Objetivos
- Conocer
- Las principales ventajas de R
- El funcionamiento básico de la terminal de R
- Los principales elementos de la sintaxis de R
- El procedimiento básico de trabajo con R
- Comprender
- El fundamento de la sintaxis de R
- El procedimiento de trabajo
- Los mensajes de error del sistema
¿Qué es R ?
R es un ambiente de programación formado por un conjunto de herramientas muy flexibles que pueden ampliarse fácilmente mediante paquetes, librerías o definiendo nuestras propias funciones. Además es gratuito y de código abierto, un Open Source parte del proyecto GNU, como Linux o Mozilla Firefox
R es un lenguaje de programación y un entorno para el análisis estadístico y gráfico.
R es parte del sistema GNU y se distribuye bajo la licencia GNU GPL; es decir, es software libre y gratuito.
Es multiplataforma: está disponible para Windows, Macintosh y GNU/Linux.
R fue inicialmente creado por R. Ihaka y R.Gentleman de la Universidad de Auckland en 1993, pero actualmente, el entorno R es el resultado de la colaboración de toda una comunidad de usuarios.
A partir de 1997 el desarrollo del código fuente (o base-R) de R es llevado por un grupo de programadores conocido como “The R-core team”.
La página web oficial de R se llama: The R Project for Statistical Computing. Allí podrás encontrar toda la información oficial acerca de R.
Puedes ver la documentación oficial de R con help.start(). ¿Hace falta leerla? No
Importancia de R
¿Por qué usar R?
- !! Es gratis !
- Permite el almacenamiento, manejo y tratamiento estadístico de los
datos numerosos campos del conocimiento:
- biología (ecología, genética, filogenia. . . ), farmacología, . . .
- economía, finanzas, . . .
- Química, física,
- optimización, etc.
Instalación
Instalación Directamente desde:
- The R Project for Statistical Computing (http://www.r-project.org)
- CRAN (Comprehensive R Archive Network) (http://cran.r-project.org)
R install
R studio
Descargar desde: https://rstudio.com
Interface de usuario para R, potente, sencillo Software LIBRE. Versiones para linux, Mac, Windows
Otra alternativa
Rstudio-cloud https://rstudio.cloud/
¿Qué tiene R que tanto nos gusta?:
- Es libre. licencia GNU, utilizar y ¡mejorar!
- Es multiplataforma: Linux, Windows, Mac, iPhone. . .
- Se puede analizar en R cualquier tipo de datos.
- Es potente. Es muy potente.
- Capacidad gráfica. Difícilmente es superada por ningún otro paquete estadístico.
- Compatible con ‘todos’:csv, xls, sav, sas. . .
- Es ampliable, si quieres añadir algo: ¡empaquétalo!
- Hay miles de técnicas estadísticas implementadas, cada día hay más.
Una vez estamos en RStudio, podemos escribir y ejecutar las órdenes de varias formas:
directamente en la consola a través de un script (.R) con ficheros Rmarkdown (.Rmd) Como podemos ver, RStudio está (normalmente) dividido en 4 paneles.
Consola.
Por defecto, la consola se encuentra en el panel inferior-izquierdo. ¿Vemos la pestaña que pone Console? Inmediatamente debajo aparece un texto informativo y, finalmente, el símbolo “>”. Aquí es donde R espera que le demos instrucciones. Para ejecutarlas y obtener el resultado pulsamos enter.
Scripts.
Trabajar en la consola es muy limitado ya que las instrucciones se han de introducir una a una. Lo habitual es trabajar con scripts o ficheros de instrucciones. Estos ficheros tienen extensión .R.
Se puede crear una script con cualquier editor de texto (uno de los más populares es Tinn-R), pero nosotros lo haremos desde RStudio. Para ello, seleccionamos la siguiente ruta de menús: File > New File > R script
Entorno.
El panel, llamémoslo, de entorno esta compuesto de dos pestañas: Environment y History.
En el Environment se irán registrando los objetos que vayamos creando en la sesión de trabajo. También tenemos la opción de cargar y guardar una sesión de trabajo, importar datos y limpiar los objetos de la sesión. Estas opciones están accesibles a través de la cinta de opciones de la pestaña.
En la pestaña History se registran las instrucciones ejecutadas. Como opciones, podemos cargar y guardar el historial de la sesión, seleccionar una o más instrucciones y enviarlas bien a la consola bien al script, y limpiar el historial.
Miscelánea: Archivos, Gráficos, Paquetes, Ayuda, Visor.
Con el nombre de Misceléna nos referimos al panel que se encuentra en la parte inferior-derecha del escritorio de RStudio.
En este panel cabe destacar las siguientes pestañas, cada una con diferentes opciones:
- Files: es una especie de explotador de ficheros.
- Plots: donde se visualizan los gráficos que creamos. Entre las opciones disponibles se encuentran:
- Zoom: para agrandar el gráfico y verlo en otra ventana.
- Export: para exportar/guardar el gráfico. Se puede guardar el gráfico como imagen, pdf o copiarlo al portapapeles.
- Packages: proporciona un listado de los paquetes instalados en R y los que han sido cargado en la sesión. A través de las opciones de esta pestaña podemos instalar nuevos paquetes o actualizar los existentes.
- Help: Para obtener ayuda sobre una determinada función.
Instalar y cargar paquetes.
R está compuesto por un sistema base, pero para extender su funcionalidad es necesario instalar paquetes adicionales.
Podemos instalar paquetes de varias formas:
A través del menú: Tools > Install packages…
En el escritorio de RStudio: Packages/Install. Vemos los paquetes que tenemos actualmente instalados y aquellos que se encuentran cargados.
Utilizando la función install.packages(). El nombre del paquete que queremos instalar debe ir entre comillas.
install.packages("dplyr") # dplyr es un paquete que se utiliza para manipular/gestionar datosOperadores aritméticos
| Operador | Cantidad |
|---|---|
| ^ | Potencia |
| + - | Suma resta |
| * / | Multiplicación División |
| %/% | Cociente entero |
| %% | Modulo |
| : | Generar una serie |
| %*% | Producto matricial |
3^2## [1] 9
5.6*4## [1] 22.4
39/8## [1] 4.875
9%/%4## [1] 2
9%%4## [1] 1
8/3*4## [1] 10.66667
1:10## [1] 1 2 3 4 5 6 7 8 9 10
1:10*3## [1] 3 6 9 12 15 18 21 24 27 30
Operadores lógicos
| Operador | Descripcion |
|---|---|
| ! | no |
| = != | igual distinto |
| > >= | mayor, mayor o igual |
| < <= | menor, menor o igual |
| \(|\) \(||\) | o |
| & && | y |
| # | Comentario |
3 >=2## [1] TRUE
0 != 0.0000000000000001## [1] TRUE
5*2 > 9 & 3/2 == 1.5## [1] TRUE
(3<5) & (4< -4.5)## [1] FALSE
(3<5) || (4< -4.5)## [1] TRUE
Asignaciones
- \(\texttt{Variable <- expresión}\)
- Variable es un nombre que se utiliza como representación del resultado de una expresión
| Operador | Cantidad |
|---|---|
| \(\texttt{<-}\) | Asignar a la izquierda |
| \(\texttt{->}\) | Asignar a la derecha |
| \(=\) | Asignar a la izquierda |
a <- 3
a## [1] 3
a <- a + 1
a## [1] 4
(a <- a + 1)## [1] 5
Funciones
- Una función es un procedimiento para realizar una determinada tarea o cálculo
- función se asocia a un nombre, que sigue las mismas reglas que las variables
- nombre_de_la_función ( argumento \(1\), argumento 2, . . . )
- Los argumentos son propios de cada función
- En algunos casos los argumentos tienen valores por defecto
\(\ln(2)\)
log( 2 )## [1] 0.6931472
\(\log_{10} 2\)
log( 2, 10 )## [1] 0.30103
\(\ln(e^{1})\)
log( exp( 1 ) )## [1] 1
Funciones
Vectores
- Los vectores son un conjunto ordenado de valores
- Para calcular con todo el vector se emplea el nombre del objeto
- Para utilizar un subconjunto valores se emplea subíndices
- Los subíndices se incluyen entre corchetes ( x[ 3 ] )
- Los subíndices están en el rango: 1 — número de elementos del vector
- Los subíndices pueden ser expresiones
x <- c( 8, 5, 2, 4, 1, 6, 3 )Longitud del vector \(x\)
length( x )## [1] 7
Imprime el vector \(x\)
x## [1] 8 5 2 4 1 6 3
x[]## [1] 8 5 2 4 1 6 3
Extrae el primer elemento del vector \(x\)
x[ 1 ]## [1] 8
x[ 2:4 ]## [1] 5 2 4
x[ c( 3, 5 ) ]## [1] 2 1
x[ -1 ]## [1] 5 2 4 1 6 3
Matrices
- Una matriz es un conjunto ordenado de vectores
- Los elementos de la matriz están ordenados por filas y columnas
- Todos los vectores son del mismo tipo: enteros, caracteres, . . .
- Los elementos de una matriz se identifican por dos subíndices
- El uso de los subíndices sigue las mismas reglas que en el caso de los vectores
- Se puede crear uniendo vectores o mediante la función \(\texttt{matrix()}\)
m <- matrix( 1:12, 4, 3 )
m## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12
m[ 1, ]## [1] 1 5 9
En R hay varias formas de crear una matriz:
- Mediante la función \(\texttt{ matrix()}\), cuyos parámetros son:
- data Vector que contiene los valores que formarán la matriz. Debe tener en cuenta que si no es suficientemente grande, se repetirá las veces que sea necesario
- \(\texttt{nrow}\) Número de filas.Si no especifica, se toma nrow =1
- \(\texttt{ncol}\) Número de columnas
- \(\texttt{byrow}\) Variable lógica que indica si la matriz debe construirse por filas o por columnas. El valor predeterminado es F
- \(\texttt{dimnames}\) Lista de longitud 2 con los nombres de las filas y las columnas.
Mediante los operadores \(\texttt{rbind()}\) (para pegar vectores por filas) y \(\texttt{cbind()}\) (para pegar vectores por columnas)
matriz = rbind (x1, x2,…) matriz = cbind (x1, x2…)
donde en la función \(\texttt{rbind()}\), x1 y x2, son las filas de la matriz, y en la función \(\texttt{cbind()}\) las columnas.
M = matrix( 1: 9, nrow = 3, byrow = TRUE) # la matriz se rrellena por filas
M## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9
la matriz se rrellena por columnas
N = matrix( 1: 9, nrow = 3, byrow = FALSE) #
N## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
matrix(1:10, 5, 2, dimnames = list (c ("fila1", "fila2", "fila3", "fila4", "fila5"), c("columna1", "columna2")))## columna1 columna2
## fila1 1 6
## fila2 2 7
## fila3 3 8
## fila4 4 9
## fila5 5 10
matrix(1:15, 3, 5)## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 4 7 10 13
## [2,] 2 5 8 11 14
## [3,] 3 6 9 12 15
Nota: Cuando la longitud del vector no coincide con el número de filas y columnas, los elementos de la matriz se repiten, por lo que R te da un warning advirtiendo que las salidas pueden no ser las deseadas.
Datos tabulares (o de texto)
Estamos acostumbrados a visualizar datos en formato tabular; es decir, como una tabla. Generalmente las columnas son variables y las filas son observaciones de esas variables para diferentes unidades de análisis (“individuos”).
Las columnas se separan con un carácter (generalmente la coma) y las filas con un salto de linea.
Podemos pensar que dependiendo de como se separen las observaciones tenemos distintos tipos de datos tabulares, pero en realidad su estructura es similar: variables en columnas y las observaciones de un individuo separadas por una marca o carácter. Este carácter puede ser un espacio, un tabulador, una coma, punto y coma etc… El formato tabular mas extendido es el CSV, donde las observaciones están separadas por comas.
Estos datos se pueden visualizar en los editores de texto y por eso también se llaman datos en formato texto.
Podemos pensar que hay 2 grupos de datos tabulares: - delimitados por caracteres - de anchura fija
El package readr lee datos tabulares con las siguientes
funciones:
si los datos están delimitados por caracteres utiliza:
read_delim(), read_csv(), read_tsv()si los datos son de anchura fija: read_fwf() y read_table()
Sólo veremos como importar/exportar datos tabulares del primer tipo; es decir, separados por caracteres. Comenzaremos con el formato CSV que es el más utilizado.
#install.packages("gapminder") # para cargar la base de datos a usar hoy
#install.packages("tidyverse")
library(gapminder) # datos
library(dplyr) # Paquete para manipular los datos##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Visualización de la base de datos.
Recuerde: Filas=individuos y Columnas=variables
library(DT)
DT::datatable(gapminder)Nombres de las variables
colnames(gapminder)## [1] "country" "continent" "year" "lifeExp" "pop" "gdpPercap"
Dimensión de la base de datos
dim(gapminder) # ## [1] 1704 6
1704 filas y 6 columnas
Información sobre las variables
str(gapminder) ### tibble [1,704 × 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
