1 Introducción
direccion <- switch(3,"C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/","C:/Users/chris/OneDrive/Documentos/archivos_grandes/","C:/Users/Ian/Documents/Casen/")
casen_2006 <<- readRDS(paste0(direccion,"casen_2006_c.rds"))
casen_2006 <- mutate_if(casen_2006, is.factor, as.character)
casen_2009 <<- readRDS(paste0(direccion,"casen_2009_c.rds"))
casen_2009 <- mutate_if(casen_2009, is.factor, as.character)
casen_2011 <<- readRDS(paste0(direccion,"casen_2011_c.rds"))
casen_2011 <- mutate_if(casen_2011, is.factor, as.character)
casen_2013 <<- readRDS(paste0(direccion,"casen_2013_c.rds"))
casen_2013 <- mutate_if(casen_2013, is.factor, as.character)
casen_2015 <<- readRDS(paste0(direccion,"casen_2015_c.rds"))
casen_2015 <- mutate_if(casen_2015, is.factor, as.character)
casen_2017 <<- readRDS(paste0(direccion,"casen_2017_c.rds"))
casen_2017 <- mutate_if(casen_2017, is.factor, as.character)
casen_2020 <<- readRDS(paste0(direccion,"casen_2020_e1.rds"))
casen_2020 <- mutate_if(casen_2020, is.factor, as.character)2 Categorías de respuesta
Obtenemos las frecuencias de respuestas ya expandidas a la población, por categoría. , include = FALSE
## # A tibble: 7 x 2
## Variable Homologacion_051
## <chr> <chr>
## 1 <NA> No sabe o no responde
## 2 0 No sabe o no responde
## 3 I Quintil I
## 4 II Quintil II
## 5 III Quintil III
## 6 IV Quintil IV
## 7 V Quintil V
diccionario <- function(df){
#entre 2006 y 2020: 7
variable <- switch(i,"QAUT","QAUT","qaut","QAUT_MN","qaut","qaut","")
names(carrera)[1] <- variable
df <- merge(df, carrera, by = variable)
switch(i,
case = casen_2006 <<- df,
case = casen_2009 <<- df,
case = casen_2011 <<- df,
case = casen_2013 <<- df,
case = casen_2015 <<- df,
case = casen_2017 <<- df,
#case = casen_2020 <<- df
)
}
for (i in 1:6) {
switch(i,
case = casen <- casen_2006,
case = casen <- casen_2009,
case = casen <- casen_2011,
case = casen <- casen_2013,
case = casen <- casen_2015,
case = casen <- casen_2017
#case = casen <- casen_2020
)
diccionario(casen)
}df_tablas <- data.frame()
funcion1 <- function(n){
xx<-switch(n,"2006","2009","2011","2013" ,"2015","2017","")
tanio <<- xx
v1 <- switch(n, "Homologacion_051","Homologacion_051","Homologacion_051","Homologacion_051","Homologacion_051","Homologacion_051")
if(xx==2006) {
eliminated <- casen_2006
c <- eliminated[,c(v1)]
anio <- 2006
}
if(xx==2009) {
eliminated <- casen_2009
c <- eliminated[,c(v1)]
anio <- 2009
}
if(xx==2011) {
eliminated <- casen_2011
c <- eliminated[,c(v1)]
anio <- 2011
}
if(xx==2013) {
eliminated <- casen_2013
c <- eliminated[,c(v1)]
anio <- 2013
}
if(xx==2015) {
eliminated <- casen_2015
c <- eliminated[,c(v1)]
anio <- 2015
}
if(xx==2017) {
eliminated <- casen_2017
c <- eliminated[,c(v1)]
anio <- 2017
}
#if(xx==2020) {
#eliminated <- casen_2020
#c <- eliminated[,c(v1)]
#anio <- 2020
#}
################ -- frecuencia
expan<-switch(n, "EXPC","EXPC", "expc_full","expc", "expc_todas","expc", "expc")
tabla_matp <-xtabs(eliminated[,(expan)]~c, data = eliminated)
tabla_matp <- as.data.frame(tabla_matp)
names(tabla_matp)[1] <- "Homologación"
data_df1 <<- tabla_matp
################
}
for (n in 1:6){
funcion1(n)
assign(paste0("tabla_",tanio),data_df1)
}
tabla_f <- merge(tabla_2006, tabla_2009, by= "Homologación", all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2011, by= "Homologación", all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2013, by= "Homologación", all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2015, by= "Homologación", all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2017, by= "Homologación", all.x = T, all.y = T)
#tabla_f <- merge(tabla_f, tabla_2020, by= "Homologación", all.x = T, all.y = T)
tabla_f## Homologación Freq.x Freq.y Freq.x Freq.y Freq.x Freq.y
## 1 No sabe o no responde 38012 22530 21206 16898 25185 20136
## 2 Quintil I 3637493 3586093 3706184 3774873 3853342 3794937
## 3 Quintil II 3540865 3661310 3709470 3897656 3912489 4150125
## 4 Quintil III 3218148 3445922 3536085 3651559 3685510 3764772
## 5 Quintil IV 3048730 3216690 3244295 3251970 3332892 3329863
## 6 Quintil V 2669493 2674506 2706508 2642341 2706156 2709333
colnames(tabla_f) <- c("variable", "2006","2009","2011","2013","2015","2017")
tabla_f <- mutate_all(tabla_f, ~replace(., is.na(.), 0))
tabla_t <- tabla_f
tabla_t$a2007 <- NA
tabla_t$a2008 <- NA
tabla_t$a2010 <- NA
tabla_t$a2012 <- NA
tabla_t$a2014 <- NA
tabla_t$a2016 <- NA
#tabla_t$a2018 <- NA
#tabla_t$a2019 <- NA
tabla_t <- tabla_t[,c("variable","2006","a2007","a2008","2009","a2010","2011","a2012","2013","a2014","2015","a2016","2017")]
receptaculo <- data.frame()
for (n in 1:nrow(tabla_t)) {
calculado <- na.approx(c(tabla_t[n,c(2:ncol(tabla_t))]))
receptaculo <- rbind(receptaculo,calculado)
}
receptaculo <- cbind(tabla_t$variable,receptaculo)
colnames(receptaculo) <- c("Homologación",paste0(seq(2006,2017,1)))
# receptaculo$categorias<- as.character(receptaculo$categorias)
################is.num <- sapply(receptaculo, is.numeric)
receptaculo [is.num] <- lapply(receptaculo [is.num], round, 2)datatable(receptaculo, extensions = 'Buttons', escape = FALSE, rownames = TRUE,
options = list(dom = 'Bfrtip',
buttons = list('colvis', list(extend = 'collection',
buttons = list(
list(extend='copy'),
list(extend='excel',
filename = 'tabla_genero'),
list(extend='pdf',
filename= 'tabla_genero')),
text = 'Download')), scrollX = TRUE))%>%
formatRound(columns=c(paste0(seq(2006,2017,1))) ,mark = "", digits=0)3 Análisis