,
## # EnvironmentSatisfaction <fct>, Gender <fct>, HourlyRate <dbl>,
## # JobInvolvement <fct>, JobLevel <dbl>, JobRole <fct>, JobSatisfaction <fct>,
## # MaritalStatus <fct>, MonthlyIncome <dbl>, MonthlyRate <dbl>,
## # NumCompaniesWorked <dbl>, Over18 <fct>, OverTime <fct>,
## # PercentSalaryHike <dbl>, PerformanceRating <fct>,
## # RelationshipSatisfaction <fct>, StandardHours <dbl>,
## # StockOptionLevel <dbl>, TotalWorkingYears <dbl>,
## # TrainingTimesLastYear <dbl>, WorkLifeBalance <fct>, YearsAtCompany <dbl>,
## # YearsInCurrentRole <dbl>, YearsSinceLastPromotion <dbl>,
## # YearsWithCurrManager <dbl>
## # A tibble: 1,470 x 35
## Attrition Age BusinessTravel DailyRate Department DistanceFromHome
## <chr> <dbl> <chr> <dbl> <chr> <dbl>
## 1 Yes 41 Travel_Rarely 1102 Sales 1
## 2 No 49 Travel_Frequent~ 279 Research & Devel~ 8
## 3 Yes 37 Travel_Rarely 1373 Research & Devel~ 2
## 4 No 33 Travel_Frequent~ 1392 Research & Devel~ 3
## 5 No 27 Travel_Rarely 591 Research & Devel~ 2
## 6 No 32 Travel_Frequent~ 1005 Research & Devel~ 2
## 7 No 59 Travel_Rarely 1324 Research & Devel~ 3
## 8 No 30 Travel_Rarely 1358 Research & Devel~ 24
## 9 No 38 Travel_Frequent~ 216 Research & Devel~ 23
## 10 No 36 Travel_Rarely 1299 Research & Devel~ 27
## # ... with 1,460 more rows, and 29 more variables: Education <dbl>,
## # EducationField <chr>, EmployeeCount <dbl>, EmployeeNumber <dbl>,
## # EnvironmentSatisfaction <dbl>, Gender <chr>, HourlyRate <dbl>,
## # JobInvolvement <dbl>, JobLevel <dbl>, JobRole <chr>, JobSatisfaction <dbl>,
## # MaritalStatus <chr>, MonthlyIncome <dbl>, MonthlyRate <dbl>,
## # NumCompaniesWorked <dbl>, Over18 <chr>, OverTime <chr>,
## # PercentSalaryHike <dbl>, PerformanceRating <dbl>,
## # RelationshipSatisfaction <dbl>, StandardHours <dbl>,
## # StockOptionLevel <dbl>, TotalWorkingYears <dbl>,
## # TrainingTimesLastYear <dbl>, WorkLifeBalance <dbl>, YearsAtCompany <dbl>,
## # YearsInCurrentRole <dbl>, YearsSinceLastPromotion <dbl>,
## # YearsWithCurrManager <dbl>
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 34
##
## Operations:
##
## Zero variance filter on all_predictors()
## # A tibble: 1,470 x 19
## Age DailyRate DistanceFromHome EmployeeCount EmployeeNumber HourlyRate
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 41 1102 1 1 1 94
## 2 49 279 8 1 2 61
## 3 37 1373 2 1 4 92
## 4 33 1392 3 1 5 56
## 5 27 591 2 1 7 40
## 6 32 1005 2 1 8 79
## 7 59 1324 3 1 10 81
## 8 30 1358 24 1 11 67
## 9 38 216 23 1 12 44
## 10 36 1299 27 1 13 94
## # ... with 1,460 more rows, and 13 more variables: JobLevel <dbl>,
## # MonthlyIncome <dbl>, MonthlyRate <dbl>, NumCompaniesWorked <dbl>,
## # PercentSalaryHike <dbl>, StandardHours <dbl>, StockOptionLevel <dbl>,
## # TotalWorkingYears <dbl>, TrainingTimesLastYear <dbl>, YearsAtCompany <dbl>,
## # YearsInCurrentRole <dbl>, YearsSinceLastPromotion <dbl>,
## # YearsWithCurrManager <dbl>
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 34
##
## Training data contained 1470 data points and no missing data.
##
## Operations:
##
## Zero variance filter removed EmployeeCount, Over18, StandardHours [trained]
## Yeo-Johnson transformation on 9 items [trained]
## Variable mutation for JobLevel, StockOptionLevel [trained]
## Centering for Age, DailyRate, ... [trained]
## Scaling for Age, DailyRate, ... [trained]
## Dummy variables from BusinessTravel, Department, Education, ... [trained]
## # A tibble: 65 x 2
## feature Attrition_Yes
## <fct> <dbl>
## 1 PerformanceRating_Good NA
## 2 OverTime_Yes 0.246
## 3 JobRole_Sales.Representative 0.157
## 4 BusinessTravel_Travel_Frequently 0.115
## 5 JobRole_Laboratory.Technician 0.0983
## 6 Department_Sales 0.0809
## 7 DistanceFromHome 0.0782
## 8 EducationField_Technical.Degree 0.0694
## 9 EducationField_Marketing 0.0558
## 10 JobInvolvement_Medium 0.0447
## # ... with 55 more rows