gapminder es el nombre de la base de datos
LLamar una variable
gapminder$pop## [1] 8425333 9240934 10267083 11537966 13079460 14880372
## [7] 12881816 13867957 16317921 22227415 25268405 31889923
## [13] 1282697 1476505 1728137 1984060 2263554 2509048
## [19] 2780097 3075321 3326498 3428038 3508512 3600523
## [25] 9279525 10270856 11000948 12760499 14760787 17152804
## [31] 20033753 23254956 26298373 29072015 31287142 33333216
## [37] 4232095 4561361 4826015 5247469 5894858 6162675
## [43] 7016384 7874230 8735988 9875024 10866106 12420476
## [49] 17876956 19610538 21283783 22934225 24779799 26983828
## [55] 29341374 31620918 33958947 36203463 38331121 40301927
## [61] 8691212 9712569 10794968 11872264 13177000 14074100
## [67] 15184200 16257249 17481977 18565243 19546792 20434176
## [73] 6927772 6965860 7129864 7376998 7544201 7568430
## [79] 7574613 7578903 7914969 8069876 8148312 8199783
## [85] 120447 138655 171863 202182 230800 297410
## [91] 377967 454612 529491 598561 656397 708573
## [97] 46886859 51365468 56839289 62821884 70759295 80428306
## [103] 93074406 103764241 113704579 123315288 135656790 150448339
## [109] 8730405 8989111 9218400 9556500 9709100 9821800
## [115] 9856303 9870200 10045622 10199787 10311970 10392226
## [121] 1738315 1925173 2151895 2427334 2761407 3168267
## [127] 3641603 4243788 4981671 6066080 7026113 8078314
## [133] 2883315 3211738 3593918 4040665 4565872 5079716
## [139] 5642224 6156369 6893451 7693188 8445134 9119152
## [145] 2791000 3076000 3349000 3585000 3819000 4086000
## [151] 4172693 4338977 4256013 3607000 4165416 4552198
## [157] 442308 474639 512764 553541 619351 781472
## [163] 970347 1151184 1342614 1536536 1630347 1639131
## [169] 56602560 65551171 76039390 88049823 100840058 114313951
## [175] 128962939 142938076 155975974 168546719 179914212 190010647
## [181] 7274900 7651254 8012946 8310226 8576200 8797022
## [187] 8892098 8971958 8658506 8066057 7661799 7322858
## [193] 4469979 4713416 4919632 5127935 5433886 5889574
## [199] 6634596 7586551 8878303 10352843 12251209 14326203
## [205] 2445618 2667518 2961915 3330989 3529983 3834415
## [211] 4580410 5126023 5809236 6121610 7021078 8390505
## [217] 4693836 5322536 6083619 6960067 7450606 6978607
## [223] 7272485 8371791 10150094 11782962 12926707 14131858
## [229] 5009067 5359923 5793633 6335506 7021028 7959865
## [235] 9250831 10780667 12467171 14195809 15929988 17696293
## [241] 14785584 17010154 18985849 20819767 22284500 23796400
## [247] 25201900 26549700 28523502 30305843 31902268 33390141
## [253] 1291695 1392284 1523478 1733638 1927260 2167533
## [259] 2476971 2840009 3265124 3696513 4048013 4369038
## [265] 2682462 2894855 3150417 3495967 3899068 4388260
## [271] 4875118 5498955 6429417 7562011 8835739 10238807
## [277] 6377619 7048426 7961258 8858908 9717524 10599793
## [283] 11487112 12463354 13572994 14599929 15497046 16284741
## [289] 556263527 637408000 665770000 754550000 862030000 943455000
## [295] 1000281000 1084035000 1164970000 1230075000 1280400000 1318683096
## [301] 12350771 14485993 17009885 19764027 22542890 25094412
## [307] 27764644 30964245 34202721 37657830 41008227 44227550
## [313] 153936 170928 191689 217378 250027 304739
## [319] 348643 395114 454429 527982 614382 710960
## [325] 14100005 15577932 17486434 19941073 23007669 26480870
## [331] 30646495 35481645 41672143 47798986 55379852 64606759
## [337] 854885 940458 1047924 1179760 1340458 1536769
## [343] 1774735 2064095 2409073 2800947 3328795 3800610
## [349] 926317 1112300 1345187 1588717 1834796 2108457
## [355] 2424367 2799811 3173216 3518107 3834934 4133884
## [361] 2977019 3300000 3832408 4744870 6071696 7459574
## [367] 9025951 10761098 12772596 14625967 16252726 18013409
## [373] 3882229 3991242 4076557 4174366 4225310 4318673
## [379] 4413368 4484310 4494013 4444595 4481020 4493312
## [385] 6007797 6640752 7254373 8139332 8831348 9537988
## [391] 9789224 10239839 10723260 10983007 11226999 11416987
## [397] 9125183 9513758 9620282 9835109 9862158 10161915
## [403] 10303704 10311597 10315702 10300707 10256295 10228744
## [409] 4334000 4487831 4646899 4838800 4991596 5088419
## [415] 5117810 5127024 5171393 5283663 5374693 5468120
## [421] 63149 71851 89898 127617 178848 228694
## [427] 305991 311025 384156 417908 447416 496374
## [433] 2491346 2923186 3453434 4049146 4671329 5302800
## [439] 5968349 6655297 7351181 7992357 8650322 9319622
## [445] 3548753 4058385 4681707 5432424 6298651 7278866
## [451] 8365850 9545158 10748394 11911819 12921234 13755680
## [457] 22223309 25009741 28173309 31681188 34807417 38783863
## [463] 45681811 52799062 59402198 66134291 73312559 80264543
## [469] 2042865 2355805 2747687 3232927 3790903 4282586
## [475] 4474873 4842194 5274649 5783439 6353681 6939688
## [481] 216964 232922 249220 259864 277603 192675
## [487] 285483 341244 387838 439971 495627 551201
## [493] 1438760 1542611 1666618 1820319 2260187 2512642
## [499] 2637297 2915959 3668440 4058319 4414865 4906585
## [505] 20860941 22815614 25145372 27860297 30770372 34617799
## [511] 38111756 42999530 52088559 59861301 67946797 76511887
## [517] 4090500 4324000 4491443 4605744 4639657 4738902
## [523] 4826933 4931729 5041039 5134406 5193039 5238460
## [529] 42459667 44310863 47124000 49569000 51732000 53165019
## [535] 54433565 55630100 57374179 58623428 59925035 61083916
## [541] 420702 434904 455661 489004 537977 706367
## [547] 753874 880397 985739 1126189 1299304 1454867
## [553] 284320 323150 374020 439593 517101 608274
## [559] 715523 848406 1025384 1235767 1457766 1688359
## [565] 69145952 71019069 73739117 76368453 78717088 78160773
## [571] 78335266 77718298 80597764 82011073 82350671 82400996
## [577] 5581001 6391288 7355248 8490213 9354120 10538093
## [583] 11400338 14168101 16278738 18418288 20550751 22873338
## [589] 7733250 8096218 8448233 8716441 8888628 9308479
## [595] 9786480 9974490 10325429 10502372 10603863 10706290
## [601] 3146381 3640876 4208858 4690773 5149581 5703430
## [607] 6395630 7326406 8486949 9803875 11178650 12572928
## [613] 2664249 2876726 3140003 3451418 3811387 4227026
## [619] 4710497 5650262 6990574 8048834 8807818 9947814
## [625] 580653 601095 627820 601287 625361 745228
## [631] 825987 927524 1050938 1193708 1332459 1472041
## [637] 3201488 3507701 3880130 4318137 4698301 4908554
## [643] 5198399 5756203 6326682 6913545 7607651 8502814
## [649] 1517453 1770390 2090162 2500689 2965146 3055235
## [655] 3669448 4372203 5077347 5867957 6677328 7483763
## [661] 2125900 2736300 3305200 3722800 4115700 4583700
## [667] 5264500 5584510 5829696 6495918 6762476 6980412
## [673] 9504000 9839000 10063000 10223422 10394091 10637171
## [679] 10705535 10612740 10348684 10244684 10083313 9956108
## [685] 147962 165110 182053 198676 209275 221823
## [691] 233997 244676 259012 271192 288030 301931
## [697] 372000000 409000000 454000000 506000000 567000000 634000000
## [703] 708000000 788000000 872000000 959000000 1034172547 1110396331
## [709] 82052000 90124000 99028000 109343000 121282000 136725000
## [715] 153343000 169276000 184816000 199278000 211060000 223547000
## [721] 17272000 19792000 22874000 26538000 30614000 35480679
## [727] 43072751 51889696 60397973 63327987 66907826 69453570
## [733] 5441766 6248643 7240260 8519282 10061506 11882916
## [739] 14173318 16543189 17861905 20775703 24001816 27499638
## [745] 2952156 2878220 2830000 2900100 3024400 3271900
## [751] 3480000 3539900 3557761 3667233 3879155 4109086
## [757] 1620914 1944401 2310904 2693585 3095893 3495918
## [763] 3858421 4203148 4936550 5531387 6029529 6426679
## [769] 47666000 49182000 50843200 52667100 54365564 56059245
## [775] 56535636 56729703 56840847 57479469 57926999 58147733
## [781] 1426095 1535090 1665128 1861096 1997616 2156814
## [787] 2298309 2326606 2378618 2531311 2664659 2780132
## [793] 86459025 91563009 95831757 100825279 107188273 113872473
## [799] 118454974 122091325 124329269 125956499 127065841 127467972
## [805] 607914 746559 933559 1255058 1613551 1937652
## [811] 2347031 2820042 3867409 4526235 5307470 6053193
## [817] 6464046 7454779 8678557 10191512 12044785 14500404
## [823] 17661452 21198082 25020539 28263827 31386842 35610177
## [829] 8865488 9411381 10917494 12617009 14781241 16325320
## [835] 17647518 19067554 20711375 21585105 22215365 23301725
## [841] 20947571 22611552 26420307 30131000 33505000 36436000
## [847] 39326000 41622000 43805450 46173816 47969150 49044790
## [853] 160000 212846 358266 575003 841934 1140357
## [859] 1497494 1891487 1418095 1765345 2111561 2505559
## [865] 1439529 1647412 1886848 2186894 2680018 3115787
## [871] 3086876 3089353 3219994 3430388 3677780 3921278
## [877] 748747 813338 893143 996380 1116779 1251524
## [883] 1411807 1599200 1803195 1982823 2046772 2012649
## [889] 863308 975950 1112796 1279406 1482628 1703617
## [895] 1956875 2269414 1912974 2200725 2814651 3193942
## [901] 1019729 1201578 1441863 1759224 2183877 2721783
## [907] 3344074 3799845 4364501 4759670 5368585 6036914
## [913] 4762912 5181679 5703324 6334556 7082430 8007166
## [919] 9171477 10568642 12210395 14165114 16473477 19167654
## [925] 2917802 3221238 3628608 4147252 4730997 5637246
## [931] 6502825 7824747 10014249 10419991 11824495 13327079
## [937] 6748378 7739235 8906385 10154878 11441462 12845381
## [943] 14441916 16331785 18319502 20476091 22662365 24821286
## [949] 3838168 4241884 4690372 5212416 5828158 6491649
## [955] 6998256 7634008 8416215 9384984 10580176 12031795
## [961] 1022556 1076852 1146757 1230542 1332786 1456688
## [967] 1622136 1841240 2119465 2444741 2828858 3270065
## [973] 516556 609816 701016 789309 851334 913025
## [979] 992040 1042663 1096202 1149818 1200206 1250882
## [985] 30144317 35015548 41121485 47995559 55984294 63759976
## [991] 71640904 80122492 88111030 95895146 102479927 108700891
## [997] 800663 882134 1010280 1149500 1320500 1528000
## [1003] 1756032 2015133 2312802 2494803 2674234 2874127
## [1009] 413834 442829 474528 501035 527678 560073
## [1015] 562548 569473 621621 692651 720230 684736
## [1021] 9939217 11406350 13056604 14770296 16660670 18396941
## [1027] 20198730 22987397 25798239 28529501 31167783 33757175
## [1033] 6446316 7038035 7788944 8680909 9809596 11127868
## [1039] 12587223 12891952 13160731 16603334 18473780 19951656
## [1045] 20092996 21731844 23634436 25870271 28466390 31528087
## [1051] 34680442 38028578 40546538 43247867 45598081 47761980
## [1057] 485831 548080 621392 706640 821782 977026
## [1063] 1099010 1278184 1554253 1774766 1972153 2055080
## [1069] 9182536 9682338 10332057 11261690 12412593 13933198
## [1075] 15796314 17917180 20326209 23001113 25873917 28901790
## [1081] 10381988 11026383 11805689 12596822 13329874 13852989
## [1087] 14310401 14665278 15174244 15604464 16122830 16570613
## [1093] 1994794 2229407 2488550 2728150 2929100 3164900
## [1099] 3210650 3317166 3437674 3676187 3908037 4115771
## [1105] 1165790 1358828 1590597 1865490 2182908 2554598
## [1111] 2979423 3344353 4017939 4609572 5146848 5675356
## [1117] 3379468 3692184 4076008 4534062 5060262 5682086
## [1123] 6437188 7332638 8392818 9666252 11140655 12894865
## [1129] 33119096 37173340 41871351 47287752 53740085 62209173
## [1135] 73039376 81551520 93364244 106207839 119901274 135031164
## [1141] 3327728 3491938 3638919 3786019 3933004 4043205
## [1147] 4114787 4186147 4286357 4405672 4535591 4627926
## [1153] 507833 561977 628164 714775 829050 1004533
## [1159] 1301048 1593882 1915208 2283635 2713462 3204897
## [1165] 41346560 46679944 53100671 60641899 69325921 78152686
## [1171] 91462088 105186881 120065004 135564834 153403524 169270617
## [1177] 940080 1063506 1215725 1405486 1616384 1839782
## [1183] 2036305 2253639 2484997 2734531 2990875 3242173
## [1189] 1555876 1770902 2009813 2287985 2614104 2984494
## [1195] 3366439 3886512 4483945 5154123 5884491 6667147
## [1201] 8025700 9146100 10516500 12132200 13954700 15990099
## [1207] 18125129 20195924 22430449 24748122 26769436 28674757
## [1213] 22438691 26072194 30325264 35356600 40850141 46850962
## [1219] 53456774 60017788 67185766 75012988 82995088 91077287
## [1225] 25730551 28235346 30329617 31785378 33039545 34621254
## [1231] 36227381 37740710 38370697 38654957 38625976 38518241
## [1237] 8526050 8817650 9019800 9103000 8970450 9662600
## [1243] 9859650 9915289 9927680 10156415 10433867 10642836
## [1249] 2227000 2260000 2448046 2648961 2847132 3080828
## [1255] 3279001 3444468 3585176 3759430 3859606 3942491
## [1261] 257700 308700 358900 414024 461633 492095
## [1267] 517810 562035 622191 684810 743981 798094
## [1273] 16630000 17829327 18680721 19284814 20662648 21658597
## [1279] 22356726 22686371 22797027 22562458 22404337 22276056
## [1285] 2534927 2822082 3051242 3451079 3992121 4657072
## [1291] 5507565 6349365 7290203 7212583 7852401 8860588
## [1297] 60011 61325 65345 70787 76595 86796
## [1303] 98593 110812 125911 145608 170372 199579
## [1309] 4005677 4419650 4943029 5618198 6472756 8128505
## [1315] 11254672 14619745 16945857 21229759 24501530 27601038
## [1321] 2755589 3054547 3430243 3965841 4588696 5260855
## [1327] 6147783 7171347 8307920 9535314 10870037 12267493
## [1333] 6860147 7271135 7616060 7971222 8313288 8686367
## [1339] 9032824 9230783 9826397 10336594 10111559 10150265
## [1345] 2143249 2295678 2467895 2662190 2879013 3140897
## [1351] 3464522 3868905 4260884 4578212 5359092 6144562
## [1357] 1127000 1445929 1750200 1977600 2152400 2325300
## [1363] 2651869 2794552 3235865 3802309 4197776 4553009
## [1369] 3558137 3844277 4237384 4442238 4593433 4827803
## [1375] 5048043 5199318 5302888 5383010 5410052 5447502
## [1381] 1489518 1533070 1582962 1646912 1694510 1746919
## [1387] 1861252 1945870 1999210 2011612 2011497 2009245
## [1393] 2526994 2780415 3080153 3428839 3840161 4353666
## [1399] 5828892 6921858 6099799 6633514 7753310 9118773
## [1405] 14264935 16151549 18356657 20997321 23935810 27129932
## [1411] 31140029 35933379 39964159 42835005 44433622 43997828
## [1417] 28549870 29841614 31158061 32850275 34513161 36439000
## [1423] 37983310 38880702 39549438 39855442 40152517 40448191
## [1429] 7982342 9128546 10421936 11737396 13016733 14116836
## [1435] 15410151 16495304 17587060 18698655 19576783 20378239
## [1441] 8504667 9753392 11183227 12716129 14597019 17104986
## [1447] 20367053 24725960 28227588 32160729 37090298 42292929
## [1453] 290243 326741 370006 420690 480105 551425
## [1459] 649901 779348 962344 1054486 1130269 1133066
## [1465] 7124673 7363802 7561588 7867931 8122293 8251648
## [1471] 8325260 8421403 8718867 8897619 8954175 9031088
## [1477] 4815000 5126000 5666000 6063000 6401400 6316424
## [1483] 6468126 6649942 6995447 7193761 7361757 7554661
## [1489] 3661549 4149908 4834621 5680812 6701172 7932503
## [1495] 9410494 11242847 13219062 15081016 17155814 19314747
## [1501] 8550362 10164215 11918938 13648692 15226039 16785196
## [1507] 18501390 19757799 20686918 21628605 22454239 23174294
## [1513] 8322925 9452826 10863958 12607312 14706593 17129565
## [1519] 19844382 23040630 26605473 30686889 34593779 38139640
## [1525] 21289402 25041917 29263397 34024249 39276153 44148285
## [1531] 48827160 52910342 56667095 60216677 62806748 65068149
## [1537] 1219113 1357445 1528098 1735550 2056351 2308582
## [1543] 2644765 3154264 3747553 4320890 4977378 5701579
## [1549] 662850 764900 887498 960155 975199 1039009
## [1555] 1116479 1191336 1183669 1138101 1101832 1056608
## [1561] 3647735 3950849 4286552 4786986 5303507 6005061
## [1567] 6734098 7724976 8523077 9231669 9770575 10276158
## [1573] 22235677 25670939 29788695 33411317 37492953 42404033
## [1579] 47328791 52881328 58179144 63047647 67308928 71158647
## [1585] 5824797 6675501 7688797 8900294 10190285 11457758
## [1591] 12939400 15283050 18252190 21210254 24739869 29170398
## [1597] 50430000 51430000 53292000 54959000 56079000 56179000
## [1603] 56339704 56981620 57866349 58808266 59912431 60776238
## [1609] 157553000 171984000 186538000 198712000 209896000 220239000
## [1615] 232187835 242803533 256894189 272911760 287675526 301139947
## [1621] 2252965 2424959 2598466 2748579 2829526 2873520
## [1627] 2953997 3045153 3149262 3262838 3363085 3447496
## [1633] 5439568 6702668 8143375 9709552 11515649 13503563
## [1639] 15620766 17910182 20265563 22374398 24287670 26084662
## [1645] 26246839 28998543 33796140 39463910 44655014 50533506
## [1651] 56142181 62826491 69940728 76048996 80908147 85262356
## [1657] 1030585 1070439 1133134 1142636 1089572 1261091
## [1663] 1425876 1691210 2104779 2826046 3389578 4018332
## [1669] 4963829 5498090 6120081 6740785 7407075 8403990
## [1675] 9657618 11219340 13367997 15826497 18701257 22211743
## [1681] 2672000 3016000 3421000 3900000 4506497 5216550
## [1687] 6100407 7272406 8381163 9417789 10595811 11746035
## [1693] 3080907 3646340 4277736 4995432 5861135 6642107
## [1699] 7636524 9216418 10704340 11404948 11926563 12311143
gapminder$country## [1] Afghanistan Afghanistan
