conclusion: yes, friend ranks predict WTR, B = -.07, t(96.27) - -10.22, p < .001
h1 <- lmer(wtr ~ rank + (rank|subID), data = long_final)
summary(h1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: wtr ~ rank + (rank | subID)
## Data: long_final
##
## REML criterion at convergence: -608.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6748 -0.4594 0.0023 0.4245 5.5443
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## subID (Intercept) 0.050945 0.2257
## rank 0.003025 0.0550 -0.24
## Residual 0.027067 0.1645
## Number of obs: 1349, groups: subID, 99
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.791306 0.025422 95.509076 31.13 <2e-16 ***
## rank -0.070829 0.006933 96.268621 -10.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## rank -0.415
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1106 rows containing non-finite values (stat_smooth).
## Warning: Removed 1106 rows containing missing values (geom_point).
Level 1: grat = Bo + B1wtr + Eij Level 2: Bo = a00 + uoj
conclusion: yes, WTR predicts gratitude, B = 2.84, t(67.49) = 9.28, p < .001
h2<- lmer(grat ~ wtr + (wtr|subID), data = long_final)
summary(h2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: grat ~ wtr + (wtr | subID)
## Data: long_final
##
## REML criterion at convergence: 3965.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5940 -0.5511 0.0469 0.6110 3.0688
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## subID (Intercept) 1.847 1.359
## wtr 3.890 1.972 -0.60
## Residual 1.573 1.254
## Number of obs: 1118, groups: subID, 99
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.8537 0.2009 66.9036 9.227 1.52e-13 ***
## wtr 2.8354 0.3056 67.4881 9.279 1.14e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## wtr -0.779
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1337 rows containing non-finite values (stat_smooth).
## Warning: Removed 1337 rows containing missing values (geom_point).
conclusion: yes, change in WTR predicts gratitude at week 5, B = 1.07, t(106.31) = 2.05, p = .043
h4 <- lmer(grat5 ~ wtrDiff + (wtrDiff | subID), data = WTR)
summary(h4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: grat5 ~ wtrDiff + (wtrDiff | subID)
## Data: WTR
##
## REML criterion at convergence: 1701.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1717 -0.7211 0.1932 0.7425 1.7150
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## subID (Intercept) 0.25276 0.5028
## wtrDiff 0.08085 0.2843 1.00
## Residual 3.07820 1.7545
## Number of obs: 423, groups: subID, 53
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.4783 0.1134 46.2588 30.665 <2e-16 ***
## wtrDiff 1.0663 0.5196 106.3070 2.052 0.0426 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## wtrDiff 0.070
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1541 rows containing non-finite values (stat_smooth).
## Warning: Removed 1541 rows containing missing values (geom_point).