---
title: "Pizzas: Analisis de nutrientes"
output:
flexdashboard::flex_dashboard:
orientation: rows
social: menu
source_code: embed
theme: cerulean
---
```{r setup, include=FALSE}
library(ggplot2)
library(plotly)
library(plyr)
library(flexdashboard)
library (factoextra)
# Lectura de datos
pizza <- read.csv("Pizza.csv")
# Eliminar identificador de la observación
pizza$id <- NULL
# Cálculo de los componentes principales para las variables
pc <- prcomp(~mois + prot + fat + ash + sodium + carb + cal,
data=pizza, center = TRUE, scale = TRUE)
# Resumen de resultados
summary(pc)
pc
# Agrego los scores al dataset original
pizza <<- within(pizza, {
PC2 <- pc$x[,2]
PC1 <- pc$x[,1]
})
```
Graficos {data-orientation=columns}
=======================================================================
Column
-----------------------------------------------------------------------
### Grafico los datos para componentes PC1 y PC2
```{r}
# Grafico los datos para componentes PC1 y PC2
a = ggplot(pizza, aes(x=PC1, y=PC2, color=brand)) +
geom_point() +
xlab("PC1") +
ylab("PC2")
ggplotly(a)
```
Column
-----------------------------------------------------------------------
### Gráfico de componentes principales con información en clustering
```{r}
# Gráfico de componentes principales con información en clustering
p = fviz_pca_ind(pc, geom.ind = "point", pointshape = 21,
pointsize = 1,
fill.ind = pizza$brand,
col.ind = "black",
palette = "jco",
addEllipses = TRUE,
label = "var",
col.var = "black",
repel = TRUE,
legend.title = "Brand") +
ggtitle("Grafico de Componentes principales") +
theme(plot.title = element_text(hjust = 0.5))
ggplotly(p)
```