## [3] Afghanistan Afghanistan
## [5] Afghanistan Afghanistan
## [7] Afghanistan Afghanistan
## [9] Afghanistan Afghanistan
## [11] Afghanistan Afghanistan
## [13] Albania Albania
## [15] Albania Albania
## [17] Albania Albania
## [19] Albania Albania
## [21] Albania Albania
## [23] Albania Albania
## [25] Algeria Algeria
## [27] Algeria Algeria
## [29] Algeria Algeria
## [31] Algeria Algeria
## [33] Algeria Algeria
## [35] Algeria Algeria
## [37] Angola Angola
## [39] Angola Angola
## [41] Angola Angola
## [43] Angola Angola
## [45] Angola Angola
## [47] Angola Angola
## [49] Argentina Argentina
## [51] Argentina Argentina
## [53] Argentina Argentina
## [55] Argentina Argentina
## [57] Argentina Argentina
## [59] Argentina Argentina
## [61] Australia Australia
## [63] Australia Australia
## [65] Australia Australia
## [67] Australia Australia
## [69] Australia Australia
## [71] Australia Australia
## [73] Austria Austria
## [75] Austria Austria
## [77] Austria Austria
## [79] Austria Austria
## [81] Austria Austria
## [83] Austria Austria
## [85] Bahrain Bahrain
## [87] Bahrain Bahrain
## [89] Bahrain Bahrain
## [91] Bahrain Bahrain
## [93] Bahrain Bahrain
## [95] Bahrain Bahrain
## [97] Bangladesh Bangladesh
## [99] Bangladesh Bangladesh
## [101] Bangladesh Bangladesh
## [103] Bangladesh Bangladesh
## [105] Bangladesh Bangladesh
## [107] Bangladesh Bangladesh
## [109] Belgium Belgium
## [111] Belgium Belgium
## [113] Belgium Belgium
## [115] Belgium Belgium
## [117] Belgium Belgium
## [119] Belgium Belgium
## [121] Benin Benin
## [123] Benin Benin
## [125] Benin Benin
## [127] Benin Benin
## [129] Benin Benin
## [131] Benin Benin
## [133] Bolivia Bolivia
## [135] Bolivia Bolivia
## [137] Bolivia Bolivia
## [139] Bolivia Bolivia
## [141] Bolivia Bolivia
## [143] Bolivia Bolivia
## [145] Bosnia and Herzegovina Bosnia and Herzegovina
## [147] Bosnia and Herzegovina Bosnia and Herzegovina
## [149] Bosnia and Herzegovina Bosnia and Herzegovina
## [151] Bosnia and Herzegovina Bosnia and Herzegovina
## [153] Bosnia and Herzegovina Bosnia and Herzegovina
## [155] Bosnia and Herzegovina Bosnia and Herzegovina
## [157] Botswana Botswana
## [159] Botswana Botswana
## [161] Botswana Botswana
## [163] Botswana Botswana
## [165] Botswana Botswana
## [167] Botswana Botswana
## [169] Brazil Brazil
## [171] Brazil Brazil
## [173] Brazil Brazil
## [175] Brazil Brazil
## [177] Brazil Brazil
## [179] Brazil Brazil
## [181] Bulgaria Bulgaria
## [183] Bulgaria Bulgaria
## [185] Bulgaria Bulgaria
## [187] Bulgaria Bulgaria
## [189] Bulgaria Bulgaria
## [191] Bulgaria Bulgaria
## [193] Burkina Faso Burkina Faso
## [195] Burkina Faso Burkina Faso
## [197] Burkina Faso Burkina Faso
## [199] Burkina Faso Burkina Faso
## [201] Burkina Faso Burkina Faso
## [203] Burkina Faso Burkina Faso
## [205] Burundi Burundi
## [207] Burundi Burundi
## [209] Burundi Burundi
## [211] Burundi Burundi
## [213] Burundi Burundi
## [215] Burundi Burundi
## [217] Cambodia Cambodia
## [219] Cambodia Cambodia
## [221] Cambodia Cambodia
## [223] Cambodia Cambodia
## [225] Cambodia Cambodia
## [227] Cambodia Cambodia
## [229] Cameroon Cameroon
## [231] Cameroon Cameroon
## [233] Cameroon Cameroon
## [235] Cameroon Cameroon
## [237] Cameroon Cameroon
## [239] Cameroon Cameroon
## [241] Canada Canada
## [243] Canada Canada
## [245] Canada Canada
## [247] Canada Canada
## [249] Canada Canada
## [251] Canada Canada
## [253] Central African Republic Central African Republic
## [255] Central African Republic Central African Republic
## [257] Central African Republic Central African Republic
## [259] Central African Republic Central African Republic
## [261] Central African Republic Central African Republic
## [263] Central African Republic Central African Republic
## [265] Chad Chad
## [267] Chad Chad
## [269] Chad Chad
## [271] Chad Chad
## [273] Chad Chad
## [275] Chad Chad
## [277] Chile Chile
## [279] Chile Chile
## [281] Chile Chile
## [283] Chile Chile
## [285] Chile Chile
## [287] Chile Chile
## [289] China China
## [291] China China
## [293] China China
## [295] China China
## [297] China China
## [299] China China
## [301] Colombia Colombia
## [303] Colombia Colombia
## [305] Colombia Colombia
## [307] Colombia Colombia
## [309] Colombia Colombia
## [311] Colombia Colombia
## [313] Comoros Comoros
## [315] Comoros Comoros
## [317] Comoros Comoros
## [319] Comoros Comoros
## [321] Comoros Comoros
## [323] Comoros Comoros
## [325] Congo, Dem. Rep. Congo, Dem. Rep.
## [327] Congo, Dem. Rep. Congo, Dem. Rep.
## [329] Congo, Dem. Rep. Congo, Dem. Rep.
## [331] Congo, Dem. Rep. Congo, Dem. Rep.
## [333] Congo, Dem. Rep. Congo, Dem. Rep.
## [335] Congo, Dem. Rep. Congo, Dem. Rep.
## [337] Congo, Rep. Congo, Rep.
## [339] Congo, Rep. Congo, Rep.
## [341] Congo, Rep. Congo, Rep.
## [343] Congo, Rep. Congo, Rep.
## [345] Congo, Rep. Congo, Rep.
## [347] Congo, Rep. Congo, Rep.
## [349] Costa Rica Costa Rica
## [351] Costa Rica Costa Rica
## [353] Costa Rica Costa Rica
## [355] Costa Rica Costa Rica
## [357] Costa Rica Costa Rica
## [359] Costa Rica Costa Rica
## [361] Cote d'Ivoire Cote d'Ivoire
## [363] Cote d'Ivoire Cote d'Ivoire
## [365] Cote d'Ivoire Cote d'Ivoire
## [367] Cote d'Ivoire Cote d'Ivoire
## [369] Cote d'Ivoire Cote d'Ivoire
## [371] Cote d'Ivoire Cote d'Ivoire
## [373] Croatia Croatia
## [375] Croatia Croatia
## [377] Croatia Croatia
## [379] Croatia Croatia
## [381] Croatia Croatia
## [383] Croatia Croatia
## [385] Cuba Cuba
## [387] Cuba Cuba
## [389] Cuba Cuba
## [391] Cuba Cuba
## [393] Cuba Cuba
## [395] Cuba Cuba
## [397] Czech Republic Czech Republic
## [399] Czech Republic Czech Republic
## [401] Czech Republic Czech Republic
## [403] Czech Republic Czech Republic
## [405] Czech Republic Czech Republic
## [407] Czech Republic Czech Republic
## [409] Denmark Denmark
## [411] Denmark Denmark
## [413] Denmark Denmark
## [415] Denmark Denmark
## [417] Denmark Denmark
## [419] Denmark Denmark
## [421] Djibouti Djibouti
## [423] Djibouti Djibouti
## [425] Djibouti Djibouti
## [427] Djibouti Djibouti
## [429] Djibouti Djibouti
## [431] Djibouti Djibouti
## [433] Dominican Republic Dominican Republic
## [435] Dominican Republic Dominican Republic
## [437] Dominican Republic Dominican Republic
## [439] Dominican Republic Dominican Republic
## [441] Dominican Republic Dominican Republic
## [443] Dominican Republic Dominican Republic
## [445] Ecuador Ecuador
## [447] Ecuador Ecuador
## [449] Ecuador Ecuador
## [451] Ecuador Ecuador
## [453] Ecuador Ecuador
## [455] Ecuador Ecuador
## [457] Egypt Egypt
## [459] Egypt Egypt
## [461] Egypt Egypt
## [463] Egypt Egypt
## [465] Egypt Egypt
## [467] Egypt Egypt
## [469] El Salvador El Salvador
## [471] El Salvador El Salvador
## [473] El Salvador El Salvador
## [475] El Salvador El Salvador
## [477] El Salvador El Salvador
## [479] El Salvador El Salvador
## [481] Equatorial Guinea Equatorial Guinea
## [483] Equatorial Guinea Equatorial Guinea
## [485] Equatorial Guinea Equatorial Guinea
## [487] Equatorial Guinea Equatorial Guinea
## [489] Equatorial Guinea Equatorial Guinea
## [491] Equatorial Guinea Equatorial Guinea
## [493] Eritrea Eritrea
## [495] Eritrea Eritrea
## [497] Eritrea Eritrea
## [499] Eritrea Eritrea
## [501] Eritrea Eritrea
## [503] Eritrea Eritrea
## [505] Ethiopia Ethiopia
## [507] Ethiopia Ethiopia
## [509] Ethiopia Ethiopia
## [511] Ethiopia Ethiopia
## [513] Ethiopia Ethiopia
## [515] Ethiopia Ethiopia
## [517] Finland Finland
## [519] Finland Finland
## [521] Finland Finland
## [523] Finland Finland
## [525] Finland Finland
## [527] Finland Finland
## [529] France France
## [531] France France
## [533] France France
## [535] France France
## [537] France France
## [539] France France
## [541] Gabon Gabon
## [543] Gabon Gabon
## [545] Gabon Gabon
## [547] Gabon Gabon
## [549] Gabon Gabon
## [551] Gabon Gabon
## [553] Gambia Gambia
## [555] Gambia Gambia
## [557] Gambia Gambia
## [559] Gambia Gambia
## [561] Gambia Gambia
## [563] Gambia Gambia
## [565] Germany Germany
## [567] Germany Germany
## [569] Germany Germany
## [571] Germany Germany
## [573] Germany Germany
## [575] Germany Germany
## [577] Ghana Ghana
## [579] Ghana Ghana
## [581] Ghana Ghana
## [583] Ghana Ghana
## [585] Ghana Ghana
## [587] Ghana Ghana
## [589] Greece Greece
## [591] Greece Greece
## [593] Greece Greece
## [595] Greece Greece
## [597] Greece Greece
## [599] Greece Greece
## [601] Guatemala Guatemala
## [603] Guatemala Guatemala
## [605] Guatemala Guatemala
## [607] Guatemala Guatemala
## [609] Guatemala Guatemala
## [611] Guatemala Guatemala
## [613] Guinea Guinea
## [615] Guinea Guinea
## [617] Guinea Guinea
## [619] Guinea Guinea
## [621] Guinea Guinea
## [623] Guinea Guinea
## [625] Guinea-Bissau Guinea-Bissau
## [627] Guinea-Bissau Guinea-Bissau
## [629] Guinea-Bissau Guinea-Bissau
## [631] Guinea-Bissau Guinea-Bissau
## [633] Guinea-Bissau Guinea-Bissau
## [635] Guinea-Bissau Guinea-Bissau
## [637] Haiti Haiti
## [639] Haiti Haiti
## [641] Haiti Haiti
## [643] Haiti Haiti
## [645] Haiti Haiti
## [647] Haiti Haiti
## [649] Honduras Honduras
## [651] Honduras Honduras
## [653] Honduras Honduras
## [655] Honduras Honduras
## [657] Honduras Honduras
## [659] Honduras Honduras
## [661] Hong Kong, China Hong Kong, China
## [663] Hong Kong, China Hong Kong, China
## [665] Hong Kong, China Hong Kong, China
## [667] Hong Kong, China Hong Kong, China
## [669] Hong Kong, China Hong Kong, China
## [671] Hong Kong, China Hong Kong, China
## [673] Hungary Hungary
## [675] Hungary Hungary
## [677] Hungary Hungary
## [679] Hungary Hungary
## [681] Hungary Hungary
## [683] Hungary Hungary
## [685] Iceland Iceland
## [687] Iceland Iceland
## [689] Iceland Iceland
## [691] Iceland Iceland
## [693] Iceland Iceland
## [695] Iceland Iceland
## [697] India India
## [699] India India
## [701] India India
## [703] India India
## [705] India India
## [707] India India
## [709] Indonesia Indonesia
## [711] Indonesia Indonesia
## [713] Indonesia Indonesia
## [715] Indonesia Indonesia
## [717] Indonesia Indonesia
## [719] Indonesia Indonesia
## [721] Iran Iran
## [723] Iran Iran
## [725] Iran Iran
## [727] Iran Iran
## [729] Iran Iran
## [731] Iran Iran
## [733] Iraq Iraq
## [735] Iraq Iraq
## [737] Iraq Iraq
## [739] Iraq Iraq
## [741] Iraq Iraq
## [743] Iraq Iraq
## [745] Ireland Ireland
## [747] Ireland Ireland
## [749] Ireland Ireland
## [751] Ireland Ireland
## [753] Ireland Ireland
## [755] Ireland Ireland
## [757] Israel Israel
## [759] Israel Israel
## [761] Israel Israel
## [763] Israel Israel
## [765] Israel Israel
## [767] Israel Israel
## [769] Italy Italy
## [771] Italy Italy
## [773] Italy Italy
## [775] Italy Italy
## [777] Italy Italy
## [779] Italy Italy
## [781] Jamaica Jamaica
## [783] Jamaica Jamaica
## [785] Jamaica Jamaica
## [787] Jamaica Jamaica
## [789] Jamaica Jamaica
## [791] Jamaica Jamaica
## [793] Japan Japan
## [795] Japan Japan
## [797] Japan Japan
## [799] Japan Japan
## [801] Japan Japan
## [803] Japan Japan
## [805] Jordan Jordan
## [807] Jordan Jordan
## [809] Jordan Jordan
## [811] Jordan Jordan
## [813] Jordan Jordan
## [815] Jordan Jordan
## [817] Kenya Kenya
## [819] Kenya Kenya
## [821] Kenya Kenya
## [823] Kenya Kenya
## [825] Kenya Kenya
## [827] Kenya Kenya
## [829] Korea, Dem. Rep. Korea, Dem. Rep.
## [831] Korea, Dem. Rep. Korea, Dem. Rep.
## [833] Korea, Dem. Rep. Korea, Dem. Rep.
## [835] Korea, Dem. Rep. Korea, Dem. Rep.
## [837] Korea, Dem. Rep. Korea, Dem. Rep.
## [839] Korea, Dem. Rep. Korea, Dem. Rep.
## [841] Korea, Rep. Korea, Rep.
## [843] Korea, Rep. Korea, Rep.
## [845] Korea, Rep. Korea, Rep.
## [847] Korea, Rep. Korea, Rep.
## [849] Korea, Rep. Korea, Rep.
## [851] Korea, Rep. Korea, Rep.
## [853] Kuwait Kuwait
## [855] Kuwait Kuwait
## [857] Kuwait Kuwait
## [859] Kuwait Kuwait
## [861] Kuwait Kuwait
## [863] Kuwait Kuwait
## [865] Lebanon Lebanon
## [867] Lebanon Lebanon
## [869] Lebanon Lebanon
## [871] Lebanon Lebanon
## [873] Lebanon Lebanon
## [875] Lebanon Lebanon
## [877] Lesotho Lesotho
## [879] Lesotho Lesotho
## [881] Lesotho Lesotho
## [883] Lesotho Lesotho
## [885] Lesotho Lesotho
## [887] Lesotho Lesotho
## [889] Liberia Liberia
## [891] Liberia Liberia
## [893] Liberia Liberia
## [895] Liberia Liberia
## [897] Liberia Liberia
## [899] Liberia Liberia
## [901] Libya Libya
## [903] Libya Libya
## [905] Libya Libya
## [907] Libya Libya
## [909] Libya Libya
## [911] Libya Libya
## [913] Madagascar Madagascar
## [915] Madagascar Madagascar
## [917] Madagascar Madagascar
## [919] Madagascar Madagascar
## [921] Madagascar Madagascar
## [923] Madagascar Madagascar
## [925] Malawi Malawi
## [927] Malawi Malawi
## [929] Malawi Malawi
## [931] Malawi Malawi
## [933] Malawi Malawi
## [935] Malawi Malawi
## [937] Malaysia Malaysia
## [939] Malaysia Malaysia
## [941] Malaysia Malaysia
## [943] Malaysia Malaysia
## [945] Malaysia Malaysia
## [947] Malaysia Malaysia
## [949] Mali Mali
## [951] Mali Mali
## [953] Mali Mali
## [955] Mali Mali
## [957] Mali Mali
## [959] Mali Mali
## [961] Mauritania Mauritania
## [963] Mauritania Mauritania
## [965] Mauritania Mauritania
## [967] Mauritania Mauritania
## [969] Mauritania Mauritania
## [971] Mauritania Mauritania
## [973] Mauritius Mauritius
## [975] Mauritius Mauritius
## [977] Mauritius Mauritius
## [979] Mauritius Mauritius
## [981] Mauritius Mauritius
## [983] Mauritius Mauritius
## [985] Mexico Mexico
## [987] Mexico Mexico
## [989] Mexico Mexico
## [991] Mexico Mexico
## [993] Mexico Mexico
## [995] Mexico Mexico
## [997] Mongolia Mongolia
## [999] Mongolia Mongolia
## [1001] Mongolia Mongolia
## [1003] Mongolia Mongolia
## [1005] Mongolia Mongolia
## [1007] Mongolia Mongolia
## [1009] Montenegro Montenegro
## [1011] Montenegro Montenegro
## [1013] Montenegro Montenegro
## [1015] Montenegro Montenegro
## [1017] Montenegro Montenegro
## [1019] Montenegro Montenegro
## [1021] Morocco Morocco
## [1023] Morocco Morocco
## [1025] Morocco Morocco
## [1027] Morocco Morocco
## [1029] Morocco Morocco
## [1031] Morocco Morocco
## [1033] Mozambique Mozambique
## [1035] Mozambique Mozambique
## [1037] Mozambique Mozambique
## [1039] Mozambique Mozambique
## [1041] Mozambique