About Transformation mark penalty

What we did

data <- read_excel("Proj1-Oct5-DOE -Tidy2.xlsx")
data <- as.data.frame(data)
data$Obs <- as.numeric(data$Obs)
data$`Ball Colour` <- as.factor(data$`Ball Colour`)
first.model <- aov(data$Obs~data$`Ball Colour`,data = data)
summary(first.model)
##                    Df Sum Sq Mean Sq F value   Pr(>F)    
## data$`Ball Colour`  2  84.51   42.26   14.05 3.08e-05 ***
## Residuals          36 108.23    3.01                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(first.model,col="deepskyblue")

With Transformation

boxcox(data$Obs~data$`Ball Colour`)

lambda=0.5
data$transobs <- data$Obs ^ 0.5
data
##    Ball Colour  Obs transobs
## 1        black 50.0 7.071068
## 2        black 51.0 7.141428
## 3        black 50.0 7.071068
## 4        black 48.5 6.964194
## 5        black 49.0 7.000000
## 6        black 53.0 7.280110
## 7        black 52.0 7.211103
## 8        black 51.0 7.141428
## 9        black 51.0 7.141428
## 10       black 51.0 7.141428
## 11       black 49.5 7.035624
## 12       black 50.0 7.071068
## 13       black 50.0 7.071068
## 14         Red 50.0 7.071068
## 15         Red 51.0 7.141428
## 16         Red 49.0 7.000000
## 17         Red 49.0 7.000000
## 18         Red 50.0 7.071068
## 19         Red 49.5 7.035624
## 20         Red 49.0 7.000000
## 21         Red 50.5 7.106335
## 22         Red 49.0 7.000000
## 23         Red 50.0 7.071068
## 24         Red 50.0 7.071068
## 25         Red 49.0 7.000000
## 26         Red 52.0 7.211103
## 27      Yellow 55.0 7.416198
## 28      Yellow 49.0 7.000000
## 29      Yellow 53.0 7.280110
## 30      Yellow 54.0 7.348469
## 31      Yellow 55.0 7.416198
## 32      Yellow 51.0 7.141428
## 33      Yellow 50.0 7.071068
## 34      Yellow 54.0 7.348469
## 35      Yellow 51.0 7.141428
## 36      Yellow 51.0 7.141428
## 37      Yellow 56.0 7.483315
## 38      Yellow 56.0 7.483315
## 39      Yellow 57.0 7.549834
model2 <- aov(data$transobs~data$`Ball Colour`,data = data)
summary(model2)
##                    Df Sum Sq Mean Sq F value   Pr(>F)    
## data$`Ball Colour`  2 0.4032 0.20160   14.03 3.12e-05 ***
## Residuals          36 0.5172 0.01437                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model2)

There is no significant change in P value hence we did not do it