Mozambique
## [1043] Mozambique Mozambique
## [1045] Myanmar Myanmar
## [1047] Myanmar Myanmar
## [1049] Myanmar Myanmar
## [1051] Myanmar Myanmar
## [1053] Myanmar Myanmar
## [1055] Myanmar Myanmar
## [1057] Namibia Namibia
## [1059] Namibia Namibia
## [1061] Namibia Namibia
## [1063] Namibia Namibia
## [1065] Namibia Namibia
## [1067] Namibia Namibia
## [1069] Nepal Nepal
## [1071] Nepal Nepal
## [1073] Nepal Nepal
## [1075] Nepal Nepal
## [1077] Nepal Nepal
## [1079] Nepal Nepal
## [1081] Netherlands Netherlands
## [1083] Netherlands Netherlands
## [1085] Netherlands Netherlands
## [1087] Netherlands Netherlands
## [1089] Netherlands Netherlands
## [1091] Netherlands Netherlands
## [1093] New Zealand New Zealand
## [1095] New Zealand New Zealand
## [1097] New Zealand New Zealand
## [1099] New Zealand New Zealand
## [1101] New Zealand New Zealand
## [1103] New Zealand New Zealand
## [1105] Nicaragua Nicaragua
## [1107] Nicaragua Nicaragua
## [1109] Nicaragua Nicaragua
## [1111] Nicaragua Nicaragua
## [1113] Nicaragua Nicaragua
## [1115] Nicaragua Nicaragua
## [1117] Niger Niger
## [1119] Niger Niger
## [1121] Niger Niger
## [1123] Niger Niger
## [1125] Niger Niger
## [1127] Niger Niger
## [1129] Nigeria Nigeria
## [1131] Nigeria Nigeria
## [1133] Nigeria Nigeria
## [1135] Nigeria Nigeria
## [1137] Nigeria Nigeria
## [1139] Nigeria Nigeria
## [1141] Norway Norway
## [1143] Norway Norway
## [1145] Norway Norway
## [1147] Norway Norway
## [1149] Norway Norway
## [1151] Norway Norway
## [1153] Oman Oman
## [1155] Oman Oman
## [1157] Oman Oman
## [1159] Oman Oman
## [1161] Oman Oman
## [1163] Oman Oman
## [1165] Pakistan Pakistan
## [1167] Pakistan Pakistan
## [1169] Pakistan Pakistan
## [1171] Pakistan Pakistan
## [1173] Pakistan Pakistan
## [1175] Pakistan Pakistan
## [1177] Panama Panama
## [1179] Panama Panama
## [1181] Panama Panama
## [1183] Panama Panama
## [1185] Panama Panama
## [1187] Panama Panama
## [1189] Paraguay Paraguay
## [1191] Paraguay Paraguay
## [1193] Paraguay Paraguay
## [1195] Paraguay Paraguay
## [1197] Paraguay Paraguay
## [1199] Paraguay Paraguay
## [1201] Peru Peru
## [1203] Peru Peru
## [1205] Peru Peru
## [1207] Peru Peru
## [1209] Peru Peru
## [1211] Peru Peru
## [1213] Philippines Philippines
## [1215] Philippines Philippines
## [1217] Philippines Philippines
## [1219] Philippines Philippines
## [1221] Philippines Philippines
## [1223] Philippines Philippines
## [1225] Poland Poland
## [1227] Poland Poland
## [1229] Poland Poland
## [1231] Poland Poland
## [1233] Poland Poland
## [1235] Poland Poland
## [1237] Portugal Portugal
## [1239] Portugal Portugal
## [1241] Portugal Portugal
## [1243] Portugal Portugal
## [1245] Portugal Portugal
## [1247] Portugal Portugal
## [1249] Puerto Rico Puerto Rico
## [1251] Puerto Rico Puerto Rico
## [1253] Puerto Rico Puerto Rico
## [1255] Puerto Rico Puerto Rico
## [1257] Puerto Rico Puerto Rico
## [1259] Puerto Rico Puerto Rico
## [1261] Reunion Reunion
## [1263] Reunion Reunion
## [1265] Reunion Reunion
## [1267] Reunion Reunion
## [1269] Reunion Reunion
## [1271] Reunion Reunion
## [1273] Romania Romania
## [1275] Romania Romania
## [1277] Romania Romania
## [1279] Romania Romania
## [1281] Romania Romania
## [1283] Romania Romania
## [1285] Rwanda Rwanda
## [1287] Rwanda Rwanda
## [1289] Rwanda Rwanda
## [1291] Rwanda Rwanda
## [1293] Rwanda Rwanda
## [1295] Rwanda Rwanda
## [1297] Sao Tome and Principe Sao Tome and Principe
## [1299] Sao Tome and Principe Sao Tome and Principe
## [1301] Sao Tome and Principe Sao Tome and Principe
## [1303] Sao Tome and Principe Sao Tome and Principe
## [1305] Sao Tome and Principe Sao Tome and Principe
## [1307] Sao Tome and Principe Sao Tome and Principe
## [1309] Saudi Arabia Saudi Arabia
## [1311] Saudi Arabia Saudi Arabia
## [1313] Saudi Arabia Saudi Arabia
## [1315] Saudi Arabia Saudi Arabia
## [1317] Saudi Arabia Saudi Arabia
## [1319] Saudi Arabia Saudi Arabia
## [1321] Senegal Senegal
## [1323] Senegal Senegal
## [1325] Senegal Senegal
## [1327] Senegal Senegal
## [1329] Senegal Senegal
## [1331] Senegal Senegal
## [1333] Serbia Serbia
## [1335] Serbia Serbia
## [1337] Serbia Serbia
## [1339] Serbia Serbia
## [1341] Serbia Serbia
## [1343] Serbia Serbia
## [1345] Sierra Leone Sierra Leone
## [1347] Sierra Leone Sierra Leone
## [1349] Sierra Leone Sierra Leone
## [1351] Sierra Leone Sierra Leone
## [1353] Sierra Leone Sierra Leone
## [1355] Sierra Leone Sierra Leone
## [1357] Singapore Singapore
## [1359] Singapore Singapore
## [1361] Singapore Singapore
## [1363] Singapore Singapore
## [1365] Singapore Singapore
## [1367] Singapore Singapore
## [1369] Slovak Republic Slovak Republic
## [1371] Slovak Republic Slovak Republic
## [1373] Slovak Republic Slovak Republic
## [1375] Slovak Republic Slovak Republic
## [1377] Slovak Republic Slovak Republic
## [1379] Slovak Republic Slovak Republic
## [1381] Slovenia Slovenia
## [1383] Slovenia Slovenia
## [1385] Slovenia Slovenia
## [1387] Slovenia Slovenia
## [1389] Slovenia Slovenia
## [1391] Slovenia Slovenia
## [1393] Somalia Somalia
## [1395] Somalia Somalia
## [1397] Somalia Somalia
## [1399] Somalia Somalia
## [1401] Somalia Somalia
## [1403] Somalia Somalia
## [1405] South Africa South Africa
## [1407] South Africa South Africa
## [1409] South Africa South Africa
## [1411] South Africa South Africa
## [1413] South Africa South Africa
## [1415] South Africa South Africa
## [1417] Spain Spain
## [1419] Spain Spain
## [1421] Spain Spain
## [1423] Spain Spain
## [1425] Spain Spain
## [1427] Spain Spain
## [1429] Sri Lanka Sri Lanka
## [1431] Sri Lanka Sri Lanka
## [1433] Sri Lanka Sri Lanka
## [1435] Sri Lanka Sri Lanka
## [1437] Sri Lanka Sri Lanka
## [1439] Sri Lanka Sri Lanka
## [1441] Sudan Sudan
## [1443] Sudan Sudan
## [1445] Sudan Sudan
## [1447] Sudan Sudan
## [1449] Sudan Sudan
## [1451] Sudan Sudan
## [1453] Swaziland Swaziland
## [1455] Swaziland Swaziland
## [1457] Swaziland Swaziland
## [1459] Swaziland Swaziland
## [1461] Swaziland Swaziland
## [1463] Swaziland Swaziland
## [1465] Sweden Sweden
## [1467] Sweden Sweden
## [1469] Sweden Sweden
## [1471] Sweden Sweden
## [1473] Sweden Sweden
## [1475] Sweden Sweden
## [1477] Switzerland Switzerland
## [1479] Switzerland Switzerland
## [1481] Switzerland Switzerland
## [1483] Switzerland Switzerland
## [1485] Switzerland Switzerland
## [1487] Switzerland Switzerland
## [1489] Syria Syria
## [1491] Syria Syria
## [1493] Syria Syria
## [1495] Syria Syria
## [1497] Syria Syria
## [1499] Syria Syria
## [1501] Taiwan Taiwan
## [1503] Taiwan Taiwan
## [1505] Taiwan Taiwan
## [1507] Taiwan Taiwan
## [1509] Taiwan Taiwan
## [1511] Taiwan Taiwan
## [1513] Tanzania Tanzania
## [1515] Tanzania Tanzania
## [1517] Tanzania Tanzania
## [1519] Tanzania Tanzania
## [1521] Tanzania Tanzania
## [1523] Tanzania Tanzania
## [1525] Thailand Thailand
## [1527] Thailand Thailand
## [1529] Thailand Thailand
## [1531] Thailand Thailand
## [1533] Thailand Thailand
## [1535] Thailand Thailand
## [1537] Togo Togo
## [1539] Togo Togo
## [1541] Togo Togo
## [1543] Togo Togo
## [1545] Togo Togo
## [1547] Togo Togo
## [1549] Trinidad and Tobago Trinidad and Tobago
## [1551] Trinidad and Tobago Trinidad and Tobago
## [1553] Trinidad and Tobago Trinidad and Tobago
## [1555] Trinidad and Tobago Trinidad and Tobago
## [1557] Trinidad and Tobago Trinidad and Tobago
## [1559] Trinidad and Tobago Trinidad and Tobago
## [1561] Tunisia Tunisia
## [1563] Tunisia Tunisia
## [1565] Tunisia Tunisia
## [1567] Tunisia Tunisia
## [1569] Tunisia Tunisia
## [1571] Tunisia Tunisia
## [1573] Turkey Turkey
## [1575] Turkey Turkey
## [1577] Turkey Turkey
## [1579] Turkey Turkey
## [1581] Turkey Turkey
## [1583] Turkey Turkey
## [1585] Uganda Uganda
## [1587] Uganda Uganda
## [1589] Uganda Uganda
## [1591] Uganda Uganda
## [1593] Uganda Uganda
## [1595] Uganda Uganda
## [1597] United Kingdom United Kingdom
## [1599] United Kingdom United Kingdom
## [1601] United Kingdom United Kingdom
## [1603] United Kingdom United Kingdom
## [1605] United Kingdom United Kingdom
## [1607] United Kingdom United Kingdom
## [1609] United States United States
## [1611] United States United States
## [1613] United States United States
## [1615] United States United States
## [1617] United States United States
## [1619] United States United States
## [1621] Uruguay Uruguay
## [1623] Uruguay Uruguay
## [1625] Uruguay Uruguay
## [1627] Uruguay Uruguay
## [1629] Uruguay Uruguay
## [1631] Uruguay Uruguay
## [1633] Venezuela Venezuela
## [1635] Venezuela Venezuela
## [1637] Venezuela Venezuela
## [1639] Venezuela Venezuela
## [1641] Venezuela Venezuela
## [1643] Venezuela Venezuela
## [1645] Vietnam Vietnam
## [1647] Vietnam Vietnam
## [1649] Vietnam Vietnam
## [1651] Vietnam Vietnam
## [1653] Vietnam Vietnam
## [1655] Vietnam Vietnam
## [1657] West Bank and Gaza West Bank and Gaza
## [1659] West Bank and Gaza West Bank and Gaza
## [1661] West Bank and Gaza West Bank and Gaza
## [1663] West Bank and Gaza West Bank and Gaza
## [1665] West Bank and Gaza West Bank and Gaza
## [1667] West Bank and Gaza West Bank and Gaza
## [1669] Yemen, Rep. Yemen, Rep.
## [1671] Yemen, Rep. Yemen, Rep.
## [1673] Yemen, Rep. Yemen, Rep.
## [1675] Yemen, Rep. Yemen, Rep.
## [1677] Yemen, Rep. Yemen, Rep.
## [1679] Yemen, Rep. Yemen, Rep.
## [1681] Zambia Zambia
## [1683] Zambia Zambia
## [1685] Zambia Zambia
## [1687] Zambia Zambia
## [1689] Zambia Zambia
## [1691] Zambia Zambia
## [1693] Zimbabwe Zimbabwe
## [1695] Zimbabwe Zimbabwe
## [1697] Zimbabwe Zimbabwe
## [1699] Zimbabwe Zimbabwe
## [1701] Zimbabwe Zimbabwe
## [1703] Zimbabwe Zimbabwe
## 142 Levels: Afghanistan Albania Algeria Angola Argentina Australia ... Zimbabwe
- Omitir el signo $ en el llmado de la variable
attach(gapminder) #pop## [1] 8425333 9240934 10267083 11537966 13079460 14880372
## [7] 12881816 13867957 16317921 22227415 25268405 31889923
## [13] 1282697 1476505 1728137 1984060 2263554 2509048
## [19] 2780097 3075321 3326498 3428038 3508512 3600523
## [25] 9279525 10270856 11000948 12760499 14760787 17152804
## [31] 20033753 23254956 26298373 29072015 31287142 33333216
## [37] 4232095 4561361 4826015 5247469 5894858 6162675
## [43] 7016384 7874230 8735988 9875024 10866106 12420476
## [49] 17876956 19610538 21283783 22934225 24779799 26983828
## [55] 29341374 31620918 33958947 36203463 38331121 40301927
## [61] 8691212 9712569 10794968 11872264 13177000 14074100
## [67] 15184200 16257249 17481977 18565243 19546792 20434176
## [73] 6927772 6965860 7129864 7376998 7544201 7568430
## [79] 7574613 7578903 7914969 8069876 8148312 8199783
## [85] 120447 138655 171863 202182 230800 297410
## [91] 377967 454612 529491 598561 656397 708573
## [97] 46886859 51365468 56839289 62821884 70759295 80428306
## [103] 93074406 103764241 113704579 123315288 135656790 150448339
## [109] 8730405 8989111 9218400 9556500 9709100 9821800
## [115] 9856303 9870200 10045622 10199787 10311970 10392226
## [121] 1738315 1925173 2151895 2427334 2761407 3168267
## [127] 3641603 4243788 4981671 6066080 7026113 8078314
## [133] 2883315 3211738 3593918 4040665 4565872 5079716
## [139] 5642224 6156369 6893451 7693188 8445134 9119152
## [145] 2791000 3076000 3349000 3585000 3819000 4086000
## [151] 4172693 4338977 4256013 3607000 4165416 4552198
## [157] 442308 474639 512764 553541 619351 781472
## [163] 970347 1151184 1342614 1536536 1630347 1639131
## [169] 56602560 65551171 76039390 88049823 100840058 114313951
## [175] 128962939 142938076 155975974 168546719 179914212 190010647
## [181] 7274900 7651254 8012946 8310226 8576200 8797022
## [187] 8892098 8971958 8658506 8066057 7661799 7322858
## [193] 4469979 4713416 4919632 5127935 5433886 5889574
## [199] 6634596 7586551 8878303 10352843 12251209 14326203
## [205] 2445618 2667518 2961915 3330989 3529983 3834415
## [211] 4580410 5126023 5809236 6121610 7021078 8390505
## [217] 4693836 5322536 6083619 6960067 7450606 6978607
## [223] 7272485 8371791 10150094 11782962 12926707 14131858
## [229] 5009067 5359923 5793633 6335506 7021028 7959865
## [235] 9250831 10780667 12467171 14195809 15929988 17696293
## [241] 14785584 17010154 18985849 20819767 22284500 23796400
## [247] 25201900 26549700 28523502 30305843 31902268 33390141
## [253] 1291695 1392284 1523478 1733638 1927260 2167533
## [259] 2476971 2840009 3265124 3696513 4048013 4369038
## [265] 2682462 2894855 3150417 3495967 3899068 4388260
## [271] 4875118 5498955 6429417 7562011 8835739 10238807
## [277] 6377619 7048426 7961258 8858908 9717524 10599793
## [283] 11487112 12463354 13572994 14599929 15497046 16284741
## [289] 556263527 637408000 665770000 754550000 862030000 943455000
## [295] 1000281000 1084035000 1164970000 1230075000 1280400000 1318683096
## [301] 12350771 14485993 17009885 19764027 22542890 25094412
## [307] 27764644 30964245 34202721 37657830 41008227 44227550
## [313] 153936 170928 191689 217378 250027 304739
## [319] 348643 395114 454429 527982 614382 710960
## [325] 14100005 15577932 17486434 19941073 23007669 26480870
## [331] 30646495 35481645 41672143 47798986 55379852 64606759
## [337] 854885 940458 1047924 1179760 1340458 1536769
## [343] 1774735 2064095 2409073 2800947 3328795 3800610
## [349] 926317 1112300 1345187 1588717 1834796 2108457
## [355] 2424367 2799811 3173216 3518107 3834934 4133884
## [361] 2977019 3300000 3832408 4744870 6071696 7459574
## [367] 9025951 10761098 12772596 14625967 16252726 18013409
## [373] 3882229 3991242 4076557 4174366 4225310 4318673
## [379] 4413368 4484310 4494013 4444595 4481020 4493312
## [385] 6007797 6640752 7254373 8139332 8831348 9537988
## [391] 9789224 10239839 10723260 10983007 11226999 11416987
## [397] 9125183 9513758 9620282 9835109 9862158 10161915
## [403] 10303704 10311597 10315702 10300707 10256295 10228744
## [409] 4334000 4487831 4646899 4838800 4991596 5088419
## [415] 5117810 5127024 5171393 5283663 5374693 5468120
## [421] 63149 71851 89898 127617 178848 228694
## [427] 305991 311025 384156 417908 447416 496374
## [433] 2491346 2923186 3453434 4049146 4671329 5302800
## [439] 5968349 6655297 7351181 7992357 8650322 9319622
## [445] 3548753 4058385 4681707 5432424 6298651 7278866
## [451] 8365850 9545158 10748394 11911819 12921234 13755680
## [457] 22223309 25009741 28173309 31681188 34807417 38783863
## [463] 45681811 52799062 59402198 66134291 73312559 80264543
## [469] 2042865 2355805 2747687 3232927 3790903 4282586
## [475] 4474873 4842194 5274649 5783439 6353681 6939688
## [481] 216964 232922 249220 259864 277603 192675
## [487] 285483 341244 387838 439971 495627 551201
## [493] 1438760 1542611 1666618 1820319 2260187 2512642
## [499] 2637297 2915959 3668440 4058319 4414865 4906585
## [505] 20860941 22815614 25145372 27860297 30770372 34617799
## [511] 38111756 42999530 52088559 59861301 67946797 76511887
## [517] 4090500 4324000 4491443 4605744 4639657 4738902
## [523] 4826933 4931729 5041039 5134406 5193039 5238460
## [529] 42459667 44310863 47124000 49569000 51732000 53165019
## [535] 54433565 55630100 57374179 58623428 59925035 61083916
## [541] 420702 434904 455661 489004 537977 706367
## [547] 753874 880397 985739 1126189 1299304 1454867
## [553] 284320 323150 374020 439593 517101 608274
## [559] 715523 848406 1025384 1235767 1457766 1688359
## [565] 69145952 71019069 73739117 76368453 78717088 78160773
## [571] 78335266 77718298 80597764 82011073 82350671 82400996
## [577] 5581001 6391288 7355248 8490213 9354120 10538093
## [583] 11400338 14168101 16278738 18418288 20550751 22873338
## [589] 7733250 8096218 8448233 8716441 8888628 9308479
## [595] 9786480 9974490 10325429 10502372 10603863 10706290
## [601] 3146381 3640876 4208858 4690773 5149581 5703430
## [607] 6395630 7326406 8486949 9803875 11178650 12572928
## [613] 2664249 2876726 3140003 3451418 3811387 4227026
## [619] 4710497 5650262 6990574 8048834 8807818 9947814
## [625] 580653 601095 627820 601287 625361 745228
## [631] 825987 927524 1050938 1193708 1332459 1472041
## [637] 3201488 3507701 3880130 4318137 4698301 4908554
## [643] 5198399 5756203 6326682 6913545 7607651 8502814
## [649] 1517453 1770390 2090162 2500689 2965146 3055235
## [655] 3669448 4372203 5077347 5867957 6677328 7483763
## [661] 2125900 2736300 3305200 3722800 4115700 4583700
## [667] 5264500 5584510 5829696 6495918 6762476 6980412
## [673] 9504000 9839000 10063000 10223422 10394091 10637171
## [679] 10705535 10612740 10348684 10244684 10083313 9956108
## [685] 147962 165110 182053 198676 209275 221823
## [691] 233997 244676 259012 271192 288030 301931
## [697] 372000000 409000000 454000000 506000000 567000000 634000000
## [703] 708000000 788000000 872000000 959000000 1034172547 1110396331
## [709] 82052000 90124000 99028000 109343000 121282000 136725000
## [715] 153343000 169276000 184816000 199278000 211060000 223547000
## [721] 17272000 19792000 22874000 26538000 30614000 35480679
## [727] 43072751 51889696 60397973 63327987 66907826 69453570
## [733] 5441766 6248643 7240260 8519282 10061506 11882916
## [739] 14173318 16543189 17861905 20775703 24001816 27499638
## [745] 2952156 2878220 2830000 2900100 3024400 3271900
## [751] 3480000 3539900 3557761 3667233 3879155 4109086
## [757] 1620914 1944401 2310904 2693585 3095893 3495918
## [763] 3858421 4203148 4936550 5531387 6029529 6426679
## [769] 47666000 49182000 50843200 52667100 54365564 56059245
## [775] 56535636 56729703 56840847 57479469 57926999 58147733
## [781] 1426095 1535090 1665128 1861096 1997616 2156814
## [787] 2298309 2326606 2378618 2531311 2664659 2780132
## [793] 86459025 91563009 95831757 100825279 107188273 113872473
## [799] 118454974 122091325 124329269 125956499 127065841 127467972
## [805] 607914 746559 933559 1255058 1613551 1937652
## [811] 2347031 2820042 3867409 4526235 5307470 6053193
## [817] 6464046 7454779 8678557 10191512 12044785 14500404
## [823] 17661452 21198082 25020539 28263827 31386842 35610177
## [829] 8865488 9411381 10917494 12617009 14781241 16325320
## [835] 17647518 19067554 20711375 21585105 22215365 23301725
## [841] 20947571 22611552 26420307 30131000 33505000 36436000
## [847] 39326000 41622000 43805450 46173816 47969150 49044790
## [853] 160000 212846 358266 575003 841934 1140357
## [859] 1497494 1891487 1418095 1765345 2111561 2505559
## [865] 1439529 1647412 1886848 2186894 2680018 3115787
## [871] 3086876 3089353 3219994 3430388 3677780 3921278
## [877] 748747 813338 893143 996380 1116779 1251524
## [883] 1411807 1599200 1803195 1982823 2046772 2012649
## [889] 863308 975950 1112796 1279406 1482628 1703617
## [895] 1956875 2269414 1912974 2200725 2814651 3193942
## [901] 1019729 1201578 1441863 1759224 2183877 2721783
## [907] 3344074 3799845 4364501 4759670 5368585 6036914
## [913] 4762912 5181679 5703324 6334556 7082430 8007166
## [919] 9171477 10568642 12210395 14165114 16473477 19167654
## [925] 2917802 3221238 3628608 4147252 4730997 5637246
## [931] 6502825 7824747 10014249 10419991 11824495 13327079
## [937] 6748378 7739235 8906385 10154878 11441462 12845381
## [943] 14441916 16331785 18319502 20476091 22662365 24821286
## [949] 3838168 4241884 4690372 5212416 5828158 6491649
## [955] 6998256 7634008 8416215 9384984 10580176 12031795
## [961] 1022556 1076852 1146757 1230542 1332786 1456688
## [967] 1622136 1841240 2119465 2444741 2828858 3270065
## [973] 516556 609816 701016 789309 851334 913025
## [979] 992040 1042663 1096202 1149818 1200206 1250882
## [985] 30144317 35015548 41121485 47995559 55984294 63759976
## [991] 71640904 80122492 88111030 95895146 102479927 108700891
## [997] 800663 882134 1010280 1149500 1320500 1528000
## [1003] 1756032 2015133 2312802 2494803 2674234 2874127
## [1009] 413834 442829 474528 501035 527678 560073
## [1015] 562548 569473 621621 692651 720230 684736
## [1021] 9939217 11406350 13056604 14770296 16660670 18396941
## [1027] 20198730 22987397 25798239 28529501 31167783 33757175
## [1033] 6446316 7038035 7788944 8680909 9809596 11127868
## [1039] 12587223 12891952 13160731 16603334 18473780 19951656
## [1045] 20092996 21731844 23634436 25870271 28466390 31528087
## [1051] 34680442 38028578 40546538 43247867 45598081 47761980
## [1057] 485831 548080 621392 706640 821782 977026
## [1063] 1099010 1278184 1554253 1774766 1972153 2055080
## [1069] 9182536 9682338 10332057 11261690 12412593 13933198
## [1075] 15796314 17917180 20326209 23001113 25873917 28901790
## [1081] 10381988 11026383 11805689 12596822 13329874 13852989
## [1087] 14310401 14665278 15174244 15604464 16122830 16570613
## [1093] 1994794 2229407 2488550 2728150 2929100 3164900
## [1099] 3210650 3317166 3437674 3676187 3908037 4115771
## [1105] 1165790 1358828 1590597 1865490 2182908 2554598
## [1111] 2979423 3344353 4017939 4609572 5146848 5675356
## [1117] 3379468 3692184 4076008 4534062 5060262 5682086
## [1123] 6437188 7332638 8392818 9666252 11140655 12894865
## [1129] 33119096 37173340 41871351 47287752 53740085 62209173
## [1135] 73039376 81551520 93364244 106207839 119901274 135031164
## [1141] 3327728 3491938 3638919 3786019 3933004 4043205
## [1147] 4114787 4186147 4286357 4405672 4535591 4627926
## [1153] 507833 561977 628164 714775 829050 1004533
## [1159] 1301048 1593882 1915208 2283635 2713462 3204897
## [1165] 41346560 46679944 53100671 60641899 69325921 78152686
## [1171] 91462088 105186881 120065004 135564834 153403524 169270617
## [1177] 940080 1063506 1215725 1405486 1616384 1839782
## [1183] 2036305 2253639 2484997 2734531 2990875 3242173
## [1189] 1555876 1770902 2009813 2287985 2614104 2984494
## [1195] 3366439 3886512 4483945 5154123 5884491 6667147
## [1201] 8025700 9146100 10516500 12132200 13954700 15990099
## [1207] 18125129 20195924 22430449 24748122 26769436 28674757
## [1213] 22438691 26072194 30325264 35356600 40850141 46850962
## [1219] 53456774 60017788 67185766 75012988 82995088 91077287
## [1225] 25730551 28235346 30329617 31785378 33039545 34621254
## [1231] 36227381 37740710 38370697 38654957 38625976 38518241
## [1237] 8526050 8817650 9019800 9103000 8970450 9662600
## [1243] 9859650 9915289 9927680 10156415 10433867 10642836
## [1249] 2227000 2260000 2448046 2648961 2847132 3080828
## [1255] 3279001 3444468 3585176 3759430 3859606 3942491
## [1261] 257700 308700 358900 414024 461633 492095
## [1267] 517810 562035 622191 684810 743981 798094
## [1273] 16630000 17829327 18680721 19284814 20662648 21658597
## [1279] 22356726 22686371 22797027 22562458 22404337 22276056
## [1285] 2534927 2822082 3051242 3451079 3992121 4657072
## [1291] 5507565 6349365 7290203 7212583 7852401 8860588
## [1297] 60011 61325 65345 70787 76595 86796
## [1303] 98593 110812 125911 145608 170372 199579
## [1309] 4005677 4419650 4943029 5618198 6472756 8128505
## [1315] 11254672 14619745 16945857 21229759 24501530 27601038
## [1321] 2755589 3054547 3430243 3965841 4588696 5260855
## [1327] 6147783 7171347 8307920 9535314 10870037 12267493
## [1333] 6860147 7271135 7616060 7971222 8313288 8686367
## [1339] 9032824 9230783 9826397 10336594 10111559 10150265
## [1345] 2143249 2295678 2467895 2662190 2879013 3140897
## [1351] 3464522 3868905 4260884 4578212 5359092 6144562
## [1357] 1127000 1445929 1750200 1977600 2152400 2325300
## [1363] 2651869 2794552 3235865 3802309 4197776 4553009
## [1369] 3558137 3844277 4237384 4442238 4593433 4827803
## [1375] 5048043 5199318 5302888 5383010 5410052 5447502
## [1381] 1489518 1533070 1582962 1646912 1694510 1746919
## [1387] 1861252 1945870 1999210 2011612 2011497 2009245
## [1393] 2526994 2780415 3080153 3428839 3840161 4353666
## [1399] 5828892 6921858 6099799 6633514 7753310 9118773
## [1405] 14264935 16151549 18356657 20997321 23935810 27129932
## [1411] 31140029 35933379 39964159 42835005 44433622 43997828
## [1417] 28549870 29841614 31158061 32850275 34513161 36439000
## [1423] 37983310 38880702 39549438 39855442 40152517 40448191
## [1429] 7982342 9128546 10421936 11737396 13016733 14116836
## [1435] 15410151 16495304 17587060 18698655 19576783 20378239
## [1441] 8504667 9753392 11183227 12716129 14597019 17104986
## [1447] 20367053 24725960 28227588 32160729 37090298 42292929
## [1453] 290243 326741 370006 420690 480105 551425
## [1459] 649901 779348 962344 1054486 1130269 1133066
## [1465] 7124673 7363802 7561588 7867931 8122293 8251648
## [1471] 8325260 8421403 8718867 8897619 8954175 9031088
## [1477] 4815000 5126000 5666000 6063000 6401400 6316424
## [1483] 6468126 6649942 6995447 7193761 7361757 7554661
## [1489] 3661549 4149908 4834621 5680812 6701172 7932503
## [1495] 9410494 11242847 13219062 15081016 17155814 19314747
## [1501] 8550362 10164215 11918938 13648692 15226039 16785196
## [1507] 18501390 19757799 20686918 21628605 22454239 23174294
## [1513] 8322925 9452826 10863958 12607312 14706593 17129565
## [1519] 19844382 23040630 26605473 30686889 34593779 38139640
## [1525] 21289402 25041917 29263397 34024249 39276153 44148285
## [1531] 48827160 52910342 56667095 60216677 62806748 65068149
## [1537] 1219113 1357445 1528098 1735550 2056351 2308582
## [1543] 2644765 3154264 3747553 4320890 4977378 5701579
## [1549] 662850 764900 887498 960155 975199 1039009
## [1555] 1116479 1191336 1183669 1138101 1101832 1056608
## [1561] 3647735 3950849 4286552 4786986 5303507 6005061
## [1567] 6734098 7724976 8523077 9231669 9770575 10276158
## [1573] 22235677 25670939 29788695 33411317 37492953 42404033
## [1579] 47328791 52881328 58179144 63047647 67308928 71158647
## [1585] 5824797 6675501 7688797 8900294 10190285 11457758
## [1591] 12939400 15283050 18252190 21210254 24739869 29170398
## [1597] 50430000 51430000 53292000 54959000 56079000 56179000
## [1603] 56339704 56981620 57866349 58808266 59912431 60776238
## [1609] 157553000 171984000 186538000 198712000 209896000 220239000
## [1615] 232187835 242803533 256894189 272911760 287675526 301139947
## [1621] 2252965 2424959 2598466 2748579 2829526 2873520
## [1627] 2953997 3045153 3149262 3262838 3363085 3447496
## [1633] 5439568 6702668 8143375 9709552 11515649 13503563
## [1639] 15620766 17910182 20265563 22374398 24287670 26084662
## [1645] 26246839 28998543 33796140 39463910 44655014 50533506
## [1651] 56142181 62826491 69940728 76048996 80908147 85262356
## [1657] 1030585 1070439 1133134 1142636 1089572 1261091
## [1663] 1425876 1691210 2104779 2826046 3389578 4018332
## [1669] 4963829 5498090 6120081 6740785 7407075 8403990
## [1675] 9657618 11219340 13367997 15826497 18701257 22211743
## [1681] 2672000 3016000 3421000 3900000 4506497 5216550
## [1687] 6100407 7272406 8381163 9417789 10595811 11746035
## [1693] 3080907 3646340 4277736 4995432 5861135 6642107
## [1699] 7636524 9216418 10704340 11404948 11926563 12311143
gdpPercap## [1] 779.4453 820.8530 853.1007 836.1971 739.9811 786.1134
## [7] 978.0114 852.3959 649.3414 635.3414 726.7341 974.5803
## [13] 1601.0561 1942.2842 2312.8890 2760.1969 3313.4222 3533.0039
## [19] 3630.8807 3738.9327 2497.4379 3193.0546 4604.2117 5937.0295
## [25] 2449.0082 3013.9760 2550.8169 3246.9918 4182.6638 4910.4168
## [31] 5745.1602 5681.3585 5023.2166 4797.2951 5288.0404 6223.3675
## [37] 3520.6103 3827.9405 4269.2767 5522.7764 5473.2880 3008.6474
## [43] 2756.9537 2430.2083 2627.8457 2277.1409 2773.2873 4797.2313
## [49] 5911.3151 6856.8562 7133.1660 8052.9530 9443.0385 10079.0267
## [55] 8997.8974 9139.6714 9308.4187 10967.2820 8797.6407 12779.3796
## [61] 10039.5956 10949.6496 12217.2269 14526.1246 16788.6295 18334.1975
## [67] 19477.0093 21888.8890 23424.7668 26997.9366 30687.7547 34435.3674
## [73] 6137.0765 8842.5980 10750.7211 12834.6024 16661.6256 19749.4223
## [79] 21597.0836 23687.8261 27042.0187 29095.9207 32417.6077 36126.4927
## [85] 9867.0848 11635.7995 12753.2751 14804.6727 18268.6584 19340.1020
## [91] 19211.1473 18524.0241 19035.5792 20292.0168 23403.5593 29796.0483
## [97] 684.2442 661.6375 686.3416 721.1861 630.2336 659.8772
## [103] 676.9819 751.9794 837.8102 972.7700 1136.3904 1391.2538
## [109] 8343.1051 9714.9606 10991.2068 13149.0412 16672.1436 19117.9745
## [115] 20979.8459 22525.5631 25575.5707 27561.1966 30485.8838 33692.6051
## [121] 1062.7522 959.6011 949.4991 1035.8314 1085.7969 1029.1613
## [127] 1277.8976 1225.8560 1191.2077 1232.9753 1372.8779 1441.2849
## [133] 2677.3263 2127.6863 2180.9725 2586.8861 2980.3313 3548.0978
## [139] 3156.5105 2753.6915 2961.6997 3326.1432 3413.2627 3822.1371
## [145] 973.5332 1353.9892 1709.6837 2172.3524 2860.1698 3528.4813
## [151] 4126.6132 4314.1148 2546.7814 4766.3559 6018.9752 7446.2988
## [157] 851.2411 918.2325 983.6540 1214.7093 2263.6111 3214.8578
## [163] 4551.1421 6205.8839 7954.1116 8647.1423 11003.6051 12569.8518
## [169] 2108.9444 2487.3660 3336.5858 3429.8644 4985.7115 6660.1187
## [175] 7030.8359 7807.0958 6950.2830 7957.9808 8131.2128 9065.8008
## [181] 2444.2866 3008.6707 4254.3378 5577.0028 6597.4944 7612.2404
## [187] 8224.1916 8239.8548 6302.6234 5970.3888 7696.7777 10680.7928
## [193] 543.2552 617.1835 722.5120 794.8266 854.7360 743.3870
## [199] 807.1986 912.0631 931.7528 946.2950 1037.6452 1217.0330
## [205] 339.2965 379.5646 355.2032 412.9775 464.0995 556.1033
## [211] 559.6032 621.8188 631.6999 463.1151 446.4035 430.0707
## [217] 368.4693 434.0383 496.9136 523.4323 421.6240 524.9722
## [223] 624.4755 683.8956 682.3032 734.2852 896.2260 1713.7787
## [229] 1172.6677 1313.0481 1399.6074 1508.4531 1684.1465 1783.4329
## [235] 2367.9833 2602.6642 1793.1633 1694.3375 1934.0114 2042.0952
## [241] 11367.1611 12489.9501 13462.4855 16076.5880 18970.5709 22090.8831
## [247] 22898.7921 26626.5150 26342.8843 28954.9259 33328.9651 36319.2350
## [253] 1071.3107 1190.8443 1193.0688 1136.0566 1070.0133 1109.3743
## [259] 956.7530 844.8764 747.9055 740.5063 738.6906 706.0165
## [265] 1178.6659 1308.4956 1389.8176 1196.8106 1104.1040 1133.9850
## [271] 797.9081 952.3861 1058.0643 1004.9614 1156.1819 1704.0637
## [277] 3939.9788 4315.6227 4519.0943 5106.6543 5494.0244 4756.7638
## [283] 5095.6657 5547.0638 7596.1260 10118.0532 10778.7838 13171.6388
## [289] 400.4486 575.9870 487.6740 612.7057 676.9001 741.2375
## [295] 962.4214 1378.9040 1655.7842 2289.2341 3119.2809 4959.1149
## [301] 2144.1151 2323.8056 2492.3511 2678.7298 3264.6600 3815.8079
## [307] 4397.5757 4903.2191 5444.6486 6117.3617 5755.2600 7006.5804
## [313] 1102.9909 1211.1485 1406.6483 1876.0296 1937.5777 1172.6030
## [319] 1267.1001 1315.9808 1246.9074 1173.6182 1075.8116 986.1479
## [325] 780.5423 905.8602 896.3146 861.5932 904.8961 795.7573
## [331] 673.7478 672.7748 457.7192 312.1884 241.1659 277.5519
## [337] 2125.6214 2315.0566 2464.7832 2677.9396 3213.1527 3259.1790
## [343] 4879.5075 4201.1949 4016.2395 3484.1644 3484.0620 3632.5578
## [349] 2627.0095 2990.0108 3460.9370 4161.7278 5118.1469 5926.8770
## [355] 5262.7348 5629.9153 6160.4163 6677.0453 7723.4472 9645.0614
## [361] 1388.5947 1500.8959 1728.8694 2052.0505 2378.2011 2517.7365
## [367] 2602.7102 2156.9561 1648.0738 1786.2654 1648.8008 1544.7501
## [373] 3119.2365 4338.2316 5477.8900 6960.2979 9164.0901 11305.3852
## [379] 13221.8218 13822.5839 8447.7949 9875.6045 11628.3890 14619.2227
## [385] 5586.5388 6092.1744 5180.7559 5690.2680 5305.4453 6380.4950
## [391] 7316.9181 7532.9248 5592.8440 5431.9904 6340.6467 8948.1029
## [397] 6876.1403 8256.3439 10136.8671 11399.4449 13108.4536 14800.1606
## [403] 15377.2285 16310.4434 14297.0212 16048.5142 17596.2102 22833.3085
## [409] 9692.3852 11099.6593 13583.3135 15937.2112 18866.2072 20422.9015
## [415] 21688.0405 25116.1758 26406.7399 29804.3457 32166.5001 35278.4187
## [421] 2669.5295 2864.9691 3020.9893 3020.0505 3694.2124 3081.7610
## [427] 2879.4681 2880.1026 2377.1562 1895.0170 1908.2609 2082.4816
## [433] 1397.7171 1544.4030 1662.1374 1653.7230 2189.8745 2681.9889
## [439] 2861.0924 2899.8422 3044.2142 3614.1013 4563.8082 6025.3748
## [445] 3522.1107 3780.5467 4086.1141 4579.0742 5280.9947 6679.6233
## [451] 7213.7913 6481.7770 7103.7026 7429.4559 5773.0445 6873.2623
## [457] 1418.8224 1458.9153 1693.3359 1814.8807 2024.0081 2785.4936
## [463] 3503.7296 3885.4607 3794.7552 4173.1818 4754.6044 5581.1810
## [469] 3048.3029 3421.5232 3776.8036 4358.5954 4520.2460 5138.9224
## [475] 4098.3442 4140.4421 4444.2317 5154.8255 5351.5687 5728.3535
## [481] 375.6431 426.0964 582.8420 915.5960 672.4123 958.5668
## [487] 927.8253 966.8968 1132.0550 2814.4808 7703.4959 12154.0897
## [493] 328.9406 344.1619 380.9958 468.7950 514.3242 505.7538
## [499] 524.8758 521.1341 582.8585 913.4708 765.3500 641.3695
## [505] 362.1463 378.9042 419.4564 516.1186 566.2439 556.8084
## [511] 577.8607 573.7413 421.3535 515.8894 530.0535 690.8056
## [517] 6424.5191 7545.4154 9371.8426 10921.6363 14358.8759 15605.4228
## [523] 18533.1576 21141.0122 20647.1650 23723.9502 28204.5906 33207.0844
## [529] 7029.8093 8662.8349 10560.4855 12999.9177 16107.1917 18292.6351
## [535] 20293.8975 22066.4421 24703.7961 25889.7849 28926.0323 30470.0167
## [541] 4293.4765 4976.1981 6631.4592 8358.7620 11401.9484 21745.5733
## [547] 15113.3619 11864.4084 13522.1575 14722.8419 12521.7139 13206.4845
## [553] 485.2307 520.9267 599.6503 734.7829 756.0868 884.7553
## [559] 835.8096 611.6589 665.6244 653.7302 660.5856 752.7497
## [565] 7144.1144 10187.8267 12902.4629 14745.6256 18016.1803 20512.9212
## [571] 22031.5327 24639.1857 26505.3032 27788.8842 30035.8020 32170.3744
## [577] 911.2989 1043.5615 1190.0411 1125.6972 1178.2237 993.2240
## [583] 876.0326 847.0061 925.0602 1005.2458 1111.9846 1327.6089
## [589] 3530.6901 4916.2999 6017.1907 8513.0970 12724.8296 14195.5243
## [595] 15268.4209 16120.5284 17541.4963 18747.6981 22514.2548 27538.4119
## [601] 2428.2378 2617.1560 2750.3644 3242.5311 4031.4083 4879.9927
## [607] 4820.4948 4246.4860 4439.4508 4684.3138 4858.3475 5186.0500
## [613] 510.1965 576.2670 686.3737 708.7595 741.6662 874.6859
## [619] 857.2504 805.5725 794.3484 869.4498 945.5836 942.6542
## [625] 299.8503 431.7905 522.0344 715.5806 820.2246 764.7260
## [631] 838.1240 736.4154 745.5399 796.6645 575.7047 579.2317
## [637] 1840.3669 1726.8879 1796.5890 1452.0577 1654.4569 1874.2989
## [643] 2011.1595 1823.0160 1456.3095 1341.7269 1270.3649 1201.6372
## [649] 2194.9262 2220.4877 2291.1568 2538.2694 2529.8423 3203.2081
## [655] 3121.7608 3023.0967 3081.6946 3160.4549 3099.7287 3548.3308
## [661] 3054.4212 3629.0765 4692.6483 6197.9628 8315.9281 11186.1413
## [667] 14560.5305 20038.4727 24757.6030 28377.6322 30209.0152 39724.9787
## [673] 5263.6738 6040.1800 7550.3599 9326.6447 10168.6561 11674.8374
## [679] 12545.9907 12986.4800 10535.6285 11712.7768 14843.9356 18008.9444
## [685] 7267.6884 9244.0014 10350.1591 13319.8957 15798.0636 19654.9625
## [691] 23269.6075 26923.2063 25144.3920 28061.0997 31163.2020 36180.7892
## [697] 546.5657 590.0620 658.3472 700.7706 724.0325 813.3373
## [703] 855.7235 976.5127 1164.4068 1458.8174 1746.7695 2452.2104
## [709] 749.6817 858.9003 849.2898 762.4318 1111.1079 1382.7021
## [715] 1516.8730 1748.3570 2383.1409 3119.3356 2873.9129 3540.6516
## [721] 3035.3260 3290.2576 4187.3298 5906.7318 9613.8186 11888.5951
## [727] 7608.3346 6642.8814 7235.6532 8263.5903 9240.7620 11605.7145
## [733] 4129.7661 6229.3336 8341.7378 8931.4598 9576.0376 14688.2351
## [739] 14517.9071 11643.5727 3745.6407 3076.2398 4390.7173 4471.0619
## [745] 5210.2803 5599.0779 6631.5973 7655.5690 9530.7729 11150.9811
## [751] 12618.3214 13872.8665 17558.8155 24521.9471 34077.0494 40675.9964
## [757] 4086.5221 5385.2785 7105.6307 8393.7414 12786.9322 13306.6192
## [763] 15367.0292 17122.4799 18051.5225 20896.6092 21905.5951 25523.2771
## [769] 4931.4042 6248.6562 8243.5823 10022.4013 12269.2738 14255.9847
## [775] 16537.4835 19207.2348 22013.6449 24675.0245 27968.0982 28569.7197
## [781] 2898.5309 4756.5258 5246.1075 6124.7035 7433.8893 6650.1956
## [787] 6068.0513 6351.2375 7404.9237 7121.9247 6994.7749 7320.8803
## [793] 3216.9563 4317.6944 6576.6495 9847.7886 14778.7864 16610.3770
## [799] 19384.1057 22375.9419 26824.8951 28816.5850 28604.5919 31656.0681
## [805] 1546.9078 1886.0806 2348.0092 2741.7963 2110.8563 2852.3516
## [811] 4161.4160 4448.6799 3431.5936 3645.3796 3844.9172 4519.4612
## [817] 853.5409 944.4383 896.9664 1056.7365 1222.3600 1267.6132
## [823] 1348.2258 1361.9369 1341.9217 1360.4850 1287.5147 1463.2493
## [829] 1088.2778 1571.1347 1621.6936 2143.5406 3701.6215 4106.3012
## [835] 4106.5253 4106.4923 3726.0635 1690.7568 1646.7582 1593.0655
## [841] 1030.5922 1487.5935 1536.3444 2029.2281 3030.8767 4657.2210
## [847] 5622.9425 8533.0888 12104.2787 15993.5280 19233.9882 23348.1397
## [853] 108382.3529 113523.1329 95458.1118 80894.8833 109347.8670 59265.4771
## [859] 31354.0357 28118.4300 34932.9196 40300.6200 35110.1057 47306.9898
## [865] 4834.8041 6089.7869 5714.5606 6006.9830 7486.3843 8659.6968
## [871] 7640.5195 5377.0913 6890.8069 8754.9639 9313.9388 10461.0587
## [877] 298.8462 335.9971 411.8006 498.6390 496.5816 745.3695
## [883] 797.2631 773.9932 977.4863 1186.1480 1275.1846 1569.3314
## [889] 575.5730 620.9700 634.1952 713.6036 803.0055 640.3224
## [895] 572.1996 506.1139 636.6229 609.1740 531.4824 414.5073
## [901] 2387.5481 3448.2844 6757.0308 18772.7517 21011.4972 21951.2118
## [907] 17364.2754 11770.5898 9640.1385 9467.4461 9534.6775 12057.4993
## [913] 1443.0117 1589.2027 1643.3871 1634.0473 1748.5630 1544.2286
## [919] 1302.8787 1155.4419 1040.6762 986.2959 894.6371 1044.7701
## [925] 369.1651 416.3698 427.9011 495.5148 584.6220 663.2237
## [931] 632.8039 635.5174 563.2000 692.2758 665.4231 759.3499
## [937] 1831.1329 1810.0670 2036.8849 2277.7424 2849.0948 3827.9216
## [943] 4920.3560 5249.8027 7277.9128 10132.9096 10206.9779 12451.6558
## [949] 452.3370 490.3822 496.1743 545.0099 581.3689 686.3953
## [955] 618.0141 684.1716 739.0144 790.2580 951.4098 1042.5816
## [961] 743.1159 846.1203 1055.8960 1421.1452 1586.8518 1497.4922
## [967] 1481.1502 1421.6036 1361.3698 1483.1361 1579.0195 1803.1515
## [973] 1967.9557 2034.0380 2529.0675 2475.3876 2575.4842 3710.9830
## [979] 3688.0377 4783.5869 6058.2538 7425.7053 9021.8159 10956.9911
## [985] 3478.1255 4131.5466 4581.6094 5754.7339 6809.4067 7674.9291
## [991] 9611.1475 8688.1560 9472.3843 9767.2975 10742.4405 11977.5750
## [997] 786.5669 912.6626 1056.3540 1226.0411 1421.7420 1647.5117
## [1003] 2000.6031 2338.0083 1785.4020 1902.2521 2140.7393 3095.7723
## [1009] 2647.5856 3682.2599 4649.5938 5907.8509 7778.4140 9595.9299
## [1015] 11222.5876 11732.5102 7003.3390 6465.6133 6557.1943 9253.8961
## [1021] 1688.2036 1642.0023 1566.3535 1711.0448 1930.1950 2370.6200
## [1027] 2702.6204 2755.0470 2948.0473 2982.1019 3258.4956 3820.1752
## [1033] 468.5260 495.5868 556.6864 566.6692 724.9178 502.3197
## [1039] 462.2114 389.8762 410.8968 472.3461 633.6179 823.6856
## [1045] 331.0000 350.0000 388.0000 349.0000 357.0000 371.0000
## [1051] 424.0000 385.0000 347.0000 415.0000 611.0000 944.0000
## [1057] 2423.7804 2621.4481 3173.2156 3793.6948 3746.0809 3876.4860
## [1063] 4191.1005 3693.7313 3804.5380 3899.5243 4072.3248 4811.0604
## [1069] 545.8657 597.9364 652.3969 676.4422 674.7881 694.1124
## [1075] 718.3731 775.6325 897.7404 1010.8921 1057.2063 1091.3598
## [1081] 8941.5719 11276.1934 12790.8496 15363.2514 18794.7457 21209.0592
## [1087] 21399.4605 23651.3236 26790.9496 30246.1306 33724.7578 36797.9333
## [1093] 10556.5757 12247.3953 13175.6780 14463.9189 16046.0373 16233.7177
## [1099] 17632.4104 19007.1913 18363.3249 21050.4138 23189.8014 25185.0091
## [1105] 3112.3639 3457.4159 3634.3644 4643.3935 4688.5933 5486.3711
## [1111] 3470.3382 2955.9844 2170.1517 2253.0230 2474.5488 2749.3210
## [1117] 761.8794 835.5234 997.7661 1054.3849 954.2092 808.8971
## [1123] 909.7221 668.3000 581.1827 580.3052 601.0745 619.6769
## [1129] 1077.2819 1100.5926 1150.9275 1014.5141 1698.3888 1981.9518
## [1135] 1576.9738 1385.0296 1619.8482 1624.9413 1615.2864 2013.9773
## [1141] 10095.4217 11653.9730 13450.4015 16361.8765 18965.0555 23311.3494
## [1147] 26298.6353 31540.9748 33965.6611 41283.1643 44683.9753 49357.1902
## [1153] 1828.2303 2242.7466 2924.6381 4720.9427 10618.0385 11848.3439
## [1159] 12954.7910 18115.2231 18616.7069 19702.0558 19774.8369 22316.1929
## [1165] 684.5971 747.0835 803.3427 942.4083 1049.9390 1175.9212
## [1171] 1443.4298 1704.6866 1971.8295 2049.3505 2092.7124 2605.9476
## [1177] 2480.3803 2961.8009 3536.5403 4421.0091 5364.2497 5351.9121
## [1183] 7009.6016 7034.7792 6618.7431 7113.6923 7356.0319 9809.1856
## [1189] 1952.3087 2046.1547 2148.0271 2299.3763 2523.3380 3248.3733
## [1195] 4258.5036 3998.8757 4196.4111 4247.4003 3783.6742 4172.8385
## [1201] 3758.5234 4245.2567 4957.0380 5788.0933 5937.8273 6281.2909
## [1207] 6434.5018 6360.9434 4446.3809 5838.3477 5909.0201 7408.9056
## [1213] 1272.8810 1547.9448 1649.5522 1814.1274 1989.3741 2373.2043
## [1219] 2603.2738 2189.6350 2279.3240 2536.5349 2650.9211 3190.4810
## [1225] 4029.3297 4734.2530 5338.7521 6557.1528 8006.5070 9508.1415
## [1231] 8451.5310 9082.3512 7738.8812 10159.5837 12002.2391 15389.9247
## [1237] 3068.3199 3774.5717 4727.9549 6361.5180 9022.2474 10172.4857
## [1243] 11753.8429 13039.3088 16207.2666 17641.0316 19970.9079 20509.6478
## [1249] 3081.9598 3907.1562 5108.3446 6929.2777 9123.0417 9770.5249
## [1255] 10330.9891 12281.3419 14641.5871 16999.4333 18855.6062 19328.7090
## [1261] 2718.8853 2769.4518 3173.7233 4021.1757 5047.6586 4319.8041
## [1267] 5267.2194 5303.3775 6101.2558 6071.9414 6316.1652 7670.1226
## [1273] 3144.6132 3943.3702 4734.9976 6470.8665 8011.4144 9356.3972
## [1279] 9605.3141 9696.2733 6598.4099 7346.5476 7885.3601 10808.4756
## [1285] 493.3239 540.2894 597.4731 510.9637 590.5807 670.0806
## [1291] 881.5706 847.9912 737.0686 589.9445 785.6538 863.0885
## [1297] 879.5836 860.7369 1071.5511 1384.8406 1532.9853 1737.5617
## [1303] 1890.2181 1516.5255 1428.7778 1339.0760 1353.0924 1598.4351
## [1309] 6459.5548 8157.5912 11626.4197 16903.0489 24837.4287 34167.7626
## [1315] 33693.1753 21198.2614 24841.6178 20586.6902 19014.5412 21654.8319
## [1321] 1450.3570 1567.6530 1654.9887 1612.4046 1597.7121 1561.7691
## [1327] 1518.4800 1441.7207 1367.8994 1392.3683 1519.6353 1712.4721
## [1333] 3581.4594 4981.0909 6289.6292 7991.7071 10522.0675 12980.6696
## [1339] 15181.0927 15870.8785 9325.0682 7914.3203 7236.0753 9786.5347
## [1345] 879.7877 1004.4844 1116.6399 1206.0435 1353.7598 1348.2852
## [1351] 1465.0108 1294.4478 1068.6963 574.6482 699.4897 862.5408
## [1357] 2315.1382 2843.1044 3674.7356 4977.4185 8597.7562 11210.0895
## [1363] 15169.1611 18861.5308 24769.8912 33519.4766 36023.1054 47143.1796
## [1369] 5074.6591 6093.2630 7481.1076 8412.9024 9674.1676 10922.6640
## [1375] 11348.5459 12037.2676 9498.4677 12126.2306 13638.7784 18678.3144
## [1381] 4215.0417 5862.2766 7402.3034 9405.4894 12383.4862 15277.0302
## [1387] 17866.7218 18678.5349 14214.7168 17161.1073 20660.0194 25768.2576
## [1393] 1135.7498 1258.1474 1369.4883 1284.7332 1254.5761 1450.9925
## [1399] 1176.8070 1093.2450 926.9603 930.5964 882.0818 926.1411
## [1405] 4725.2955 5487.1042 5768.7297 7114.4780 7765.9626 8028.6514
## [1411] 8568.2662 7825.8234 7225.0693 7479.1882 7710.9464 9269.6578
## [1417] 3834.0347 4564.8024 5693.8439 7993.5123 10638.7513 13236.9212
## [1423] 13926.1700 15764.9831 18603.0645 20445.2990 24835.4717 28821.0637
## [1429] 1083.5320 1072.5466 1074.4720 1135.5143 1213.3955 1348.7757
## [1435] 1648.0798 1876.7668 2153.7392 2664.4773 3015.3788 3970.0954
## [1441] 1615.9911 1770.3371 1959.5938 1687.9976 1659.6528 2202.9884
## [1447] 1895.5441 1507.8192 1492.1970 1632.2108 1993.3983 2602.3950
## [1453] 1148.3766 1244.7084 1856.1821 2613.1017 3364.8366 3781.4106
## [1459] 3895.3840 3984.8398 3553.0224 3876.7685 4128.1169 4513.4806
## [1465] 8527.8447 9911.8782 12329.4419 15258.2970 17832.0246 18855.7252
## [1471] 20667.3812 23586.9293 23880.0168 25266.5950 29341.6309 33859.7484
## [1477] 14734.2327 17909.4897 20431.0927 22966.1443 27195.1130 26982.2905
## [1483] 28397.7151 30281.7046 31871.5303 32135.3230 34480.9577 37506.4191
## [1489] 1643.4854 2117.2349 2193.0371 1881.9236 2571.4230 3195.4846
## [1495] 3761.8377 3116.7743 3340.5428 4014.2390 4090.9253 4184.5481
## [1501] 1206.9479 1507.8613 1822.8790 2643.8587 4062.5239 5596.5198
## [1507] 7426.3548 11054.5618 15215.6579 20206.8210 23235.4233 28718.2768
## [1513] 716.6501 698.5356 722.0038 848.2187 915.9851 962.4923
## [1519] 874.2426 831.8221 825.6825 789.1862 899.0742 1107.4822
## [1525] 757.7974 793.5774 1002.1992 1295.4607 1524.3589 1961.2246
## [1531] 2393.2198 2982.6538 4616.8965 5852.6255 5913.1875 7458.3963
## [1537] 859.8087 925.9083 1067.5348 1477.5968 1649.6602 1532.7770
## [1543] 1344.5780 1202.2014 1034.2989 982.2869 886.2206 882.9699
## [1549] 3023.2719 4100.3934 4997.5240 5621.3685 6619.5514 7899.5542
## [1555] 9119.5286 7388.5978 7370.9909 8792.5731 11460.6002 18008.5092
## [1561] 1468.4756 1395.2325 1660.3032 1932.3602 2753.2860 3120.8768
## [1567] 3560.2332 3810.4193 4332.7202 4876.7986 5722.8957 7092.9230
## [1573] 1969.1010 2218.7543 2322.8699 2826.3564 3450.6964 4269.1223
## [1579] 4241.3563 5089.0437 5678.3483 6601.4299 6508.0857 8458.2764
## [1585] 734.7535 774.3711 767.2717 908.9185 950.7359 843.7331
## [1591] 682.2662 617.7244 644.1708 816.5591 927.7210 1056.3801
## [1597] 9979.5085 11283.1779 12477.1771 14142.8509 15895.1164 17428.7485
## [1603] 18232.4245 21664.7877 22705.0925 26074.5314 29478.9992 33203.2613
## [1609] 13990.4821 14847.1271 16173.1459 19530.3656 21806.0359 24072.6321
## [1615] 25009.5591 29884.3504 32003.9322 35767.4330 39097.0995 42951.6531
## [1621] 5716.7667 6150.7730 5603.3577 5444.6196 5703.4089 6504.3397
## [1627] 6920.2231 7452.3990 8137.0048 9230.2407 7727.0020 10611.4630
## [1633] 7689.7998 9802.4665 8422.9742 9541.4742 10505.2597 13143.9510
## [1639] 11152.4101 9883.5846 10733.9263 10165.4952 8605.0478 11415.8057
## [1645] 605.0665 676.2854 772.0492 637.1233 699.5016 713.5371
## [1651] 707.2358 820.7994 989.0231 1385.8968 1764.4567 2441.5764
## [1657] 1515.5923 1827.0677 2198.9563 2649.7150 3133.4093 3682.8315
## [1663] 4336.0321 5107.1974 6017.6548 7110.6676 4515.4876 3025.3498
## [1669] 781.7176 804.8305 825.6232 862.4421 1265.0470 1829.7652
## [1675] 1977.5570 1971.7415 1879.4967 2117.4845 2234.8208 2280.7699
## [1681] 1147.3888 1311.9568 1452.7258 1777.0773 1773.4983 1588.6883
## [1687] 1408.6786 1213.3151 1210.8846 1071.3538 1071.6139 1271.2116
## [1693] 406.8841 518.7643 527.2722 569.7951 799.3622 685.5877
## [1699] 788.8550 706.1573 693.4208 792.4500 672.0386 469.7093
Cuántos individuos?
ncol(gapminder)# numero dde columnas## [1] 6
nrow(gapminder) # numero de filas## [1] 1704
dim(gapminder)## [1] 1704 6
6 primeras filas de la base y 6 ultimas filas de la base.
head(gapminder) # ## # A tibble: 6 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
tail(gapminder) # ## # A tibble: 6 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Zimbabwe Africa 1982 60.4 7636524 789.
## 2 Zimbabwe Africa 1987 62.4 9216418 706.
## 3 Zimbabwe Africa 1992 60.4 10704340 693.
## 4 Zimbabwe Africa 1997 46.8 11404948 792.
## 5 Zimbabwe Africa 2002 40.0 11926563 672.
## 6 Zimbabwe Africa 2007 43.5 12311143 470.
Si se desean ver más datos
head(gapminder, n=20)## # A tibble: 20 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## 7 Afghanistan Asia 1982 39.9 12881816 978.
## 8 Afghanistan Asia 1987 40.8 13867957 852.
## 9 Afghanistan Asia 1992 41.7 16317921 649.
## 10 Afghanistan Asia 1997 41.8 22227415 635.
## 11 Afghanistan Asia 2002 42.1 25268405 727.
## 12 Afghanistan Asia 2007 43.8 31889923 975.
## 13 Albania Europe 1952 55.2 1282697 1601.
## 14 Albania Europe 1957 59.3 1476505 1942.
## 15 Albania Europe 1962 64.8 1728137 2313.
## 16 Albania Europe 1967 66.2 1984060 2760.
## 17 Albania Europe 1972 67.7 2263554 3313.
## 18 Albania Europe 1977 68.9 2509048 3533.
## 19 Albania Europe 1982 70.4 2780097 3631.
## 20 Albania Europe 1987 72 3075321 3739.
## Next Steps {#nextsteps .emphasized}
```r
library(DT)
datatable(iris, options = list(
searching = FALSE,
pageLength = 5,
lengthMenu = c(5, 10, 15, 20)
))
Distribucion binomial
x <- 0:12
prob <- dbinom(x,12,.5)
barplot(prob,col = "red",ylim = c(0,.2),names.arg=x,
main="Binomial Distribution\n(n=12,p=0.5)")library(dplyr)
library(ggplot2)
library(plotly)##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
#library(scales)
data.frame(heads = 0:10, prob = dbinom(x = 0:10, size = 10, prob = 0.3)) %>%
mutate(Heads = ifelse(heads == 2, "2", "other")) %>%
ggplot(aes(x = factor(heads), y = prob, fill = Heads)) +
geom_col() +
geom_text(
aes(label = round(prob,2), y = prob + 0.01),
position = position_dodge(0.9),
size = 3,
vjust = 0
) +
labs(title = "Probability of X = 2 successes.",
subtitle = "b(10, .3)",
x = "Successes (x)",
y = "probability") Reglas sintácticas
- R evalúa expresiones
- El lenguaje es sensible a mayúsculas
- Pueden utilizarse espacios entre elementos de sintaxis a discreción: \(sin(x+b)\) es igual que \(sin ( x + b)\)
- Cada expresión se escribe en al menos una línea
- Dos o más expresiones puede utilizar una línea separándolas por el signo ‘;’ En R, donde entra un valor puede entrar una expresión Regla de reuso *ESC una tecla para huir, abortar, cortar,. . .
Demo colores
colors()## [1] "white" "aliceblue" "antiquewhite"
## [4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
## [7] "antiquewhite4" "aquamarine" "aquamarine1"
## [10] "aquamarine2" "aquamarine3" "aquamarine4"
## [13] "azure" "azure1" "azure2"
## [16] "azure3" "azure4" "beige"
## [19] "bisque" "bisque1" "bisque2"
## [22] "bisque3" "bisque4" "black"
## [25] "blanchedalmond" "blue" "blue1"
## [28] "blue2" "blue3" "blue4"
## [31] "blueviolet" "brown" "brown1"
## [34] "brown2" "brown3" "brown4"
## [37] "burlywood" "burlywood1" "burlywood2"
## [40] "burlywood3" "burlywood4" "cadetblue"
## [43] "cadetblue1" "cadetblue2" "cadetblue3"
## [46] "cadetblue4" "chartreuse" "chartreuse1"
## [49] "chartreuse2" "chartreuse3" "chartreuse4"
## [52] "chocolate" "chocolate1" "chocolate2"
## [55] "chocolate3" "chocolate4" "coral"
## [58] "coral1" "coral2" "coral3"
## [61] "coral4" "cornflowerblue" "cornsilk"
## [64] "cornsilk1" "cornsilk2" "cornsilk3"
## [67] "cornsilk4" "cyan" "cyan1"
## [70] "cyan2" "cyan3" "cyan4"
## [73] "darkblue" "darkcyan" "darkgoldenrod"
## [76] "darkgoldenrod1" "darkgoldenrod2" "darkgoldenrod3"
## [79] "darkgoldenrod4" "darkgray" "darkgreen"
## [82] "darkgrey" "darkkhaki" "darkmagenta"
## [85] "darkolivegreen" "darkolivegreen1" "darkolivegreen2"
## [88] "darkolivegreen3" "darkolivegreen4" "darkorange"
## [91] "darkorange1" "darkorange2" "darkorange3"
## [94] "darkorange4" "darkorchid" "darkorchid1"
## [97] "darkorchid2" "darkorchid3" "darkorchid4"
## [100] "darkred" "darksalmon" "darkseagreen"
## [103] "darkseagreen1" "darkseagreen2" "darkseagreen3"
## [106] "darkseagreen4" "darkslateblue" "darkslategray"
## [109] "darkslategray1" "darkslategray2" "darkslategray3"
## [112] "darkslategray4" "darkslategrey" "darkturquoise"
## [115] "darkviolet" "deeppink" "deeppink1"
## [118] "deeppink2" "deeppink3" "deeppink4"
## [121] "deepskyblue" "deepskyblue1" "deepskyblue2"
## [124] "deepskyblue3" "deepskyblue4" "dimgray"
## [127] "dimgrey" "dodgerblue" "dodgerblue1"
## [130] "dodgerblue2" "dodgerblue3" "dodgerblue4"
## [133] "firebrick" "firebrick1" "firebrick2"
## [136] "firebrick3" "firebrick4" "floralwhite"
## [139] "forestgreen" "gainsboro" "ghostwhite"
## [142] "gold" "gold1" "gold2"
## [145] "gold3" "gold4" "goldenrod"
## [148] "goldenrod1" "goldenrod2" "goldenrod3"
## [151] "goldenrod4" "gray" "gray0"
## [154] "gray1" "gray2" "gray3"
## [157] "gray4" "gray5" "gray6"
## [160] "gray7" "gray8" "gray9"
## [163] "gray10" "gray11" "gray12"
## [166] "gray13" "gray14" "gray15"
## [169] "gray16" "gray17" "gray18"
## [172] "gray19" "gray20" "gray21"
## [175] "gray22" "gray23" "gray24"
## [178] "gray25" "gray26" "gray27"
## [181] "gray28" "gray29" "gray30"
## [184] "gray31" "gray32" "gray33"
## [187] "gray34" "gray35" "gray36"
## [190] "gray37" "gray38" "gray39"
## [193] "gray40" "gray41" "gray42"
## [196] "gray43" "gray44" "gray45"
## [199] "gray46" "gray47" "gray48"
## [202] "gray49" "gray50" "gray51"
## [205] "gray52" "gray53" "gray54"
## [208] "gray55" "gray56" "gray57"
## [211] "gray58" "gray59" "gray60"
## [214] "gray61" "gray62" "gray63"
## [217] "gray64" "gray65" "gray66"
## [220] "gray67" "gray68" "gray69"
## [223] "gray70" "gray71" "gray72"
## [226] "gray73" "gray74" "gray75"
## [229] "gray76" "gray77" "gray78"
## [232] "gray79" "gray80" "gray81"
## [235] "gray82" "gray83" "gray84"
## [238] "gray85" "gray86" "gray87"
## [241] "gray88" "gray89" "gray90"
## [244] "gray91" "gray92" "gray93"
## [247] "gray94" "gray95" "gray96"
## [250] "gray97" "gray98" "gray99"
## [253] "gray100" "green" "green1"
## [256] "green2" "green3" "green4"
## [259] "greenyellow" "grey" "grey0"
## [262] "grey1" "grey2" "grey3"
## [265] "grey4" "grey5" "grey6"
## [268] "grey7" "grey8" "grey9"
## [271] "grey10" "grey11" "grey12"
## [274] "grey13" "grey14" "grey15"
## [277] "grey16" "grey17" "grey18"
## [280] "grey19" "grey20" "grey21"
## [283] "grey22" "grey23" "grey24"
## [286] "grey25" "grey26" "grey27"
## [289] "grey28" "grey29" "grey30"
## [292] "grey31" "grey32" "grey33"
## [295] "grey34" "grey35" "grey36"
## [298] "grey37" "grey38" "grey39"
## [301] "grey40" "grey41" "grey42"
## [304] "grey43" "grey44" "grey45"
## [307] "grey46" "grey47" "grey48"
## [310] "grey49" "grey50" "grey51"
## [313] "grey52" "grey53" "grey54"
## [316] "grey55" "grey56" "grey57"
## [319] "grey58" "grey59" "grey60"
## [322] "grey61" "grey62" "grey63"
## [325] "grey64" "grey65" "grey66"
## [328] "grey67" "grey68" "grey69"
## [331] "grey70" "grey71" "grey72"
## [334] "grey73" "grey74" "grey75"
## [337] "grey76" "grey77" "grey78"
## [340] "grey79" "grey80" "grey81"
## [343] "grey82" "grey83" "grey84"
## [346] "grey85" "grey86" "grey87"
## [349] "grey88" "grey89" "grey90"
## [352] "grey91" "grey92" "grey93"
## [355] "grey94" "grey95" "grey96"
## [358] "grey97" "grey98" "grey99"
## [361] "grey100" "honeydew" "honeydew1"
## [364] "honeydew2" "honeydew3" "honeydew4"
## [367] "hotpink" "hotpink1" "hotpink2"
## [370] "hotpink3" "hotpink4" "indianred"
## [373] "indianred1" "indianred2" "indianred3"
## [376] "indianred4" "ivory" "ivory1"
## [379] "ivory2" "ivory3" "ivory4"
## [382] "khaki" "khaki1" "khaki2"
## [385] "khaki3" "khaki4" "lavender"
## [388] "lavenderblush" "lavenderblush1" "lavenderblush2"
## [391] "lavenderblush3" "lavenderblush4" "lawngreen"
## [394] "lemonchiffon" "lemonchiffon1" "lemonchiffon2"
## [397] "lemonchiffon3" "lemonchiffon4" "lightblue"
## [400] "lightblue1" "lightblue2" "lightblue3"
## [403] "lightblue4" "lightcoral" "lightcyan"
## [406] "lightcyan1" "lightcyan2" "lightcyan3"
## [409] "lightcyan4" "lightgoldenrod" "lightgoldenrod1"
## [412] "lightgoldenrod2" "lightgoldenrod3" "lightgoldenrod4"
## [415] "lightgoldenrodyellow" "lightgray" "lightgreen"
## [418] "lightgrey" "lightpink" "lightpink1"
## [421] "lightpink2" "lightpink3" "lightpink4"
## [424] "lightsalmon" "lightsalmon1" "lightsalmon2"
## [427] "lightsalmon3" "lightsalmon4" "lightseagreen"
## [430] "lightskyblue" "lightskyblue1" "lightskyblue2"
## [433] "lightskyblue3" "lightskyblue4" "lightslateblue"
## [436] "lightslategray" "lightslategrey" "lightsteelblue"
## [439] "lightsteelblue1" "lightsteelblue2" "lightsteelblue3"
## [442] "lightsteelblue4" "lightyellow" "lightyellow1"
## [445] "lightyellow2" "lightyellow3" "lightyellow4"
## [448] "limegreen" "linen" "magenta"
## [451] "magenta1" "magenta2" "magenta3"
## [454] "magenta4" "maroon" "maroon1"
## [457] "maroon2" "maroon3" "maroon4"
## [460] "mediumaquamarine" "mediumblue" "mediumorchid"
## [463] "mediumorchid1" "mediumorchid2" "mediumorchid3"
## [466] "mediumorchid4" "mediumpurple" "mediumpurple1"
## [469] "mediumpurple2" "mediumpurple3" "mediumpurple4"
## [472] "mediumseagreen" "mediumslateblue" "mediumspringgreen"
## [475] "mediumturquoise" "mediumvioletred" "midnightblue"
## [478] "mintcream" "mistyrose" "mistyrose1"
## [481] "mistyrose2" "mistyrose3" "mistyrose4"
## [484] "moccasin" "navajowhite" "navajowhite1"
## [487] "navajowhite2" "navajowhite3" "navajowhite4"
## [490] "navy" "navyblue" "oldlace"
## [493] "olivedrab" "olivedrab1" "olivedrab2"
## [496] "olivedrab3" "olivedrab4" "orange"
## [499] "orange1" "orange2" "orange3"
## [502] "orange4" "orangered" "orangered1"
## [505] "orangered2" "orangered3" "orangered4"
## [508] "orchid" "orchid1" "orchid2"
## [511] "orchid3" "orchid4" "palegoldenrod"
## [514] "palegreen" "palegreen1" "palegreen2"
## [517] "palegreen3" "palegreen4" "paleturquoise"
## [520] "paleturquoise1" "paleturquoise2" "paleturquoise3"
## [523] "paleturquoise4" "palevioletred" "palevioletred1"
## [526] "palevioletred2" "palevioletred3" "palevioletred4"
## [529] "papayawhip" "peachpuff" "peachpuff1"
## [532] "peachpuff2" "peachpuff3" "peachpuff4"
## [535] "peru" "pink" "pink1"
## [538] "pink2" "pink3" "pink4"
## [541] "plum" "plum1" "plum2"
## [544] "plum3" "plum4" "powderblue"
## [547] "purple" "purple1" "purple2"
## [550] "purple3" "purple4" "red"
## [553] "red1" "red2" "red3"
## [556] "red4" "rosybrown" "rosybrown1"
## [559] "rosybrown2" "rosybrown3" "rosybrown4"
## [562] "royalblue" "royalblue1" "royalblue2"
## [565] "royalblue3" "royalblue4" "saddlebrown"
## [568] "salmon" "salmon1" "salmon2"
## [571] "salmon3" "salmon4" "sandybrown"
## [574] "seagreen" "seagreen1" "seagreen2"
## [577] "seagreen3" "seagreen4" "seashell"
## [580] "seashell1" "seashell2" "seashell3"
## [583] "seashell4" "sienna" "sienna1"
## [586] "sienna2" "sienna3" "sienna4"
## [589] "skyblue" "skyblue1" "skyblue2"
## [592] "skyblue3" "skyblue4" "slateblue"
## [595] "slateblue1" "slateblue2" "slateblue3"
## [598] "slateblue4" "slategray" "slategray1"
## [601] "slategray2" "slategray3" "slategray4"
## [604] "slategrey" "snow" "snow1"
## [607] "snow2" "snow3" "snow4"
## [610] "springgreen" "springgreen1" "springgreen2"
## [613] "springgreen3" "springgreen4" "steelblue"
## [616] "steelblue1" "steelblue2" "steelblue3"
## [619] "steelblue4" "tan" "tan1"
## [622] "tan2" "tan3" "tan4"
## [625] "thistle" "thistle1" "thistle2"
## [628] "thistle3" "thistle4" "tomato"
## [631] "tomato1" "tomato2" "tomato3"
## [634] "tomato4" "turquoise" "turquoise1"
## [637] "turquoise2" "turquoise3" "turquoise4"
## [640] "violet" "violetred" "violetred1"
## [643] "violetred2" "violetred3" "violetred4"
## [646] "wheat" "wheat1" "wheat2"
## [649] "wheat3" "wheat4" "whitesmoke"
## [652] "yellow" "yellow1" "yellow2"
## [655] "yellow3" "yellow4" "yellowgreen"
demo(colors)##
##
## demo(colors)
## ---- ~~~~~~
##
## > ### ----------- Show (almost) all named colors ---------------------
## >
## > ## 1) with traditional 'graphics' package:
## > showCols1 <- function(bg = "gray", cex = 0.75, srt = 30) {
## + m <- ceiling(sqrt(n <- length(cl <- colors())))
## + length(cl) <- m*m; cm <- matrix(cl, m)
## + ##
## + require("graphics")
## + op <- par(mar=rep(0,4), ann=FALSE, bg = bg); on.exit(par(op))
## + plot(1:m,1:m, type="n", axes=FALSE)
## + text(col(cm), rev(row(cm)), cm, col = cl, cex=cex, srt=srt)
## + }
##
## > showCols1()
##
## > ## 2) with 'grid' package:
## > showCols2 <- function(bg = "grey", cex = 0.75, rot = 30) {
## + m <- ceiling(sqrt(n <- length(cl <- colors())))
## + length(cl) <- m*m; cm <- matrix(cl, m)
## + ##
## + require("grid")
## + grid.newpage(); vp <- viewport(width = .92, height = .92)
## + grid.rect(gp=gpar(fill=bg))
## + grid.text(cm, x = col(cm)/m, y = rev(row(cm))/m, rot = rot,
## + vp=vp, gp=gpar(cex = cex, col = cm))
## + }
##
## > showCols2()
## Loading required package: grid
##
## > showCols2(bg = "gray33")
##
## > ###
## >
## > ##' @title Comparing Colors
## > ##' @param col
## > ##' @param nrow
## > ##' @param ncol
## > ##' @param txt.col
## > ##' @return the grid layout, invisibly
## > ##' @author Marius Hofert, originally
## > plotCol <- function(col, nrow=1, ncol=ceiling(length(col) / nrow),
## + txt.col="black") {
## + stopifnot(nrow >= 1, ncol >= 1)
## + if(length(col) > nrow*ncol)
## + warning("some colors will not be shown")
## + require(grid)
## + grid.newpage()
## + gl <- grid.layout(nrow, ncol)
## + pushViewport(viewport(layout=gl))
## + ic <- 1
## + for(i in 1:nrow) {
## + for(j in 1:ncol) {
## + pushViewport(viewport(layout.pos.row=i, layout.pos.col=j))
## + grid.rect(gp= gpar(fill=col[ic]))
## + grid.text(col[ic], gp=gpar(col=txt.col))
## + upViewport()
## + ic <- ic+1
## + }
## + }
## + upViewport()
## + invisible(gl)
## + }
##
## > ## A Chocolate Bar of colors:
## > plotCol(c("#CC8C3C", paste0("chocolate", 2:4),
## + paste0("darkorange", c("",1:2)), paste0("darkgoldenrod", 1:2),
## + "orange", "orange1", "sandybrown", "tan1", "tan2"),
## + nrow=2)
##
## > ##' Find close R colors() to a given color {original by Marius Hofert)
## > ##' using Euclidean norm in (HSV / RGB / ...) color space
## > nearRcolor <- function(rgb, cSpace = c("hsv", "rgb255", "Luv", "Lab"),
## + dist = switch(cSpace, "hsv" = 0.10, "rgb255" = 30,
## + "Luv" = 15, "Lab" = 12))
## + {
## + if(is.character(rgb)) rgb <- col2rgb(rgb)
## + stopifnot(length(rgb <- as.vector(rgb)) == 3)
## + Rcol <- col2rgb(.cc <- colors())
## + uniqC <- !duplicated(t(Rcol)) # gray9 == grey9 (etc)
## + Rcol <- Rcol[, uniqC] ; .cc <- .cc[uniqC]
## + cSpace <- match.arg(cSpace)
## + convRGB2 <- function(Rgb, to)
## + t(convertColor(t(Rgb), from="sRGB", to=to, scale.in=255))
## + ## the transformation, rgb{0..255} --> cSpace :
## + TransF <- switch(cSpace,
## + "rgb255" = identity,
## + "hsv" = rgb2hsv,
## + "Luv" = function(RGB) convRGB2(RGB, "Luv"),
## + "Lab" = function(RGB) convRGB2(RGB, "Lab"))
## + d <- sqrt(colSums((TransF(Rcol) - as.vector(TransF(rgb)))^2))
## + iS <- sort.list(d[near <- d <= dist])# sorted: closest first
## + setNames(.cc[near][iS], format(zapsmall(d[near][iS]), digits=3))
## + }
##
## > nearRcolor(col2rgb("tan2"), "rgb")
## 0.0 21.1 25.8 29.5
## "tan2" "tan1" "sandybrown" "sienna1"
##
## > nearRcolor(col2rgb("tan2"), "hsv")
## 0.0000 0.0410 0.0618 0.0638 0.0667 0.0766
## "tan2" "sienna2" "coral2" "tomato2" "tan1" "coral"
## 0.0778 0.0900 0.0912 0.0918
## "sienna1" "sandybrown" "coral1" "tomato"
##
## > nearRcolor(col2rgb("tan2"), "Luv")
## 0.00 7.42 7.48 12.41 13.69
## "tan2" "tan1" "sandybrown" "orange3" "orange2"
##
## > nearRcolor(col2rgb("tan2"), "Lab")
## 0.00 5.56 8.08 11.31
## "tan2" "tan1" "sandybrown" "peru"
##
## > nearRcolor("#334455")
## 0.0867
## "darkslategray"
##
## > ## Now, consider choosing a color by looking in the
## > ## neighborhood of one you know :
## >
## > plotCol(nearRcolor("deepskyblue", "rgb", dist=50))
##
## > plotCol(nearRcolor("deepskyblue", dist=.1))
##
## > plotCol(nearRcolor("tomato", "rgb", dist= 50), nrow=3)
##
## > plotCol(nearRcolor("tomato", "hsv", dist=.12), nrow=3)
##
## > plotCol(nearRcolor("tomato", "Luv", dist= 25), nrow=3)
##
## > plotCol(nearRcolor("tomato", "Lab", dist= 18), nrow=3)
Demo gráficas
demo(graphics)##
##
## demo(graphics)
## ---- ~~~~~~~~
##
## > # Copyright (C) 1997-2009 The R Core Team
## >
## > require(datasets)
##
## > require(grDevices); require(graphics)
##
## > ## Here is some code which illustrates some of the differences between
## > ## R and S graphics capabilities. Note that colors are generally specified
## > ## by a character string name (taken from the X11 rgb.txt file) and that line
## > ## textures are given similarly. The parameter "bg" sets the background
## > ## parameter for the plot and there is also an "fg" parameter which sets
## > ## the foreground color.
## >
## >
## > x <- stats::rnorm(50)
##
## > opar <- par(bg = "white")
##
## > plot(x, ann = FALSE, type = "n")
##
## > abline(h = 0, col = gray(.90))
##
## > lines(x, col = "green4", lty = "dotted")
##
## > points(x, bg = "limegreen", pch = 21)
##
## > title(main = "Simple Use of Color In a Plot",
## + xlab = "Just a Whisper of a Label",
## + col.main = "blue", col.lab = gray(.8),
## + cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)
##
## > ## A little color wheel. This code just plots equally spaced hues in
## > ## a pie chart. If you have a cheap SVGA monitor (like me) you will
## > ## probably find that numerically equispaced does not mean visually
## > ## equispaced. On my display at home, these colors tend to cluster at
## > ## the RGB primaries. On the other hand on the SGI Indy at work the
## > ## effect is near perfect.
## >
## > par(bg = "gray")
##
## > pie(rep(1,24), col = rainbow(24), radius = 0.9)
##
## > title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)
##
## > title(xlab = "(Use this as a test of monitor linearity)",
## + cex.lab = 0.8, font.lab = 3)
##
## > ## We have already confessed to having these. This is just showing off X11
## > ## color names (and the example (from the postscript manual) is pretty "cute".
## >
## > pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
##
## > names(pie.sales) <- c("Blueberry", "Cherry",
## + "Apple", "Boston Cream", "Other", "Vanilla Cream")
##
## > pie(pie.sales,
## + col = c("purple","violetred1","green3","cornsilk","cyan","white"))
##
## > title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)
##
## > title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)
##
## > ## Boxplots: I couldn't resist the capability for filling the "box".
## > ## The use of color seems like a useful addition, it focuses attention
## > ## on the central bulk of the data.
## >
## > par(bg="cornsilk")
##
## > n <- 10
##
## > g <- gl(n, 100, n*100)
##
## > x <- rnorm(n*100) + sqrt(as.numeric(g))
##
## > boxplot(split(x,g), col="lavender", notch=TRUE)
##
## > title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)
##
## > ## An example showing how to fill between curves.
## >
## > par(bg="white")
##
## > n <- 100
##
## > x <- c(0,cumsum(rnorm(n)))
##
## > y <- c(0,cumsum(rnorm(n)))
##
## > xx <- c(0:n, n:0)
##
## > yy <- c(x, rev(y))
##
## > plot(xx, yy, type="n", xlab="Time", ylab="Distance")
##
## > polygon(xx, yy, col="gray")
##
## > title("Distance Between Brownian Motions")
##
## > ## Colored plot margins, axis labels and titles. You do need to be
## > ## careful with these kinds of effects. It's easy to go completely
## > ## over the top and you can end up with your lunch all over the keyboard.
## > ## On the other hand, my market research clients love it.
## >
## > x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)
##
## > par(bg="lightgray")
##
## > plot(x, type="n", axes=FALSE, ann=FALSE)
##
## > usr <- par("usr")
##
## > rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")
##
## > lines(x, col="blue")
##
## > points(x, pch=21, bg="lightcyan", cex=1.25)
##
## > axis(2, col.axis="blue", las=1)
##
## > axis(1, at=1:12, lab=month.abb, col.axis="blue")
##
## > box()
##
## > title(main= "The Level of Interest in R", font.main=4, col.main="red")
##
## > title(xlab= "1996", col.lab="red")
##
## > ## A filled histogram, showing how to change the font used for the
## > ## main title without changing the other annotation.
## >
## > par(bg="cornsilk")
##
## > x <- rnorm(1000)
##
## > hist(x, xlim=range(-4, 4, x), col="lavender", main="")
##
## > title(main="1000 Normal Random Variates", font.main=3)
##
## > ## A scatterplot matrix
## > ## The good old Iris data (yet again)
## >
## > pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)
##
## > pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
## + bg = c("red", "green3", "blue")[unclass(iris$Species)])
##
## > ## Contour plotting
## > ## This produces a topographic map of one of Auckland's many volcanic "peaks".
## >
## > x <- 10*1:nrow(volcano)
##
## > y <- 10*1:ncol(volcano)
##
## > lev <- pretty(range(volcano), 10)
##
## > par(bg = "lightcyan")
##
## > pin <- par("pin")
##
## > xdelta <- diff(range(x))
##
## > ydelta <- diff(range(y))
##
## > xscale <- pin[1]/xdelta
##
## > yscale <- pin[2]/ydelta
##
## > scale <- min(xscale, yscale)
##
## > xadd <- 0.5*(pin[1]/scale - xdelta)
##
## > yadd <- 0.5*(pin[2]/scale - ydelta)
##
## > plot(numeric(0), numeric(0),
## + xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
## + type = "n", ann = FALSE)
##
## > usr <- par("usr")
##
## > rect(usr[1], usr[3], usr[2], usr[4], col="green3")
##
## > contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)
##
## > box()
##
## > title("A Topographic Map of Maunga Whau", font= 4)
##
## > title(xlab = "Meters North", ylab = "Meters West", font= 3)
##
## > mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
## + at = mean(par("usr")[1:2]), cex=0.7, font=3)
##
## > ## Conditioning plots
## >
## > par(bg="cornsilk")
##
## > coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")
##
## > par(opar)
Demo Imagenes
demo(image)##
##
## demo(image)
## ---- ~~~~~
##
## > # Copyright (C) 1997-2009 The R Core Team
## >
## > require(datasets)
##
## > require(grDevices); require(graphics)
##
## > x <- 10*(1:nrow(volcano)); x.at <- seq(100, 800, by=100)
##
## > y <- 10*(1:ncol(volcano)); y.at <- seq(100, 600, by=100)
##
## > # Using Terrain Colors
## >
## > image(x, y, volcano, col=terrain.colors(100),axes=FALSE)
##
## > contour(x, y, volcano, levels=seq(90, 200, by=5), add=TRUE, col="brown")
##
## > axis(1, at=x.at)
##
## > axis(2, at=y.at)
##
## > box()
##
## > title(main="Maunga Whau Volcano", sub = "col=terrain.colors(100)", font.main=4)
##
## > # Using Heat Colors
## >
## > image(x, y, volcano, col=heat.colors(100), axes=FALSE)
##
## > contour(x, y, volcano, levels=seq(90, 200, by=5), add=TRUE, col="brown")
##
## > axis(1, at=x.at)
##
## > axis(2, at=y.at)
##
## > box()
##
## > title(main="Maunga Whau Volcano", sub = "col=heat.colors(100)", font.main=4)
##
## > # Using Gray Scale
## >
## > image(x, y, volcano, col=gray(100:200/200), axes=FALSE)
##
## > contour(x, y, volcano, levels=seq(90, 200, by=5), add=TRUE, col="black")
##
## > axis(1, at=x.at)
##
## > axis(2, at=y.at)
##
## > box()
##
## > title(main="Maunga Whau Volcano \n col=gray(100:200/200)", font.main=4)
##
## > ## Filled Contours are even nicer sometimes :
## > example(filled.contour)
##
## flld.c> require("grDevices") # for colours
##
## flld.c> filled.contour(volcano, asp = 1) # simple
##
## flld.c> x <- 10*1:nrow(volcano)
##
## flld.c> y <- 10*1:ncol(volcano)
##
## flld.c> filled.contour(x, y, volcano,
## flld.c+ color.palette = function(n) hcl.colors(n, "terrain"),
## flld.c+ plot.title = title(main = "The Topography of Maunga Whau",
## flld.c+ xlab = "Meters North", ylab = "Meters West"),
## flld.c+ plot.axes = { axis(1, seq(100, 800, by = 100))
## flld.c+ axis(2, seq(100, 600, by = 100)) },
## flld.c+ key.title = title(main = "Height\n(meters)"),
## flld.c+ key.axes = axis(4, seq(90, 190, by = 10))) # maybe also asp = 1
##
## flld.c> mtext(paste("filled.contour(.) from", R.version.string),
## flld.c+ side = 1, line = 4, adj = 1, cex = .66)
##
## flld.c> # Annotating a filled contour plot
## flld.c> a <- expand.grid(1:20, 1:20)
##
## flld.c> b <- matrix(a[,1] + a[,2], 20)
##
## flld.c> filled.contour(x = 1:20, y = 1:20, z = b,
## flld.c+ plot.axes = { axis(1); axis(2); points(10, 10) })
##
## flld.c> ## Persian Rug Art:
## flld.c> x <- y <- seq(-4*pi, 4*pi, length.out = 27)
##
## flld.c> r <- sqrt(outer(x^2, y^2, "+"))
##
## flld.c> filled.contour(cos(r^2)*exp(-r/(2*pi)), axes = FALSE)
##
## flld.c> ## rather, the key *should* be labeled:
## flld.c> filled.contour(cos(r^2)*exp(-r/(2*pi)), frame.plot = FALSE,
## flld.c+ plot.axes = {})
Demo persp
demo(persp)##
##
## demo(persp)
## ---- ~~~~~
##
## > ### Demos for persp() plots -- things not in example(persp)
## > ### -------------------------
## >
## > require(datasets)
##
## > require(grDevices); require(graphics)
##
## > ## (1) The Obligatory Mathematical surface.
## > ## Rotated sinc function.
## >
## > x <- seq(-10, 10, length.out = 50)
##
## > y <- x
##
## > rotsinc <- function(x,y)
## + {
## + sinc <- function(x) { y <- sin(x)/x ; y[is.na(y)] <- 1; y }
## + 10 * sinc( sqrt(x^2+y^2) )
## + }
##
## > sinc.exp <- expression(z == Sinc(sqrt(x^2 + y^2)))
##
## > z <- outer(x, y, rotsinc)
##
## > oldpar <- par(bg = "white")
##
## > persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")
##
## > title(sub=".")## work around persp+plotmath bug
##
## > title(main = sinc.exp)
##
## > persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",
## + ltheta = 120, shade = 0.75, ticktype = "detailed",
## + xlab = "X", ylab = "Y", zlab = "Z")
##
## > title(sub=".")## work around persp+plotmath bug
##
## > title(main = sinc.exp)
##
## > ## (2) Visualizing a simple DEM model
## >
## > z <- 2 * volcano # Exaggerate the relief
##
## > x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
##
## > y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
##
## > persp(x, y, z, theta = 120, phi = 15, scale = FALSE, axes = FALSE)
##
## > ## (3) Now something more complex
## > ## We border the surface, to make it more "slice like"
## > ## and color the top and sides of the surface differently.
## >
## > z0 <- min(z) - 20
##
## > z <- rbind(z0, cbind(z0, z, z0), z0)
##
## > x <- c(min(x) - 1e-10, x, max(x) + 1e-10)
##
## > y <- c(min(y) - 1e-10, y, max(y) + 1e-10)
##
## > fill <- matrix("green3", nrow = nrow(z)-1, ncol = ncol(z)-1)
##
## > fill[ , i2 <- c(1,ncol(fill))] <- "gray"
##
## > fill[i1 <- c(1,nrow(fill)) , ] <- "gray"
##
## > par(bg = "lightblue")
##
## > persp(x, y, z, theta = 120, phi = 15, col = fill, scale = FALSE, axes = FALSE)
##
## > title(main = "Maunga Whau\nOne of 50 Volcanoes in the Auckland Region.",
## + font.main = 4)
##
## > par(bg = "slategray")
##
## > persp(x, y, z, theta = 135, phi = 30, col = fill, scale = FALSE,
## + ltheta = -120, lphi = 15, shade = 0.65, axes = FALSE)
##
## > ## Don't draw the grid lines : border = NA
## > persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,
## + ltheta = -120, shade = 0.75, border = NA, box = FALSE)
##
## > ## `color gradient in the soil' :
## > fcol <- fill ; fcol[] <- terrain.colors(nrow(fcol))
##
## > persp(x, y, z, theta = 135, phi = 30, col = fcol, scale = FALSE,
## + ltheta = -120, shade = 0.3, border = NA, box = FALSE)
##
## > ## `image like' colors on top :
## > fcol <- fill
##
## > zi <- volcano[ -1,-1] + volcano[ -1,-61] +
## + volcano[-87,-1] + volcano[-87,-61] ## / 4
##
## > fcol[-i1,-i2] <-
## + terrain.colors(20)[cut(zi,
## + stats::quantile(zi, seq(0,1, length.out = 21)),
## + include.lowest = TRUE)]
##
## > persp(x, y, 2*z, theta = 110, phi = 40, col = fcol, scale = FALSE,
## + ltheta = -120, shade = 0.4, border = NA, box = FALSE)
##
## > ## reset par():
## > par(oldpar)
Demo data
data()